Bibliometric Analysis of Research Trends and Prospective Directions of Lung Microbiome
Abstract
:1. Introduction
2. Methods
2.1. Data Collection
2.2. Data Extraction
2.3. Data Analysis and Visualization
3. Results
3.1. Annual Publications and Citation Trends
3.2. Analysis of Published Journals
3.3. Cooperative Relationship Network
3.3.1. Country and Institutional Cooperation Network
3.3.2. Author Cooperation Network
3.4. Analysis of Hotspot Evolution
3.4.1. Keyword Analysis
3.4.2. Burst Detection
3.4.3. Co-Citation Analysis
4. Discussion
4.1. General Information
4.2. Hotspots and Frontiers
4.3. Lung Microbiome and Diseases
4.4. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Natalini, J.G.; Singh, S.; Segal, L.N. The dynamic lung microbiome in health and disease. Nat. Rev. Microbiol. 2023, 21, 222–235. [Google Scholar] [CrossRef] [PubMed]
- Huffnagle, G.B.; Dickson, R.P.; Lukacs, N.W. The respiratory tract microbiome and lung inflammation: A two-way street. Mucosal Immunol. 2017, 10, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Dickson, R.P.; Erb-Downward, J.R.; Martinez, F.J.; Huffnagle, G.B. The Microbiome and the Respiratory Tract. Annu. Rev. Physiol. 2016, 78, 481–504. [Google Scholar] [CrossRef] [PubMed]
- Carney, S.M.; Clemente, J.C.; Cox, M.J.; Dickson, R.P.; Huang, Y.J.; Kitsios, G.D.; Kloepfer, K.M.; Leung, J.M.; LeVan, T.D.; Molyneaux, P.L.; et al. Methods in Lung Microbiome Research. Am. J. Respir. Cell Mol. Biol. 2020, 62, 283–299. [Google Scholar] [CrossRef]
- Whiteside, S.A.; McGinniss, J.E.; Collman, R.G. The lung microbiome: Progress and promise. J. Clin. Investig. 2021, 131, e150473. [Google Scholar] [CrossRef]
- Alharris, E.; Mohammed, A.; Alghetaa, H.; Zhou, J.; Nagarkatti, M.; Nagarkatti, P. The Ability of Resveratrol to Attenuate Ovalbumin-Mediated Allergic Asthma Is Associated with Changes in Microbiota Involving the Gut-Lung Axis, Enhanced Barrier Function and Decreased Inflammation in the Lungs. Front. Immunol. 2022, 13, 805770. [Google Scholar] [CrossRef]
- Meng, Y.; Mao, Y.; Tang, Z.; Qiu, X.; Bajinka, O.; Tan, Y.; Song, Z. Crosstalk between the lung microbiome and lung cancer. Microb. Pathog. 2023, 178, 106062. [Google Scholar] [CrossRef]
- Madapoosi, S.S.; Cruickshank-Quinn, C.; Opron, K.; Erb-Downward, J.R.; Begley, L.A.; Li, G.; Barjaktarevic, I.; Barr, R.G.; Comellas, A.P.; Couper, D.J.; et al. Lung Microbiota and Metabolites Collectively Associate with Clinical Outcomes in Milder Stage Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2022, 206, 427–439. [Google Scholar] [CrossRef]
- Li, R.; Li, J.; Zhou, X. Lung microbiome: New insights into the pathogenesis of respiratory diseases. Signal Transduct. Target. Ther. 2024, 9, 19. [Google Scholar] [CrossRef]
- Chung, K.F. Potential Role of the Lung Microbiome in Shaping Asthma Phenotypes. Ann. Am. Thorac. Soc. 2017, 14, S326–S331. [Google Scholar] [CrossRef]
- Liu, H.-X.; Tao, L.-L.; Zhang, J.; Zhu, Y.-G.; Zheng, Y.; Liu, D.; Zhou, M.; Ke, H.; Shi, M.-M.; Qu, J.-M. Difference of lower airway microbiome in bilateral protected specimen brush between lung cancer patients with unilateral lobar masses and control subjects. Int. J. Cancer 2018, 142, 769–778. [Google Scholar] [CrossRef] [PubMed]
