Advancements and Challenges in the Management of Prosthetic Valve Endocarditis: A Review
Abstract
:1. Introduction
2. Epidemiology: Searching for New Points in PVE Patients—TAVR vs. SAVR?
2.1. The Causative Pathogens
2.2. How Metagenomics Helps Diagnose Microbiology
3. Assessing Risk Factors
3.1. Ross Technique vs. Other Valve Types
3.2. What Is the Gold Standard for Prosthetic Valve Endocarditis (PVEs) and What Is the Pathophysiology?
4. Influence of the 2023 Duke/ISCVID IE Diagnostic Criteria on the Diagnosis of PVE
5. Treatment
5.1. Medication Control
5.2. Surgery and the Role of Catheter-Based Treatment Therapy for PVE on Bioprosthetic Valves
5.3. PVE in the TAVR Era: New Challenges
6. Short and Long-Term Results
6.1. The Choice of Valve Substitute
6.2. Infective Endocarditis in TAVR Patients
7. A Multidisciplinary Team Approach to Decision Making in the Area of PVE
When to Have Surgery?
8. Prognostic Features
9. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Nappi, F.; Martuscelli, G.; Bellomo, F.; Avtaar Singh, S.S.; Moon, M.R. Infective Endocarditis in High-Income Countries. Metabolites 2022, 12, 682. [Google Scholar] [CrossRef] [PubMed]
- Cuervo, G.; Quintana, E.; Regueiro, A.; Perissinotti, A.; Vidal, B.; Miro, J.M.; Baddour, L.M. The Clinical Challenge of Prosthetic Valve Endocarditis: JACC Focus Seminar 3/4. J. Am. Coll. Cardiol. 2024, 83, 1418–1430. [Google Scholar] [CrossRef]
- Nappi, F.; Spadaccio, C.; Mihos, C. Infective endocarditis in the 21st century. Ann. Transl. Med. 2020, 8, 1620. [Google Scholar] [CrossRef] [PubMed]
- Del Val, D.; Panagides, V.; Mestres, C.A.; Miró, J.M.; Rodés-Cabau, J. Infective endocarditis after transcatheter aortic valve replacement: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2023, 81, 394–412. [Google Scholar] [CrossRef] [PubMed]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., III; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: A report of the American College of Cardiology/American Heart Association joint committee on clinical practice guidelines. J. Am. Coll. Cardiol. 2021, 77, e25–e197. [Google Scholar] [CrossRef] [PubMed]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef]
- Fowler, V.G.; Durack, D.T.; Selton-Suty, C.; Athan, E.; Bayer, A.S.; Chamis, A.L.; Dahl, A.; Di Bernardo, L.; Durante-Mangoni, E.; Duval, X.; et al. The 2023 Duke-International Society for Cardiovascular Infectious Diseases Criteria for Infective Endocarditis: Updating the Modified Duke Criteria. Clin. Infect. Dis. 2023, 77, 518–526. [Google Scholar] [CrossRef]
- Delgado, V.; Ajmone Marsan, N.; de Waha, S.; Bonaros, N.; Brida, M.; Burri, H.; Caselli, S.; Doenst, T.; Ederhy, S.; Erba, P.A.; et al. 2023 ESC Guidelines for the management of endocarditis. Eur. Heart J. 2023, 44, 3948–4042. [Google Scholar]
- Pericà, S.J.M.; Llopis, J.; González-Ramallo, V.; Goenaga, M.Á.; Muñoz, P.; García-Leoni, M.E.; Fariñas, M.C.; Pajarón, M.; Ambrosioni, J.; Luque, R.; et al. Outpatient parenteral antibiotic treatment for infective endocarditis: A prospective cohort study from the GAMES cohort. Clin. Infect. Dis. 2019, 69, 1690–1700. [Google Scholar] [CrossRef]
- Iversen, K.; Ihlemann, N.; Gill, S.U.; Madsen, T.; Elming, H.; Jensen, K.T.; Bruun, N.E.; Høfsten, D.E.; Fursted, K.; Christensen, J.J.; et al. Partial oral versus intravenous antibiotic treatment of endocarditis. N. Engl. J. Med. 2019, 380, 415–424. [Google Scholar] [CrossRef]
