Foodborne Pathogens Across Different Food Matrices in Sicily (Southern Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Sample Preparation for Protozoan and Bacterial DNA Extraction
2.2.1. Meat
2.2.2. Vegetables
2.2.3. Mussels
2.2.4. Milk
2.3. Sample Preparation for Viral Genomic Extraction
2.3.1. Meat
2.3.2. Vegetables
2.3.3. Mussels
2.4. Nucleic Acid Extraction
2.5. Detection of FBP Nucleic Acids in Extracted Samples
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yoshida, N.; Tyler, K.M.; Llewellyn, M.S. Invasion mechanisms among emerging food-borne protozoan parasites. Trends Parasitol. 2011, 27, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.E.; Dubey, J.P. Toxoplasma gondii as a Parasite in Food: Analysis and Control. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef] [PubMed]
- EFSA. The European Union One Health 2022 Zoonoses Report. 2023. Available online: https://efsa.onlinelibrary.wiley.com/doi/10.2903/j.efsa.2023.8442 (accessed on 14 October 2024).
- Greening, G.E.; Cannon, J.L. Human and Animal Viruses in Food (Including Taxonomy of Enteric Viruses). In Viruses in Foods; Springer: Berlin/Heidelberg, Germany, 2016; pp. 5–57. [Google Scholar] [CrossRef]
- FAO; WHO. Microbiological Risk Assessment—Guidance for Food. Guidance. In Microbiological Risk Assessment; Series No. 36; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Rodríguez, R.A.; Garza, F.M.; Birch, O.N.; Greaves, J.C.J. Co-occurrence of Adeno-Associated Virus 2 and Human Enteric Adenovirus (Group F) in Wastewater after Worldwide Outbreaks of Acute Hepatitis of Unknown Etiology (AHUE). Sci. Total Environ. 2024, 955, 176806. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, H.; Blacklaws, B.A.; Collins, P.J.; McKillen, J.; Fitzgerald, R. Viruses Associated With Foodborne Infections. Ref. Modul. Life Sci. 2019. [Google Scholar] [CrossRef]
- Maunula, L.; Rönnqvist, M.; Åberg, R.; Lunden, J.; Nevas, M. The Presence of Norovirus and Adenovirus on Environmental Surfaces in Relation to the Hygienic Level in Food Service Operations Associated with a Suspected Gastroenteritis Outbreak. Food Environ. Virol. 2017, 9, 334–341, Erratum in Food Environ. Virol. 2017, 9, 358–359. [Google Scholar] [CrossRef]
- Omatola, C.A.; Mshelbwala, P.P.; Okolo, M.-L.O.; Onoja, A.B.; Abraham, J.O.; Adaji, D.M.; Samson, S.O.; Okeme, T.O.; Aminu, R.F.; Akor, M.E.; et al. Noroviruses: Evolutionary Dynamics, Epidemiology, Pathogenesis, and Vaccine Advances—A Comprehensive Review. Vaccines 2024, 12, 590. [Google Scholar] [CrossRef]
- Singh, N.; Burpee, T. Rotavirus and Noro- and Caliciviruses. In Textbook of Clinical Pediatrics; Springer: Berlin, Germany, 2012; pp. 1249–1257. [Google Scholar] [CrossRef]
- Chelli, E.; Suffredini, E.; De Santis, P.; De Medici, D.; Di Bella, S.; D’Amato, S.; Gucciardi, F.; Guercio, A.; Ostanello, F.; Perrone, V.; et al. Hepatitis E Virus Occurrence in Pigs Slaughtered in Italy. Animals 2021, 11, 277. [Google Scholar] [CrossRef]