- Laiman, V.; Chuang, H.-C.; Lo, Y.-C.; Yuan, T.-H.; Chen, Y.-Y.; Heriyanto, D.S.; Yuliani, F.S.; Chung, K.F.; Chang, J.-H. Cigarette smoke-induced dysbiosis: Comparative analysis of lung and intestinal microbiomes in COPD mice and patients. Respir. Res. 2024, 25, 204. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cai, Y.; Garssen, J.; Henricks, P.A.J.; Folkerts, G.; Braber, S. The Bidirectional Gut–Lung Axis in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2023, 207, 1145–1160. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, G.L.V.; Oliveira, C.N.S.; Pinzan, C.F.; de Salis, L.V.V.; Cardoso, C.R. de B. Microbiota Modulation of the Gut-Lung Axis in COVID-19. Front. Immunol. 2021, 12, 635471. [Google Scholar] [CrossRef]
- Ma, D.; Guan, B.; Song, L.; Liu, Q.; Fan, Y.; Zhao, L.; Wang, T.; Zhang, Z.; Gao, Z.; Li, S.; et al. A Bibliometric Analysis of Exosomes in Cardiovascular Diseases from 2001 to 2021. Front. Cardiovasc. Med. 2021, 8, 734514. [Google Scholar] [CrossRef]
- Ellegaard, O.; Wallin, J.A. The bibliometric analysis of scholarly production: How great is the impact? Scientometrics 2015, 105, 1809–1831. [Google Scholar] [CrossRef]
- Rondanelli, M.; Perna, S.; Peroni, G.; Guido, D. A bibliometric study of scientific literature in Scopus on botanicals for treatment of androgenetic alopecia. J. Cosmet. Dermatol. 2016, 15, 120–130. [Google Scholar] [CrossRef]
- Li, Q.; Ren, Q.; Luo, Q.; Yu, X.; Chen, M.; Wen, Y.; Huang, L.; Sun, M.; Yu, S.; Yang, S. Research trends of acupuncture therapy on postoperative nausea and vomiting from 2011 to 2023: A bibliometric analysis. Complement. Ther. Med. 2023, 78, 102987. [Google Scholar] [CrossRef]
- Ling, L.-X.; Ouyang, Y.; Hu, Y. Research trends on nanomaterials in gastric cancer: A bibliometric analysis from 2004 to 2023. J. Nanobiotechnol. 2023, 21, 248. [Google Scholar] [CrossRef]
- Wu, F.; Gao, J.; Kang, J.; Wang, X.; Niu, Q.; Liu, J.; Zhang, L. Knowledge Mapping of Exosomes in Autoimmune Diseases: A Bibliometric Analysis (2002–2021). Front. Immunol. 2022, 13, 939433. [Google Scholar] [CrossRef]
- Zhou, Q.; Pei, J.; Poon, J.; Lau, A.Y.; Zhang, L.; Wang, Y.; Liu, C.; Huang, L. Worldwide research trends on aristolochic acids (1957-2017): Suggestions for researchers. PLoS ONE 2019, 14, e0216135. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, C.M. CiteSpace: Science and Technology Text Mining and Visualization, 2nd ed.; Capital University of Economics and Business Press: Beijing, China, 2017; p. 93. [Google Scholar]
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef] [PubMed]
- Dickson, R.P.; Schultz, M.J.; van der Poll, T.; Schouten, L.R.; Falkowski, N.R.; Luth, J.E.; Sjoding, M.W.; Brown, C.A.; Chanderraj, R.; Huffnagle, G.B.; et al. Lung Microbiota Predict Clinical Outcomes in Critically Ill Patients. Am. J. Respir. Crit. Care Med. 2020, 201, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Dickson, R.P.; Huffnagle, G.B. The Lung Microbiome: New Principles for Respiratory Bacteriology in Health and Disease. PLoS Pathog. 2015, 11, e1004923. [Google Scholar] [CrossRef]
- Yagi, K.; Huffnagle, G.B.; Lukacs, N.W.; Asai, N. The Lung Microbiome during Health and Disease. Int. J. Mol. Sci. 2021, 22, 10872. [Google Scholar] [CrossRef]