- Habib, G.; Lancellotti, P.; Antunes, M.J.; Bongiorni, M.G.; Casalta, J.P.; Del Zotti, F.; Dulgheru, R.; El Khoury, G.; Erba, P.A.; Iung, B.; et al. 2015 ESC Guidelines for the management of infective endocarditis: The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC)—endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur. Heart J. 2015, 36, 3075–3128. [Google Scholar] [PubMed]
- Vongpatanasin, W.; Hillis, L.D.; Lange, R.A. Prosthetic heart valves. N. Engl. J. Med. 1996, 335, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Nappi, F.; Iervolino, A.; Singh, S.S.A. The New Challenge for Heart Endocarditis: From Conventional Prosthesis to New Devices and Platforms for the Treatment of Structural Heart Disease. BioMed Res. Int. 2021, 2021, 7302165. [Google Scholar] [CrossRef] [PubMed]
- Nappi, F.; Spadaccio, C.; Dreyfus, J.; Attias, D.; Acar, C.; Bando, K. Mitral endocarditis: A new management framework. J. Thorac. Cardiovasc. Surg. 2018, 156, 1486–1495. [Google Scholar] [CrossRef]
- Wang, A. Contemporary clinical pro le and outcome of prosthetic valve endocarditis. JAMA 2007, 297, 1354. [Google Scholar] [CrossRef]
- Hadji-Turdeghal, K.; Jensen, A.D.; Bruun, N.E.; Iversen, K.K.; Bundgaard, H.; Smerup, M.; Kober, L.; Østergaard, L.; Fosbøl, E.L. Temporaltrends in the incidence of infective endocarditis in patients with a prosthetic heart valve. Open Heart 2023, 10, e002269. [Google Scholar] [CrossRef]
- Hammermeister, K.; Sethi, G.K.; Henderson, W.G.; Grover, F.L.; Oprian, C.; Rahimtoola, S.H. Outcomes 15 years after valve replacement with a mechanical versus a bioprosthetic valve: Nal report of the Veterans Affairs randomized trial. J. Am. Coll. Cardiol. 2000, 36, 1152–1158. [Google Scholar] [CrossRef]
- Nappi, F. Native Infective Endocarditis: A State-of-the-Art-Review. Microorganisms 2024, 12, 1481. [Google Scholar] [CrossRef]
- Nappi, F.; Nenna, A.; Petitti, T.; Spadaccio, C.; Gambardella, I.; Lusini, M.; Chello, M.; Acar, C. Long-term outcome of cryopreserved allograft for aortic valve replacement. J. Thorac. Cardiovasc. Surg. 2018, 156, 1357–1365.e6. [Google Scholar] [CrossRef]
- Nappi, F.; Singh, S.S.A.; Spadaccio, C.; Acar, C. Revisiting the guidelines and choice the ideal substitute for aortic valve endocarditis. Ann. Transl. Med. 2020, 8, 952. [Google Scholar] [CrossRef]
- Nappi, F.; Schoell, T.; Spadaccio, C.; Acar, C.; da Costa, F.D.A. A Literature Review on the Use of Aortic Allografts in Modern Cardiac Surgery for the Treatment of Infective Endocarditis: Is There Clear Evidence or Is It Merely a Perception? Life 2023, 13, 1980. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.B.; Ejiofor, J.I.; Yammine, M.; Camuso, J.M.; Walsh, C.W.; Ando, M.; Melnitchouk, S.I.; Rawn, J.D.; Leacche, M.; MacGillivray, T.E.; et al. Are homografts superior to conventional prosthetic valves in the setting of infective en-docarditis involving the aortic valve? J. Thorac. Cardiovasc. Surg. 2016, 151, 1239–1246.e1-2. [Google Scholar] [CrossRef] [PubMed]