- Symeonidou, I.; Sioutas, G.; Lazou, T.; Gelasakis, A.I.; Papadopoulos, E. A Review of Toxoplasma gondii in Animals in Greece: A Food-Borne Pathogen of Public Health Importance. Animals 2023, 13, 2530. [Google Scholar] [CrossRef]
- Duron, O.; Sidi-Boumedine, K.; Rousset, E.; Moutailler, S.; Jourdain, E. The importance of ticks in Q fever transmission: What has (and has not) been demonstrated? Trends Parasitol. 2015, 31, 536–552. [Google Scholar] [CrossRef]
- Sireci, G.; Badami, G.D.; Di Liberto, D.; Blanda, V.; Grippi, F.; Di Paola, L.; Guercio, A.; de la Fuente, J.; Torina, A. Recent advances on the innate immune response to Coxiella burnetii. Front. Cell Infect. Microbiol. 2021, 11, 754455. [Google Scholar] [CrossRef]
- Basanisi, M.G.; La Bella, G.; Nobili, G.; Raele, D.A.; Cafiero, M.A.; Coppola, R.; Damato, A.M.; Fraccalvieri, R.; Sottili, R.; La Salandra, G. Detection of Coxiella burnetii DNA in Sheep and Goat Milk and Dairy Products by Droplet Digital PCR in South Italy. Int. J. Food Microbiol. 2022, 366, 109583. [Google Scholar] [CrossRef]
- Haake, D.A.; Levett, P.N. Leptospirosis in Humans. Curr. Top. Microbiol. Immunol. 2015, 387, 65–97. [Google Scholar] [CrossRef] [PubMed]
- Lalonde, L.F.; Reyes, J.; Gajadhar, A.A. Application of a qPCR assay with melting curve analysis for detection and differentiation of protozoan oocysts in human fecal samples from Dominican Republic. Am. J. Trop. Med. Hyg. 2013, 89, 892–898. [Google Scholar] [CrossRef] [PubMed]
- Purpari, G.; Macaluso, G.; Di Bella, S.; Gucciardi, F.; Mira, F.; Di Marco, P.; Lastra, A.; Petersen, E.; La Rosa, G.; Guercio, A. Molecular characterization of human enteric viruses in food, water samples, and surface swabs in Sicily. Int. J. Infect. Dis. 2019, 80, 66–72. [Google Scholar] [CrossRef] [PubMed]
- UNI EN ISO 15216-2:2019; (Edition September 2019): Microbiology of the Food Chain—Horizontal Method for Determination of Hepatitis A Virus and Norovirus Using Real-Time RT-PCR—Part 2: Method for Detection. ISO: Geneva, Switzerland, 2019.
- Macaluso, G.; Guercio, A.; Gucciardi, F.; Di Bella, S.; La Rosa, G.; Suffredini, E.; Randazzo, W.; Purpari, G. Occurrence of human enteric viruses in shellfish along the production and distribution chain in Sicily, Italy. Foods 2021, 10, 1384. [Google Scholar] [CrossRef]
- Edvinsson, B.; Lappalainen, M.; Evengård, B.; ESCMID Study Group for Toxoplasmosis. Real-time PCR targeting a 529-bp repeat element for diagnosis of toxoplasmosis. Clin. Microbiol. Infect. 2006, 12, 131–136. [Google Scholar] [CrossRef]