- Yagi, K.; Ethridge, A.D.; Falkowski, N.R.; Huang, Y.J.; Elesela, S.; Huffnagle, G.B.; Lukacs, N.W.; Fonseca, W.; Asai, N. Microbiome modifications by steroids during viral exacerbation of asthma and in healthy mice. Am. J. Physiol. Lung Cell Mol. Physiol. 2024, 327, L646–L660. [Google Scholar] [CrossRef]
- Man, W.H.; Scheltema, N.M.; Clerc, M.; van Houten, M.A.; Nibbelke, E.E.; Achten, N.B.; Arp, K.; Sanders, E.A.M.; Bont, L.J.; Bogaert, D. Infant respiratory syncytial virus prophylaxis and nasopharyngeal microbiota until 6 years of life: A subanalysis of the MAKI randomised controlled trial. Lancet Respir. Med. 2020, 8, 1022–1031. [Google Scholar] [CrossRef]
- Koenen, M.H.; de Groot, R.C.A.; de Steenhuijsen Piters, W.A.A.; Chu, M.L.J.N.; Arp, K.; Hasrat, R.; de Bruijn, A.C.J.M.; Estevão, S.C.; van der Vries, E.; Langereis, J.D.; et al. Mycoplasma pneumoniae carriage in children with recurrent respiratory tract infections is associated with a less diverse and altered microbiota. EBioMedicine 2023, 98, 104868. [Google Scholar] [CrossRef]
- Verhagen, L.M.; Rivera-Olivero, I.A.; Clerc, M.; Chu, M.L.J.N.; van Engelsdorp Gastelaars, J.; Kristensen, M.I.; Berbers, G.A.M.; Hermans, P.W.M.; de Jonge, M.I.; de Waard, J.H.; et al. Nasopharyngeal Microbiota Profiles in Rural Venezuelan Children Are Associated with Respiratory and Gastrointestinal Infections. Clin. Infect. Dis. 2021, 72, 212–221. [Google Scholar] [CrossRef]
- de Steenhuijsen Piters, W.A.A.; Watson, R.L.; de Koff, E.M.; Hasrat, R.; Arp, K.; Chu, M.L.J.N.; de Groot, P.C.M.; van Houten, M.A.; Sanders, E.A.M.; Bogaert, D. Early-life viral infections are associated with disadvantageous immune and microbiota profiles and recurrent respiratory infections. Nat. Microbiol. 2022, 7, 224–237. [Google Scholar] [CrossRef]
- Lin, X.; Wu, G.; Wang, S.; Huang, J. Bibliometric and visual analysis of doxorubicin-induced cardiotoxicity. Front. Pharmacol. 2023, 14, 1255158. [Google Scholar] [CrossRef] [PubMed]
- Scialo, F.; Amato, F.; Cernera, G.; Gelzo, M.; Zarrilli, F.; Comegna, M.; Pastore, L.; Bianco, A.; Castaldo, G. Lung Microbiome in Cystic Fibrosis. Life 2021, 11, 94. [Google Scholar] [CrossRef] [PubMed]
- Asai, N.; Ethridge, A.D.; Fonseca, W.; Yagi, K.; Rasky, A.J.; Morris, S.B.; Falkowski, N.R.; Huang, Y.J.; Huffnagle, G.B.; Lukacs, N.W. A steroid-resistant cockroach allergen model is associated with lung and cecal microbiome changes. Physiol. Rep. 2023, 11, e15761. [Google Scholar] [CrossRef] [PubMed]
- van Tilburg Bernardes, E.; Gutierrez, M.W.; Arrieta, M.-C. The Fungal Microbiome and Asthma. Front. Cell. Infect. Microbiol. 2020, 10, 583418. [Google Scholar] [CrossRef]
- Siempos, I.I.; Ntaidou, T.K.; Falagas, M.E. Impact of the administration of probiotics on the incidence of ventilator-associated pneumonia: A meta-analysis of randomized controlled trials. Crit. Care Med. 2010, 38, 954–962. [Google Scholar] [CrossRef]
- Hughes, D.T.; Sperandio, V. Inter-kingdom signalling: Communication between bacteria and their hosts. Nat. Rev. Microbiol. 2008, 6, 111–120. [Google Scholar] [CrossRef]
- Freestone, P. Communication between Bacteria and Their Hosts. Scientifica 2013, 2013, 361073. [Google Scholar] [CrossRef]