- Yucel, E.; Bearnot, B.; Paras, M.L.; Zern, E.K.; Dudzinski, D.M.; Soong, C.P.; Jassar, A.S.; Rosenfield, K.; Lira, J.; Lambert, E.; et al. Diagnosis and management of infective endocarditis in people who inject drugs: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2022, 79, 2037–2057. [Google Scholar] [CrossRef] [PubMed]
- Baddour, L.M.; Weimer, M.B.; Wurcel, A.G.; McElhinney, D.B.; Marks, L.R.; Fanucchi, L.C.; Esquer Garrigos, Z.; Pettersson, G.B.; DeSimone, D.C. Management of infective endocarditis in people who inject drugs: A scienti c statement from the American Heart Association. Circulation 2022, 146, E187–E201. [Google Scholar] [CrossRef] [PubMed]
- Siciliano, R.F.; Randi, B.A.; Gualandro, D.M.; Sampaio, R.O.; Bittencourt, M.S.; da Silva Pelaes, C.E.; Mansur, A.J.; Pomerantzeff, P.M.A.; Tarasoutchi, F.; Strabelli, T.M.V. Early-onset prosthetic valve endocarditis definition revisited: Prospective study and literature review. Int. J. Infect. Dis. 2018, 67, 3–6. [Google Scholar] [CrossRef]
- Ando, T.; Ashraf, S.; Villablanca, P.A.; Telila, T.A.; Takagi, H.; Grines, C.L.; Afonso, L.; Briasoulis, A. Metaanalysis comparing the incidence of infective endocarditis following transcatheter aortic valve implantation versus surgical aortic valve replacement. Am. J. Cardiol. 2019, 123, 827–832. [Google Scholar] [CrossRef]
- Stortecky, S.; Heg, D.; Tueller, D.; Muller, O.; Noble, S.; Jeger, R.; Toggweiler, S.; Ferrari, E.; Taramasso, M.; Maisano, F.; et al. Infective endocarditis after transcatheter aortic valve replacement. J. Am. Coll. Cardiol. 2020, 75, 3020–3030. [Google Scholar] [CrossRef]
- Mentias, A.; Girotra, S.; Desai, M.Y.; Horwitz, P.A.; Rossen, J.D.; Saad, M.; Panaich, S.; Kapadia, S.; Sarrazin, M.V. Incidence, predictors, and out- comes of endocarditis after transcatheter aortic valve replacement in the United States. JACC Cardiovasc. Interv. 2020, 13, 1973–1982. [Google Scholar] [CrossRef]
- Murdoch, D.R.; Corey, G.R.; Hoen, B.; Miró, J.M.; Fowler, V.G., Jr.; Bayer, A.S.; Karchmer, A.W.; Olaison, L.; Pappas, P.A.; Moreillon, P.; et al. Clinical presentation, etiology and outcome of infective endocarditis in the 21st century: The International Collaboration on Endocarditis Prospective Cohort Study. Arch. Intern. Med. 2009, 169, 463–473. [Google Scholar] [CrossRef]
- Regueiro, A.; Linke, A.; Latib, A.; Ihlemann, N.; Urena, M.; Walther, T.; Husser, O.; Herrmann, H.C.; Nombela-Franco, L.; Cheema, A.N.; et al. Association between transcatheter aortic valve replacement and subsequent infective endocarditis and in- hospital death. JAMA 2016, 316, 1083–1092. [Google Scholar] [CrossRef]
- Ramos-Martínez, A.; Domínguez, F.; Muñoz, P.; Marín, M.; Pedraz, Á.; Fariñas, M.C.; Tascón, V.; de Alarcón, A.; Rodríguez-García, R.; Miró, J.M.; et al. Clinical presentation, microbiology, and prognostic factors of prosthetic valve endocarditis. Lessons learned from a large prospective registry. PLoS ONE 2023, 18, e0290998. [Google Scholar] [CrossRef] [PubMed]
- Lopez, J.; Revilla, A.; Vilacosta, I.; Villacorta, E.; González-Juanatey, C.; Gómez, I.; Rollán, M.J.; San Román, J.A. Definition, clinical profile, microbiological spectrum, and prognostic factors of early-onset prosthetic valve endocarditis. Eur. Heart J. 2007, 28, 760–765. [Google Scholar] [CrossRef]
- Van Valen, R.; De Lind Van Wijngaarden, R.A.F.; Verkaik, N.J.; Mokhles, M.M.; Bogers, A.J.J.C. Prosthetic valve endocarditis due to Propionibacterium acnes. Interact. Cardiovasc. Thorac. Surg. 2016, 23, 150–155. [Google Scholar] [CrossRef]