- de Bruin, A.; de Groot, A.; de Heer, L.; Bok, J.; Wielinga, P.R.; Hamans, M.; van Rotterdam, B.J.; Janse, I. Detection of Coxiella burnetii in complex matrices by using multiplex quantitative PCR during a major Q fever outbreak in The Netherlands. Appl. Environ. Microbiol. 2011, 77, 6516–6523. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stoddard, R.A.; Gee, J.E.; Wilkins, P.P.; McCaustland, K.; Hoffmaster, A.R. Detection of pathogenic Leptospira spp. through TaqMan polymerase chain reaction targeting the LipL32 gene. Diagn. Microbiol. Infect. Dis. 2009, 64, 247–255. [Google Scholar] [CrossRef]
- Bedir, O.; Kilic, A.; Atabek, E.; Kuskucu, A.M.; Turhan, V.; Basustaoglu, A.C. Simultaneous detection and differentiation of pathogenic and nonpathogenic Leptospira spp. by multiplex real-time PCR (TaqMan) assay. Pol. J. Microbiol. 2010, 59, 167–173. [Google Scholar] [PubMed]
- Freeman, M.M.; Kerin, T.; Hull, J.; McCaustland, K.; Gentsch, J. Enhancement of detection and quantification of rotavirus in stool using a modified real-time RT-PCR assay. J. Med Virol. 2008, 80, 1489–1496. [Google Scholar] [CrossRef] [PubMed]
- Costafreda, M.I.; Bosch, A.; Pintï, R.M. Development, Evaluation, and Standardization of a Real-Time TaqMan Reverse Transcription-PCR Assay for Quantification of Hepatitis A Virus in Clinical and Shellfish Samples. Appl. Environ. Microbiol. 2006, 72, 3846–3855. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, A.K.; Le Saux, J.C.; Parnaudeau, S.; Pommepuy, M.; Elimelech, M.; Le Guyader, F.S. Evaluation of removal of noroviruses during wastewater treatment, using real-time reverse transcription-PCR: Different behaviors of genogroups I and II. Appl. Environ. Microbiol. 2007, 73, 7891–7897. [Google Scholar] [CrossRef] [PubMed]
- Formiga-Cruz, M.; Hundesa, A.; Clemente-Casares, P.; Albiñana-Gimenez, N.; Allard, A.; Girones, R. Nested multiplex PCR assay for detection of human enteric viruses in shellfish and sewage. J. Virol. Methods 2005, 125, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Garson, J.A.; Ferns, R.B.; Grant, P.R.; Ijaz, S.; Nastouli, E.; Szypulska, R.; Tedder, R.S. Minor groove binder modification of widely used TaqMan probe for hepatitis E virus reduces risk of false negative real-time PCR results. J. Virol. Methods 2012, 186, 157–160, Erratum in J. Virol. Methods 2014, 209, 143. [Google Scholar] [CrossRef] [PubMed]
- Jothikumar, N.; Cromeans, T.L.; Robertson, B.H.; Meng, X.J.; Hill, V.R. A broadly reactive one-step real-time RT-PCR assay for rapid and sensitive detection of hepatitis E virus. J. Virol. Methods 2006, 131, 65–71. [Google Scholar] [CrossRef] [PubMed]
- La Rosa, G.; Proroga, Y.T.R.; De Medici, D.; Capuano, F.; Iaconelli, M.; Della Libera, S.; Suffredini, E. First Detection of Hepatitis E Virus in Shellfish and in Seawater from Production Areas in Southern Italy. Food Environ. Virol. 2018, 10, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Mattison, K. Norovirus as a Foodborne Disease Hazard. Adv. Food Nutr. Res. 2011, 62, 1–39. [Google Scholar] [CrossRef]