- Kyo, M.; Nishioka, K.; Nakaya, T.; Kida, Y.; Tanabe, Y.; Ohshimo, S.; Shime, N. Unique patterns of lower respiratory tract microbiota are associated with inflammation and hospital mortality in acute respiratory distress syndrome. Respir. Res. 2019, 20, 246. [Google Scholar] [CrossRef]
- Kitsios, G.D.; Yang, H.; Yang, L.; Qin, S.; Fitch, A.; Wang, X.-H.; Fair, K.; Evankovich, J.; Bain, W.; Shah, F.; et al. Respiratory Tract Dysbiosis Is Associated with Worse Outcomes in Mechanically Ventilated Patients. Am. J. Respir. Crit. Care Med. 2020, 202, 1666–1677. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Eguchi, A.; Wei, Y.; Shinno-Hashimoto, H.; Fujita, Y.; Ishima, T.; Chang, L.; Mori, C.; Suzuki, T.; Hashimoto, K. Antibiotic-induced microbiome depletion improves LPS-induced acute lung injury via gut-lung axis. Life Sci. 2022, 307, 120885. [Google Scholar] [CrossRef]
- Ren, H.; Ling, Y.; Cao, R.; Wang, Z.; Li, Y.; Huang, T. Early warning of emerging infectious diseases based on multimodal data. Biosaf. Health 2023, 5, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Yuksel, N.; Gelmez, B.; Yildiz-Pekoz, A. Lung Microbiota: Its Relationship to Respiratory System Diseases and Approaches for Lung-Targeted Probiotic Bacteria Delivery. Mol. Pharm. 2023, 20, 3320–3337. [Google Scholar] [CrossRef] [PubMed]
- Nagasaka, M.; Sexton, R.; Alhasan, R.; Rahman, S.; Azmi, A.S.; Sukari, A. Gut microbiome and response to checkpoint inhibitors in non-small cell lung cancer-A review. Crit. Rev. Oncol. Hematol. 2020, 145, 102841. [Google Scholar] [CrossRef]
- Khan, F.H.; Bhat, B.A.; Sheikh, B.A.; Tariq, L.; Padmanabhan, R.; Verma, J.P.; Shukla, A.C.; Dowlati, A.; Abbas, A. Microbiome dysbiosis and epigenetic modulations in lung cancer: From pathogenesis to therapy. Semin. Cancer Biol. 2022, 86, 732–742. [Google Scholar] [CrossRef]
- Budden, K.F.; Shukla, S.D.; Rehman, S.F.; Bowerman, K.L.; Keely, S.; Hugenholtz, P.; Armstrong-James, D.P.H.; Adcock, I.M.; Chotirmall, S.H.; Chung, K.F.; et al. Functional effects of the microbiota in chronic respiratory disease. Lancet Respir. Med. 2019, 7, 907–920. [Google Scholar] [CrossRef]
- Duran-Pinedo, A.E.; Chen, T.; Teles, R.; Starr, J.R.; Wang, X.; Krishnan, K.; Frias-Lopez, J. Community-wide transcriptome of the oral microbiome in subjects with and without periodontitis. ISME J. 2014, 8, 1659–1672. [Google Scholar] [CrossRef]
- Marchesi, J.R.; Ravel, J. The vocabulary of microbiome research: A proposal. Microbiome 2015, 3, 31. [Google Scholar] [CrossRef]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.-Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Y.; Yan, Z.; Liu, H.; Chen, B.; Liang, Z.; Wang, F.; Miller, B.E.; Tal-Singer, R.; Yi, X.; et al. Multi-omic meta-analysis identifies functional signatures of airway microbiome in chronic obstructive pulmonary disease. ISME J. 2020, 14, 2748–2765. [Google Scholar] [CrossRef]
- Wang, Z.; Locantore, N.; Haldar, K.; Ramsheh, M.Y.; Beech, A.S.; Ma, W.; Brown, J.R.; Tal-Singer, R.; Barer, M.R.; Bafadhel, M.; et al. Inflammatory Endotype-associated Airway Microbiome in Chronic Obstructive Pulmonary Disease Clinical Stability and Exacerbations: A Multicohort Longitudinal Analysis. Am. J. Respir. Crit. Care Med. 2021, 203, 1488–1502. [Google Scholar] [CrossRef]