- Widmer, D.; Widmer, A.F.; Jeger, R.; Dangel, M.; Stortecky, S.; Frei, R.; Conen, A. Prevalence of enterococcal groin colonization in patients undergoing cardiac interventions: Challenging antimicrobial prophylaxis with cephalosporins in patients undergoing transcatheter aortic valve replacement. J. Hosp. Infect. 2022, 129, 198–202. [Google Scholar] [CrossRef]
- Nappi, F. Current Knowledge of Enterococcal Endocarditis: A Disease Lurking in Plain Sight of Health Providers. Pathogens 2024, 13, 235. [Google Scholar] [CrossRef]
- Nappi, F.; Avtaar Singh, S.S.; Jitendra, V.; Fiore, A. Bridging Molecular and Clinical Sciences to Achieve the Best Treatment of Enterococcus faecalis Endocarditis. Microorganisms 2023, 11, 2604. [Google Scholar] [CrossRef]
- Hidalgo-Tenorio, C.; Sadyrbaeva-Dolgova, S.; Enríquez-Gómez, A.; Muñoz, P.; Plata-Ciezar, A.; Miró, J.M.; Alarcón, A.; Martínez-Marcos, F.J.; Loeches, B.; Escrihuela-Vidal, F.; et al. EN-DALBACEN 2.0 Cohort: Real-life study of dalbavancin as sequential/consolidation therapy in patients with infective endocarditis due to Gram-positive cocci. Int. J. Antimicrob. Agents 2023, 62, 106918. [Google Scholar] [CrossRef]
- Gilmore, M.S. The Enterococci: Pathogenesis, Molecular Biology, and Antibiotic Resistance; ASM Press: Washington, DC, USA, 2020; p. 439. [Google Scholar]
- Sillanpaa, J.; Xu, Y.; Nallapareddy, S.R.; Murray, B.E.; Hook, M. A family of putative MSCRAMMs from Enterococcus faecalis. Microbiology 2004, 150, 2069–2078. [Google Scholar] [CrossRef]
- Paulsen, I.T.; Banerjei, L.; Myers, G.S.; Nelson, K.E.; Seshadri, R.; Read, T.D.; Fouts, D.E.; Eisen, J.A.; Gill, S.R.; Heidelberg, J.F.; et al. Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 2003, 299, 2071–2074. [Google Scholar] [CrossRef]
- Fournier, P.E.; Gouriet, F.; Casalta, J.P.; Lepidi, H.; Chaude, H.; Thuny, F. Blood culture-negative endocarditis: Improving the diagnostic yield using new diagnostic tools. Medicine 2017, 96, e8392. [Google Scholar] [CrossRef]
- Liesman, R.M.; Pritt, B.S.; Maleszewski, J.J.; Patel, R. Laboratory diagnosis of infective endocarditis. J. Clin. Microbiol. 2017, 55, 2599–2608. [Google Scholar] [CrossRef]
- Flurin, L.; Wolf, M.J.; Fisher, C.R.; Cevallos, E.J.C.; Vaillant, J.J.; Pritt, B.S.; DeSimone, D.C.; Patel, R. Pathogen detection in infective endocarditis using targeted metagenomics on whole blood and plasma: A prospective pilot study. J. Clin. Microbiol. 2022, 60, e0062122. [Google Scholar] [CrossRef]
- Eichenberger, E.M.; Degner, N.; Scott, E.R.; Ruffin, F.; Franzone, J.; Sharma-Kuinkel, B.; Shah, P.; Hong, D.; Dalai, S.C.; Blair, L.; et al. Microbial cell-free DNA identifies the causative pathogen in infective endocarditis and remains detectable longer than conventional blood culture in patients with prior antibiotic therapy. Clin. Infect. Dis. 2023, 76, e1492–e1500. [Google Scholar] [CrossRef]
- El-Hamamsy, I.; Toyoda, N.; Itagaki, S.; Stelzer, P.; Varghese, R.; Williams, E.E.; Egorova, N.; Adams, D.H. Propensity-matched comparison of the Ross procedure and prosthetic aortic valve replacement in adults. J. Am. Coll. Cardiol. 2022, 79, 805–815. [Google Scholar] [CrossRef]