- Suffredini, E.; Lanni, L.; Arcangeli, G.; Pepe, T.; Mazzette, R.; Ciccaglioni, G.; Croci, L. Qualitative and quantitative assessment of viral contamination in bivalve molluscs harvested in Italy. Int. J. Food Microbiol. 2014, 184, 21–26. [Google Scholar] [CrossRef]
- Giammanco, G.M.; Di Bartolo, I.; Purpari, G.; Costantino, C.; Rotolo, V.; Spoto, V.; Geraci, G.; Bosco, G.; Petralia, A.; Guercio, A.; et al. Investigation and control of a norovirus outbreak of probable waterborne transmission through a municipal groundwater system. J. Water Health 2014, 12, 452–464. [Google Scholar] [CrossRef]
- Giammanco, G.M.; Bonura, F.; Urone, N.; Purpari, G.; Cuccia, M.; Pepe, A.; Li Muli, S.; Cappa, V.; Saglimbene, C.; Mandolfo, G.; et al. Waterborne Norovirus Outbreak at a Seaside Resort Likely Originating from Municipal Water Distribution System Failure. Epidemiol. Infect. 2018, 146, 879–887. [Google Scholar] [CrossRef]
- Fusco, G.; Anastasio, A.; Kingsley, D.H.; Amoroso, M.G.; Pepe, T.; Fratamico, P.M.; Cioffi, B.; Rossi, R.; La Rosa, G.; Boccia, F. Detection of Hepatitis A Virus and Other Enteric Viruses in Shellfish Collected in the Gulf of Naples, Italy. Int. J. Environ. Res. Public Health 2019, 16, 2588. [Google Scholar] [CrossRef] [PubMed]
- Toffan, A.; Brutti, A.; De Pasquale, A.; Cappellozza, E.; Pascoli, F.; Cigarini, M.; Di Rocco, M.; Terregino, C.; Arcangeli, G. The effectiveness of domestic cook on inactivation of murine norovirus in experimentally infected Manila clams (Ruditapes philippinarum). J. Appl. Microbiol. 2014, 116, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Le Guyader, F.S.; Atmar, R.L.; Le Pendu, J. Transmission of Viruses through Shellfish: When Specific Ligands Come into Play. Curr. Opin. Virol. 2012, 2, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Qi, R.; Huang, Y.T.; Liu, J.W.; Sun, Y.; Sun, X.F.; Han, H.J.; Qin, X.R.; Zhao, M.; Wang, L.J.; Li, W.; et al. Global Prevalence of Asymptomatic Norovirus Infection: A Meta-Analysis. EClinicalMedicine 2018, 2–3, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Pavoni, E.; Bertasi, B.; Galuppini, E.; Mangeri, L.; Meletti, F.; Tilola, M.; Carta, V.; Todeschi, S.; Losio, M.N. Detection of Hepatitis A Virus and Norovirus in Different Food Categories: A 6-Year Survey in Italy. Food Environ. Virol. 2022, 14, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Serracca, L.; Rossini, I.; Battistini, R.; Goria, M.; Sant, S.; De Montis, G.; Ercolini, C. Potential Risk of Norovirus Infection Due to the Consumption of “Ready to Eat” Food. Food Environ. Virol. 2012, 4, 89–92. [Google Scholar] [CrossRef] [PubMed]
- SEIEVA Bulletin. The Integrated Epidemiological Surveillance System for Acute Hepatitis E. 2023. Available online: https://www.epicentro.iss.it/epatite/bollettino/Bollettino-n.14-marzo-2024.pdf (accessed on 14 October 2024).