- Einarsson, G.G.; Comer, D.M.; McIlreavey, L.; Parkhill, J.; Ennis, M.; Tunney, M.M.; Elborn, J.S. Community dynamics and the lower airway microbiota in stable chronic obstructive pulmonary disease, smokers and healthy non-smokers. Thorax 2016, 71, 795–803. [Google Scholar] [CrossRef] [PubMed]
- Tsay, J.-C.J.; Wu, B.G.; Sulaiman, I.; Gershner, K.; Schluger, R.; Li, Y.; Yie, T.-A.; Meyn, P.; Olsen, E.; Perez, L.; et al. Lower Airway Dysbiosis Affects Lung Cancer Progression. Cancer Discov. 2021, 11, 293–307. [Google Scholar] [CrossRef] [PubMed]
- Devi, P.; Kumari, P.; Yadav, A.; Tarai, B.; Budhiraja, S.; Shamim, U.; Pandey, R. Transcriptionally active nasopharyngeal commensals and opportunistic microbial dynamics define mild symptoms in the COVID 19 vaccination breakthroughs. PLoS Pathog. 2023, 19, e1011160. [Google Scholar] [CrossRef]
- Xavier-Santos, D.; Padilha, M.; Fabiano, G.A.; Vinderola, G.; Gomes Cruz, A.; Sivieri, K.; Costa Antunes, A.E. Evidences and perspectives of the use of probiotics, prebiotics, synbiotics, and postbiotics as adjuvants for prevention and treatment of COVID-19: A bibliometric analysis and systematic review. Trends Food Sci. Technol. 2022, 120, 174–192. [Google Scholar] [CrossRef]
- Nichols, J.J.; Jones, L.W.; Morgan, P.B.; Efron, N. Bibliometric analysis of the meibomian gland literature. Ocul. Surf. 2021, 20, 212–214. [Google Scholar] [CrossRef]
Journal | 2022 JIF | Record Count | Centrality |
---|---|---|---|
Nature Communications | 16.6 | 10 | 0.01 |
Thorax | 10 | 10 | 0.01 |
Frontiers in Oncology | 4.7 | 11 | 0.01 |
Frontiers in Immunology | 7.3 | 13 | 0.03 |
Microbiology Spectrum | 3.7 | 14 | 0.01 |
BMC Microbiology | 4.2 | 15 | 0.03 |
Microorganisms | 4.5 | 17 | 0.00 |
Respiratory Research | 5.8 | 20 | 0.02 |
Microbiome | 15.5 | 26 | 0.01 |
American Journal of Respiratory and Critical Care Medicine | 24.7 | 27 | 0.02 |
Scientific Reports | 4.6 | 36 | 0.01 |
Frontiers in Cellular and Infection Microbiology | 5.7 | 39 | 0.01 |
Frontiers in Microbiology | 5.2 | 40 | 0.03 |
PLoS ONE | 3.7 | 55 | 0.01 |
Author | Country | Institution | H-Index | Reasearch Area | Record Count | Centrality |
---|---|---|---|---|---|---|
Huffnagle, Gary B. | United States | University of Michigan Medical School | 85 | Immunology; Microbiology; Allergy | 21 | 0.03 |
Bogaert, Debby | United Kingdom | MRC Centre for Inflammation Research | 52 | Pediatrics; Infectious Diseases; Microbiome; Respiratory | 15 | 0.01 |
Dickson, Robert P. | United States | University of Michigan Medical School | 41 | Pulmonary Medicine; Microbiology; Pneumonia; ARDS; Critical Care | 14 | 0.01 |
Erb-Downward, John R. | United States | University of Michigan Medical School | 37 | Microbiology; Microbiome; Lung Microbiome; Small Molecules; Prostaglandins | 12 | 0.01 |
Cox, Michael J. | Belgium | Janssen Pharmaceutica, Headquarters | 25 | Respiratory Microbiome; Microbial Ecology; Human Microbiome; Microbiology | 11 | 0.07 |
Segal, Leopoldo N. | United States | NYU Grossman School of Medicine | 30 | COPD Inflammation; Lung Microbiome; Immune Response | 11 | 0.02 |