- Chambers, J.C.; Somerville, J.; Stone, S.; Ross, D.N. Pulmonary autograft procedure for aortic valve disease: Long-term results of the pioneer series. Circulation 1997, 96, 2206–2214. [Google Scholar] [CrossRef]
- El-Hamamsy, I.; Eryigit, Z.; Stevens, L.-M.; Sarang, Z.; George, R.; Clark, L.; Melina, G.; Takkenberg, J.J.; Yacoub, M.H. Longterm outcomes after autograft versus homograft aortic root replacement in adults with aortic valve disease: A randomised controlled trial. Lancet 2010, 376, 524–531. [Google Scholar] [CrossRef]
- Nappi, F.; Nenna, A.; Larobina, D.; Carotenuto, A.R.; Jarraya, M.; Spadaccio, C.; Fraldi, M.; Chello, M.; Acar, C.; Carrel, T. Simulating the ideal geometrical and biomechanical parameters of the pulmonary autograft to prevent failure in the Ross operation. Interact. Cardiovasc. Thorac. Surg. 2018, 27, 269–276. [Google Scholar] [CrossRef]
- Sievers, H.H.; Stierle, U.; Charitos, E.I.; Hanke, T.; Misfeld, M.; Bechtel, J.F.M.; Gorski, A.; Franke, U.F.; Graf, B.; Robinson, D.R. German Dutch Ross Registry. Major adverse cardiac and cerebrovascular events after the Ross procedure: A report from the German-Dutch Ross Registry. Circulation 2010, 122 (Suppl. S11), S216–S223. [Google Scholar] [CrossRef]
- Sievers, H.-H.; Stierle, U.; Petersen, M.; Klotz, S.; Richardt, D.; Diwoky, M.; Charitos, E.I. Valve performance classification in 630 subcoronary Ross patients over 22 years. J. Thorac. Cardiovasc. Surg. 2018, 156, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Sievers, H.-H.; Stierle, U.; Charitos, E.I.; Takkenberg, J.J.; Hörer, J.; Lange, R.; Franke, U.; Albert, M.; Gorski, A.; Leyh, R.G.; et al. A multicentre evaluation of the autograft procedure for young patients undergoing aortic valve replacement: Update on the German Ross registry. Eur. J. Cardiothorac. Surg. 2016, 49, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Skillington, P.D.; Mokhles, M.M.; Takkenberg, J.J.; Larobina, M.; O’Keefe, M.; Wynne, R.; Tatoulis, J. The Ross procedure using autologous support of the pulmonary autograft: Techniques and late results. J. Thorac. Cardiovasc. Surg. 2015, 149 (Suppl. S2), S46–S52. [Google Scholar] [CrossRef] [PubMed]
- da Costa, F.D.A.; Takkenberg, J.J.M.; Fornazari, D.; Filho, E.M.B.; Colatusso, C.; Mokhles, M.M.; da Costa, A.B.B.A.; Sagrado, A.G.; Ferreira, A.D.d.A.; Fernandes, T.; et al. Long-term results of the Ross operation: An 18-year single institutional experience. Eur. J. Cardiothorac. Surg. 2014, 46, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Andreas, M.; Seebacher, G.; Reida, E.; Wiedemann, D.; Pees, C.; Rosenhek, R.; Heinze, G.; Moritz, A.; Kocher, A.; Laufer, G. A single center experience with the Ross procedure over 20 years. Ann. Thorac. Surg. 2014, 97, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Mazine, A.; David, T.; Rao, V.; Hickey, E.; Christie, S.; Manlhiot, C.; Ouzounian, M. Long-term outcomes of the Ross procedure versus mechanical aortic valve replacement: Propensity-matched cohort study. Circulation 2016, 134, 576–585. [Google Scholar] [CrossRef] [PubMed]
- Notenboom, M.L.; Melina, G.; Veen, K.M.; De, R.F.; Coppola, G.; De, S.P.; Navarra, E.M.; Gaer, J.; Ibrahim, M.E.; El-Hamamsy, I. Longterm clinical and echocardiographic outcomes following the Ross procedure: A post hoc analysis of a randomized clinical trial. JAMA Cardiol. 2024, 9, 6–14. [Google Scholar] [CrossRef]