- Borghi, M.; Pierboni, E.; Primavilla, S.; Scoccia, E.; Costantini, C.; Suffredini, E.; Graziani, A.; Macellari, P.; Macrì, S.; Farneti, S.; et al. Detection of Hepatitis E Virus in Game Meat (Wild Boar) Supply Chain in Umbria Region, Central Italy. Foods 2024, 13, 2504. [Google Scholar] [CrossRef] [PubMed]
- Fredriksson-Ahomaa, M. Wild Boar: A Reservoir of Foodborne Zoonoses. Foodborne Pathog. Dis. 2019, 16, 153–165. [Google Scholar] [CrossRef]
- Di Martino, B.; Di Profio, F.; Melegari, I.; Sarchese, V.; Robetto, S.; Marsilio, F.; Martella, V. Detection of hepatitis E virus (HEV) in goats. Virus Res. 2016, 225, 69–72. [Google Scholar] [CrossRef]
- Huang, F.; Li, Y.; Yu, W.; Jing, S.; Wang, J.; Long, F.; He, Z.; Yang, C.; Bi, Y.; Cao, W.; et al. Excretion of infectious hepatitis E virus into milk in cows imposes high risks of zoonosis. Hepatology 2016, 64, 350–359. [Google Scholar] [CrossRef]
- Pugliese, M.; La Maestra, R.; Guercio, A.; Purpari, G.; Di Bella, S.; Vullo, S.; Niutta, P.P. Hepatitis E Virus seroprevalence among cows in a rural area of southern Italy. Vet. Arhiv 2021, 91, 333–338. [Google Scholar] [CrossRef]
- Dakroub, H.; Sgroi, G.; D’Alessio, N.; Russo, D.; Serra, F.; Veneziano, V.; Rea, S.; Pucciarelli, A.; Lucibelli, M.G.; De Carlo, E.; et al. Molecular Survey of Toxoplasma gondii in Wild Mammals of Southern Italy. Pathogens 2023, 12, 471. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sini, M.F.; Manconi, M.; Varcasia, A.; Massei, G.; Sandu, R.; Mehmood, N.; Ahmed, F.; Carta, C.; Cantacessi, C.; Scarano, C.; et al. Seroepidemiological and Biomolecular Survey on Toxoplasma gondii in Sardinian Wild Boar (Sus scrofa). Food Waterborne Parasitol. 2024, 34, e00222. [Google Scholar] [CrossRef]
- Lizana, V.; Gortázar, C.; Muniesa, A.; Cabezón, Ó.; Martí-Marco, A.; López-Ramon, J.; Cardells, J. Human and Environmental Factors Driving Toxoplasma gondii Prevalence in Wild Boar (Sus scrofa). Res. Vet. Sci. 2021, 141, 56–62. [Google Scholar] [CrossRef]
- Izopet, J.; Tremeaux, P.; Marion, O.; Migueres, M.; Capelli, N.; Chapuy-Regaud, S.; Mansuy, J.-M.; Abravanel, F.; Kamar, N.; Lhomme, S. Hepatitis E virus infections in Europe. J. Clin. Virol. 2019, 120, 20–26. [Google Scholar] [CrossRef]
- Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; Hilbert, F.; et al. Public health risks associated with food-borne parasites. EFSA J. 2018, 16, e05495. [Google Scholar] [PubMed]
- Koethe, M.; Schade, C.; Fehlhaber, K.; Ludewig, M. Survival of Toxoplasma gondii tachyzoites in simulated gastric fluid and cow’s milk. Vet. Parasitol. 2017, 233, 111–114. [Google Scholar] [CrossRef]
- Jones, J.L.; Dargelas, V.; Roberts, J.; Press, C.; Remington, J.S.; Montoya, J.G. Risk factors for Toxoplasma gondii infection in the United States. Clin. Infect. Dis. 2009, 49, 878–884. [Google Scholar] [CrossRef]
- Sacks, J.J.; Roberto, R.R.; Brooks, N.F. Toxoplasmosis Infection Associated with Raw Goat’s Milk. JAMA J. Am. Med. Assoc. 1982, 248, 1728–1732. [Google Scholar] [CrossRef]