Lynch, Susan V. | United States | University of California, San Francisco | 55 | Microbiome | 9 | 0.05 |
Moffatt, Miriam F. | United Kingdom | National Heart and Lung Institute | 75 | Respiratory Genetics; Asthma; GWAS; Microbiome | 9 | 0 |
Morris, Alison | United States | University of Pittsburgh School of Medicine | 47 | Pulmonary; Allergy; Critical Care Medicine | 9 | 0.02 |
Sanders, Elisabeth A.M. | Netherlands | Wilhelmina Kinderziekenhuis | 63 | Pediatric Immunology; Infectious Diseases; Vaccinology | 9 | 0 |
Wang, Zhang | China | South China Normal University | 18 | Microbiology; Respiratory System; Experimental Medicine; Biochemistry | 9 | 0 |
Brightling, Christopher E. | United Kingdom | University of Leicester | 113 | Respiratory System; Immunology; General and Internal Medicine; Allergy | 8 | 0.06 |
Chu, Mei Ling J.N. | Netherlands | Rijksinstituut voor Volksgezondheid en Milieu | 14 | Nuclear Medicine; Medical Imaging; Respiratory System; Immunology | 8 | 0 |
Curtis, Jeffrey L. | United States | VA Ann Arbor Healthcare System | 70 | Respiratory System; Immunology; Cell Biology; Biochemistry and Molecular Biology | 8 | 0.03 |
Cuthbertson, Leah | United Kingdom | National Heart and Lung Institute | 18 | Respiratory System; Microbiology; Environmental Sciences and Ecology; Medicine | 8 | 0 |
Keywords | Year | Strength | Begin | End | 2003–2023 |
---|---|---|---|---|---|
Diversity | 2010 | 4.03 | 2010 | 2017 | |
Cystic fibrosis | 2010 | 3.61 | 2010 | 2017 | |
Exacerbations | 2011 | 3.14 | 2011 | 2015 | |
Community | 2012 | 8.1 | 2012 | 2017 | |
Colonization | 2012 | 4.63 | 2012 | 2016 | |
Samples | 2012 | 3.4 | 2012 | 2016 | |
Sputum | 2013 | 6.02 | 2013 | 2016 | |
Airway microbiota | 2013 | 3.86 | 2013 | 2015 | |
Pneumonia | 2013 | 3.24 | 2013 | 2017 | |
Obstructive pulmonary disease | 2011 | 5.37 | 2016 | 2018 | |
Respiratory tract | 2016 | 4.87 | 2016 | 2018 | |
Bacterial infection | 2017 | 3.4 | 2016 | 2018 | |
Infants | 2016 | 3.5 | 2017 | 2019 | |
Severity | 2017 | 3.32 | 2018 | 2019 | |
Dynamics | 2019 | 3.27 | 2018 | 2020 | |
Staphylococcus aureus | 2019 | 3.37 | 2019 | 2020 | |
Lung microbiota | 2019 | 4.76 | 2021 | 2023 | |
Injury | 2021 | 3.91 | 2021 | 2023 | |
Virus | 2018 | 3.7 | 2021 | 2023 | |
Efficacy | 2021 | 3.13 | 2021 | 2023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, C.; Zhang, Y.; Zhang, H.; Zhang, H.; Liu, J.; Shen, N. Bibliometric Analysis of Research Trends and Prospective Directions of Lung Microbiome. Pathogens 2024, 13, 996. https://doi.org/10.3390/pathogens13110996
Du C, Zhang Y, Zhang H, Zhang H, Liu J, Shen N. Bibliometric Analysis of Research Trends and Prospective Directions of Lung Microbiome. Pathogens. 2024; 13(11):996. https://doi.org/10.3390/pathogens13110996
Chicago/Turabian StyleDu, Chunjing, Yi Zhang, Hanwen Zhang, Hua Zhang, Jingyuan Liu, and Ning Shen. 2024. "Bibliometric Analysis of Research Trends and Prospective Directions of Lung Microbiome" Pathogens 13, no. 11: 996. https://doi.org/10.3390/pathogens13110996
APA StyleDu, C., Zhang, Y., Zhang, H., Zhang, H., Liu, J., & Shen, N. (2024). Bibliometric Analysis of Research Trends and Prospective Directions of Lung Microbiome. Pathogens, 13(11), 996. https://doi.org/10.3390/pathogens13110996