- Sharabiani, M.T.; Dorobantu, D.M.; Mahani, A.S.; Turner, M.; Tometzki, A.J.P.; Angelini, G.D.; Parry, A.J.; Caputo, M.; Stoica, S.C. Aortic valve replacement and the Ross operation in children and young adults. J. Am. Coll. Cardiol. 2016, 67, 2858–2870. [Google Scholar] [CrossRef]
- Aboud, A.; Charitos, E.I.; Fujita, B.; Stierle, U.; Reil, J.-C.; Voth, V.; Liebrich, M.; Andreas, M.; Holubec, T.; Bening, C.; et al. Long-Term Outcomes of Patients Undergoing the Ross Procedure. J. Am. Coll. Cardiol. 2021, 77, 1412–1422. [Google Scholar] [CrossRef]
- Ruzmetov, M.; Geiss, D.M.; Shah, J.J.; Fortuna, R.S. Autograft or allograft aortic root replacement in children and young adults with aortic valve disease: A single-center comparison. Ann. Thorac. Surg. 2012, 94, 1604–1611. [Google Scholar] [CrossRef]
- Luciani, G.B.; Lucchese, G.; De Rita, F.; Puppini, G.; Faggian, G.; Mazzucco, A. Reparative surgery of the pulmonary autograft: Experience with Ross reoperations. Eur. J. Cardiothorac. Surg. 2012, 41, 1309–1314; discussion 1314–1315. [Google Scholar] [CrossRef]
- Böhm, J.O.; Hemmer, W.; Rein, J.-G.; Horke, A.; Roser, D.; Blumenstock, G.; Botha, C.A. A single-institution experience with the Ross operation over 11 years. Ann. Thorac. Surg. 2009, 87, 514–520. [Google Scholar] [CrossRef]
- Elkins, R.C.; Thompson, D.M.; Lane, M.M.; Elkins, C.C.; Peyton, M.D. Ross operation: 16-year experience. J. Thorac. Cardiovasc. Surg. 2008, 136, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Klieverik, L.M.; Bekkers, J.A.; Roos, J.W.; Eijkemans, M.; Raap, G.B.; Bogers, A.J.; Takkenberg, J.J. Autograft or allograft aortic valve replacement in young adult patients with congenital aortic valve disease. Eur. Heart J. 2008, 29, 1446–1453. [Google Scholar] [CrossRef] [PubMed]
- Klieverik, L.M.; Takkenberg, J.J.; Bekkers, J.A.; Roos-Hesselink, J.W.; Bogers, A.J.C. The Ross operation: A Trojan horse? Eur. Heart J. 2007, 28, 1993–2000. [Google Scholar] [CrossRef] [PubMed]
- Chiappini, B.; Absil, B.; Rubay, J.; Noirhomme, P.; Funken, J.-C.; Verhelst, R.; Poncelet, A.; El Khoury, G. The Ross procedure: Clinical and echocardiographic follow-up in 219 = consecutive patients. Ann. Thorac. Surg. 2007, 83, 1285–1289. [Google Scholar] [CrossRef] [PubMed]
- Pasquali, S.K.; Shera, D.; Wernovsky, G.; Cohen, M.S.; Tabbutt, S.; Nicolson, S.; Spray, T.L.; Marino, B.S. Midterm outcomes and predictors of reintervention after the Ross procedure in infants, children, and young adults. J. Thorac. Cardiovasc. Surg. 2007, 133, 893–899. [Google Scholar] [CrossRef]
- Brown, J.W.; Ruzmetov, M.; Rodefeld, M.D.; Mahomed, Y.; Turrentine, M.W. Incidence of and risk factors for pulmonary autograft dilation after Ross aortic valve replacement. Ann. Thorac. Surg. 2007, 83, 1781–1787; discussion 1787–1789. [Google Scholar] [CrossRef]
- Kumar, A.S.; Talwar, S.; Mohapatra, R.; Saxena, A.; Singh, R. Aortic valve replacement with the pulmonary autograft: Mid-term results. Ann. Thorac. Surg. 2005, 80, 488–494. [Google Scholar] [CrossRef]
- Kumar, A.S.; Talwar, S.; Saxena, A.; Singh, R. Ross procedure in rheumatic aortic valve disease. Eur. J. Cardiothorac. Surg. 2006, 29, 156–161. [Google Scholar] [CrossRef]