- Dubey, J.P. Toxoplasmosis of Animals and Humans; CRC Press: Boca Raton, FL, USA, 2022; ISBN 9781003199373. [Google Scholar]
- Cisak, E.; Zajac, V.; Sroka, J.; Sawczyn, A.; Kloc, A.; Dutkiewicz, J.; Wójcik-Fatla, A. Presence of Pathogenic Rickettsiae and Protozoan in Samples of Raw Milk from Cows, Goats, and Sheep. Foodborne Pathog. Dis. 2017, 14, 189–194. [Google Scholar] [CrossRef]
- Vismarra, A.; Barilli, E.; Miceli, M.; Mangia, C.; Bacci, C.; Brindani, F.; Kramer, L. Toxoplasma gondii and pre-treatment protocols for polymerase chain reaction analysis of milk samples: A field trial in sheep from southern Italy. Ital. J. Food Saf. 2017, 6, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Pepe, P.; Bosco, A.; Capuano, F.; Baldi, L.; Giordano, A.; Mancusi, A.; Buonanno, M.; Morena, L.; Pinto, R.; Sarnelli, P.; et al. Towards an Integrated Approach for Monitoring Toxoplasmosis in Southern Italy. Animals 2021, 11, 1949. [Google Scholar] [CrossRef] [PubMed]
- Miguel-Vicedo, M.; Cabello, P.; Ortega-Navas, M.C.; González-Barrio, D.; Fuentes, I. Prevalence of Human Toxoplasmosis in Spain Throughout the Three Last Decades (1993–2023): A Systematic Review and Meta-Analysis. J. Epidemiol. Glob. Health 2024, 14, 621–637. [Google Scholar] [CrossRef]
- Halová, D.; Mulcahy, G.; Rafter, P.; Turčeková, L.; Grant, T.; De Waal, T. Toxoplasma gondii in Ireland: Seroprevalence and Novel Molecular Detection Method in Sheep, Pigs, Deer and Chickens. Zoonoses Public Health 2013, 60, 168–173. [Google Scholar] [CrossRef]
- Gale, P.; Kelly, L.; Mearns, R.; Duggan, J.; Snary, E.L. Q fever through consumption of unpasteurised milk and milk products—A risk profile and exposure assessment. J. Appl. Microbiol. 2015, 118, 1083–1095. [Google Scholar] [CrossRef] [PubMed]
- van den Brom, R.; van Engelen, E.; Luttikholt, S.; Moll, L.; van Maanen, K.; Vellema, P. Coxiella burnetii in bulk tank milk samples from dairy goat and dairy sheep farms in The Netherlands in 2008. Vet. Rec. 2012, 170, 310. [Google Scholar] [CrossRef]
- van den Brom, R.; van Engelen, E.; Vos, J.; Luttikholt, S.J.M.; Moll, L.; Roest, H.I.J.; van der Heijden, H.M.J.F.; Vellema, P. Detection of Coxiella burnetii in the bulk tank milk from a farm with vaccinated goats, by using a specific PCR technique. Small Rumin. Res. 2013, 110, 150–154. [Google Scholar] [CrossRef]
- Holzhauer, M.; Wennink, G.J. Zoonotic risks of pathogens from dairy cattle and their milk-borne transmission. J. Dairy Res. 2023, 90, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Cilia, G.; Bertelloni, F.; Piredda, I.; Ponti, M.N.; Turchi, B.; Cantile, C.; Parisi, F.; Pinzauti, P.; Armani, A.; Palmas, B.; et al. Presence of pathogenic Leptospira spp. in the reproductive system and fetuses of wild boars (Sus scrofa) in Italy. PLoS Negl. Trop. Dis. 2020, 14, e0008982. [Google Scholar] [CrossRef]
- Ruiz-Fons, F. A review of the current status of relevant zoonotic pathogens in wild swine (Sus scrofa) populations: Changes modulating the risk of transmission to humans. Transbound. Emerg. Dis. 2017, 64, 68–88. [Google Scholar] [CrossRef]
- Roquelo, C.; Kodjo, A.; Marié, J.L.; Davoust, B. Serological and molecular survey of Leptospira spp. infections in wild boars and red foxes from Southeastern France. Vet. World 2021, 14, 825–828. [Google Scholar] [CrossRef]
- Shinya, S.; Muraoka, Y.; Negishi, D.; Koizumi, N. Molecular Epidemiology of Leptospira spp. Among Wild Mammals and a Dog in Amami Oshima Island, Japan. PLoS ONE 2021, 16, e0249987. [Google Scholar] [CrossRef]
- Cilia, G.; Bertelloni, F.; Mignone, W.; Spina, S.; Berio, E.; Razzuoli, E.; Vencia, W.; Franco, V.; Cecchi, F.; Bogi, S.; et al. Molecular Detection of Leptospira spp. in Wild Boar (Sus scrofa) Hunted in Liguria Region (Italy). Comp. Immunol. Microbiol. Infect. Dis. 2020, 68, 101410. [Google Scholar] [CrossRef]
- Cilia, G.; Bertelloni, F.; Angelini, M.; Cerri, D.; Fratini, F. Leptospira Survey in Wild Boar (Sus scrofa) Hunted in Tuscany, Central Italy. Pathogens 2020, 9, 377. [Google Scholar] [CrossRef]
Food Matrix | Number | Description |
---|---|---|
Mussels | 51 | n. 51 hepatopancreas pool (Mytilus galloprovincialis) |
Farmed meat | 34 | n. 17 beef (beef and veal) |
n. 17 pork, poultry (chicken and turkey) | ||
Game offal | 318 | n. 318 offal from wild boars (spleen, liver, heart, lung, kidney, gut) |
Vegetables | 16 | n.16 leaf salad in a bag pre-washed and ready to eat (RTE) |
Milk | 85 | n. 37 sheep bulk milk |
n. 48 bovine bulk milk | ||
Total | 504 |
Pathogen | Method | Primers/Probe | Sequence 5′-3′ | Molecular Target | Reference |
---|---|---|---|---|---|
Toxoplasma gondii | Real-time PCR | AF1 | 5′-CACAGAAGGGACAGAAGT-3′ | 529 bp repeat element | [21] |
AF2 | ‘5-TCGCCTTCATCTACAGTC-3′ | ||||
Toxo Probe | ‘5-CTCTCCTCCAAGACGGCTGG-3′ | ||||
Coxiella burnetii | Real-time PCR | slS1priF | ‘5-CGGGTTAAGCGTGTCCAGTAT-3′ | IS1111 region | [22] |
slS1priR | ‘5-TCCACACGCTCCCATCACCAC-3′ | ||||
Tqpro slS1 | ‘5-AGCCCACCTTAAGACTGGCTACGGTGGAT-3′ | ||||
Leptospira spp. | Multiplex real-time PCR | Lep-F | 5′-TAGTGAACGGGATTAGATAC-3′ | 16S rRNA gene | [23,24] |
Lep-R | 5′-GGTCTACTTAATCCGTTAGG-3′ | ||||
Lep-Probe | FAM-5′-AATCCACGCCCTAACGTTGTCTAC-3′-BHQ1 | ||||
LipL32-45F | ‘5-AAG CAT TAC CGC TTG TGG TG-3′ | LipL32 | |||
LipL32-286R | ‘5-GAA CTC CCA TTT CAG CGA TT-3′ | ||||
LipL32-189P | FAM-‘5-AA AGC CAG GAC AAG CGC CG-3′-BHQ1 | ||||
HAV | Real-time RT-PCR | HAV68 | ‘5-TCACCGCCGTTTGCCTAG-3′ | 5’-NCR | [19,26] |
HAV240 | ‘5-GAGAGCCCTGGAAGAAAG-3′ | ||||
HAV150p | FAM-’5-CCTGAACCTGCAGGAATTAA-3′-MGB | ||||
NoV | Real-time RT-PCR Norovirus GI | QNIF4 | ‘5-CGCTGGATGCGNTTCCAT-3’ | ORF2 | [19,27] |
NF1LCR | ‘5-CCTTAGACGCCATCATCATTTAC-3’ | ||||
NVGG1p | FAM-‘5-TGGACAGGAGAYCGCRATCT-3’-TAMRA | ||||