- Kouchoukos, N.T.; Masetti, P.; Nickerson, N.J.; Castner, C.F.; Shannon, W.D.; Dávila-Román, V.G. The Ross procedure: Long-term clinical and echocardiographic follow-up. Ann. Thorac. Surg. 2004, 78, 773–781. [Google Scholar] [CrossRef]
- Raja, S.G.; Pozzi, M. Ross operation in children and young adults: The Alder Hey case series. BMC Cardiovasc. Disord. 2004, 4, 3. [Google Scholar] [CrossRef]
- Alphonso, N.; Baghai, M.; Dhital, K.; Mood, G.; Tulloh, R.; Austin, C.; Anderson, D. Midterm results of the Ross procedure. Eur. J. Cardiothorac. Surg. 2004, 25, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, H.; Elkins, R.C.; Lane, M.M.; McCue, C. Effect of prior aortic valve intervention on results of the Ross operation. J. Heart Valve. Dis. 2003, 12, 423–429. [Google Scholar] [PubMed]
- Concha, M.; Pradas, G.; Juffé, A.; Caffarena, J.M.; Montero, A.; Aranda, P.J. Comprehensive experience with the Ross operation in Spain. Eur. J. Cardiothorac. Surg. 2003, 24, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Takkenberg, J.; Dossche, K.; Hazekamp, M.; Nijveld, A.; Jansen, E.; Waterbolk, T.; Bogers, A. Report of the Dutch experience with the Ross procedure in 343 patients. Eur. J. Cardiothorac. Surg. 2002, 22, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Pessotto, R.; Wells, W.J.; Baker, C.J.; Luna, C.; Starnes, V.A. Midterm results of the Ross procedure. Ann. Thorac. Surg. 2001, 71, S336–S339. [Google Scholar] [CrossRef]
- Laudito, A.; Brook, M.M.; Suleman, S.; Bleiweis, M.S.; Thompson, L.D.; Hanley, F.L.; Reddy, V. The Ross procedure in children and young adults: A word of caution. J. Thorac. Cardiovasc. Surg. 2001, 122, 147–153. [Google Scholar] [CrossRef]
- Sharoni, E.; Katz, J.; Dagan, O.; Lorber, A.; Hirsch, R.; Blieden, L.C.; Vidne, B.A.; Birk, E. The Ross operation: Initial Israeli experience. Isr. Med. Assoc. J. 2000, 2, 115–117. [Google Scholar]
- Moidl, R.; Simon, P.; Aschauer, C.; Chevtchik, O.; Laufer, G. Does the Ross operation fulfil the objective performance criteria established for new prosthetic heart valves? J. Heart Valve. Dis. 2000, 9, 190–194. [Google Scholar]
- Matsuki, O.; Okita, Y.; Almeida, R.; McGoldrick, J.; Hooper, T.; Robles, A.; Ross, D.N. Two decades’ experience with aortic valve replacement with pulmonary autograft. J. Thorac. Cardiovasc. Surg. 1988, 95, 705–711. [Google Scholar] [CrossRef]
- Gula, G.; Wain, W.H.; Ross, D.N. Ten years’ experience with pulmonary autograft replacements for aortic valve disease. Ann. Thorac. Surg. 1979, 28, 392–396. [Google Scholar] [CrossRef]
- Somerville, J.; Saravalli, O.; Ross, D.; Stone, S. Long-term results of pulmonary autograft for aortic valve replacement. Br. Heart J. 1979, 42, 533–540. [Google Scholar] [CrossRef] [PubMed]
- SStewart, R.D.; Backer, C.L.; Hillman, N.D.; Lundt, C.; Mavroudis, C. The Ross operation in children: Effects of aortic annuloplasty. Ann. Thorac. Surg. 2007, 84, 1326–1330. [Google Scholar] [CrossRef] [PubMed]
- Ruzmetov, M.; Vijay, P.; Rodefeld, M.D.; Turrentine, M.W.; Brown, J.W. Evolution of aortic valve replacement in children: A single center experience. Int. J. Cardiol. 2006, 113, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Kalavrouziotis, G.; Raja, S.; Ciotti, G.; Karunaratne, A.; Corno, A.F.; Pozzi, M. Mediumterm results from pulmonary autografts after the Ross procedure in children and adolescents. Hellenic. J. Cardiol. 2006, 47, 337–343. [Google Scholar]