Real-time RT-PCR Norovirus GII | QNIF2 | ‘5-ATGTTCAGRTGGATGAGRTTCTCWGA-3’ | |||
COG2R | ‘5-TCGACGCCATCTTCATTCACA-3’ | ||||
QNIFs | FAM ‘5-AGCACGTGGGAGGGCGATCG-3’-TAMRA | ||||
RoV | Real-time RT-PCR | NVP3-F Deg | ‘5-ACCATCTWCACRTRACCCTC-3’ | NSP3 | [25] |
NVP3-R1 | ‘5-GGTCACATAACGCCCCTATA-3’ | ||||
NVP3 | ‘5-FAM-ATGAGCACAATGTTAAAAGCTAACACTGTCAA-3’-MGB | ||||
AdV | Nested PCR | ADE1–hexAA1885 | ‘5-GCCGCAGTGGTCTTACATGCACATC-3’ | Ad2, Ad40, Ad41 hexon genes | [28] |
ADE2–hexAA1913 | ‘5-CAGCACGCCGCGGATGTCAAAGT-3’ | ||||
ADE3–nehexAA1893 | ‘5-GCCACCGAGACGTACTTCAGCCTG-3’ | ||||
ADE4–nehexAA1905 | ‘5-TTGTACGAGTACGCGGTATCCTCGCGGTC-3’ | ||||
HEV | Real-time RT-PCR | JVHEVF | ‘5-GGTGGTTTCTGGGGTGAC-3’ | ORF3 | [29,30,31] |
JVHEVR | ‘5-AGGGGTTGGTTGGATGAA-3’ | ||||
JVHEVPmod | ‘5-FAM-TGATTCTCAGCCCTTCGC-3’-MGB |
Food Matrix | T. gondii Pos/tot (%) | C. burnetii Pos/tot (%) | Leptospira spp. Pos/tot (%) | HEV Pos/tot (%) | HAV Pos/tot (%) | RoV Pos/tot (%) | AdV Pos/tot (%) | NoV Pos/tot (%) |
---|---|---|---|---|---|---|---|---|
Mussels | 0/51 | 0/51 | 0/51 | 0/36 | 0/51 | 0/51 | 0/51 | 3/51 |
Farmed meat | 1/34 (2.9%) | 0/34 | 0/34 | 0/19 | N.E. | 0/19 | N.E. | N.E. |
Game offal | 18/318 (5.7%) | 0/318 | 2/318 (0.6%) | 17/222 (7.7%) | N.E. | 0/29 | N.E. | N.E. |
Vegetables | 0/16 | 0/16 | 0/16 | N.E. | 0/16 | 0/16 | 0/16 | 0/8 |
Bulk milk | 2/85 (2.4%) | 15/85 (17.6%) | 1/85 (1.2%) | N.E. | N.E. | N.E. | N.E. | N.E. |
Total | 21/504 (4.2%) | 15/504 (3.0%) | 3/504 (0.6%) | 17/277 (6.1%) | 0/67 | 0/115 | 0/67 | 3/59 (5.1%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blanda, V.; Giacchino, I.; Vaglica, V.; Milioto, V.; Migliore, S.; Di Bella, S.; Gucciardi, F.; Bongiorno, C.; Chiarenza, G.; Cardamone, C.; et al. Foodborne Pathogens Across Different Food Matrices in Sicily (Southern Italy). Pathogens 2024, 13, 998. https://doi.org/10.3390/pathogens13110998
Blanda V, Giacchino I, Vaglica V, Milioto V, Migliore S, Di Bella S, Gucciardi F, Bongiorno C, Chiarenza G, Cardamone C, et al. Foodborne Pathogens Across Different Food Matrices in Sicily (Southern Italy). Pathogens. 2024; 13(11):998. https://doi.org/10.3390/pathogens13110998
Chicago/Turabian StyleBlanda, Valeria, Ilenia Giacchino, Valeria Vaglica, Vanessa Milioto, Sergio Migliore, Santina Di Bella, Francesca Gucciardi, Carmelo Bongiorno, Giuseppina Chiarenza, Cinzia Cardamone, and et al. 2024. "Foodborne Pathogens Across Different Food Matrices in Sicily (Southern Italy)" Pathogens 13, no. 11: 998. https://doi.org/10.3390/pathogens13110998
APA StyleBlanda, V., Giacchino, I., Vaglica, V., Milioto, V., Migliore, S., Di Bella, S., Gucciardi, F., Bongiorno, C., Chiarenza, G., Cardamone, C., Mancuso, I., Scatassa, M. L., Cannella, V., Guercio, A., Purpari, G., & Grippi, F. (2024). Foodborne Pathogens Across Different Food Matrices in Sicily (Southern Italy). Pathogens, 13(11), 998. https://doi.org/10.3390/pathogens13110998