- Böhm, J.O.; Botha, C.A.; Horke, A.; Hemmer, W.; Roser, D.; Blumenstock, G.; Uhlemann, F.; Rein, J. Is the Ross operation still an acceptable option in children and adolescents? Ann. Thorac. Surg. 2006, 82, 940–947. [Google Scholar] [CrossRef]
- Takkenberg, J.J.; Kappetein, A.P.; van Herwerden, L.A.; Witsenburg, M.; Van Osch-Gevers, L.; Bogers, J. Pediatric autograft aortic root replacement: A prospective follow-up study. Ann. Thorac. Surg. 2005, 80, 1628–1633. [Google Scholar] [CrossRef]
- Khwaja, S.; Nigro, J.J.; Starnes, V.A. The Ross procedure is an ideal aortic valve replacement operation for the teen patient. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 2005, 173–175. [Google Scholar] [CrossRef]
- Hazekamp, M.G.; Grotenhuis, H.B.; Schoof, P.H.; Rijlaarsdam, M.E.; Ottenkamp, J.; Dion, R.A. Results of the Ross operation in a pediatric population. Eur. J. Cardiothorac. Surg. 2005, 27, 975–979. [Google Scholar] [CrossRef]
- Hraska, V.; Krajci, M.; Haun, C.; Ntalakoura, K.; Razek, V.; Lacour-Gayet, F.; Weil, J.; Reichenspurner, H. Ross and Ross-Konno procedure in children and adolescents: Mid-term results. Eur. J. Cardiothorac. Surg. 2004, 25, 742–747. [Google Scholar] [CrossRef]
- Al-Halees, Z.; Pieters, F.; Qadoura, F.; Shahid, M.; Al-Amri, M.; Al-Fadley, F. The Ross procedure is the procedure of choice for congenital aortic valve disease. J. Thorac. Cardiovasc. Surg. 2002, 123, 437–441; discussion 441–442. [Google Scholar] [CrossRef]
- Elkins, R.C.; Lane, M.M.; McCue, C. Ross operation in children: Late results. J. Heart Valve. Dis. 2001, 10, 736–741. [Google Scholar] [PubMed]
- Chiang, Y.P.; Chikwe, J.; Moskowitz, A.J.; Itagaki, S.; Adams, D.H.; Egorova, N.N. Survival and long-term outcomes following bioprosthetic vsmechanical aortic valve replacement in patients aged 50 to 69 years. JAMA 2014, 312, 1323–1329. [Google Scholar] [CrossRef] [PubMed]
- Goldstone, A.B.; Chiu, P.; Baiocchi, M.; Lingala, B.; Patrick, W.L.; Fischbein, M.P.; Woo, Y.J. Mechanical or biologic prostheses for aortic-valve and mitral-valve replacement. N. Engl. J. Med. 2017, 377, 1847–1857. [Google Scholar] [CrossRef] [PubMed]
- Bouhout, I.; Stevens, L.-M.; Mazine, A.; Poirier, N.; Cartier, R.; Demers, P.; El-Hamamsy, I. Long- term outcomes after elective isolated mechanical aortic valve replacement in young adults. J. Thorac. Cardiovasc. Surg. 2014, 148, 1341–1346. [Google Scholar] [CrossRef] [PubMed]
- Bourguignon, T.; Bouquiaux-Stablo, A.L.; Loardi, C.; Mirza, A.; Candolfi, P.; Marchand, M.; Aupart, M.R. Very late outcomes for mitral valve replacement with the Carpentier-Edwards pericardial bioprosthesis: 25-year follow-up of 450 implantations. J. Thorac. Cardiovasc. Surg. 2014, 148, 2004–2011. [Google Scholar] [CrossRef]
- Flynn, C.D.; Curran, N.P.; Chan, S.; Zegri-Reiriz, I.; Tauron, M.; Tian, D.H.; Pettersson, G.B.; Coselli, J.S.; Misfeld, M.; Antunes, M.J.; et al. Systematic review and meta-analysis of surgical outcomes comparing mechanical valve replacement and bioprosthetic valve replacement in infective endocarditis. Ann. Cardiothorac. Surg. 2019, 8, 587–599. [Google Scholar] [CrossRef]
- Mihaljevic, T.; Nowicki, E.R.; Rajeswaran, J.; Blackstone, E.H.; Lagazzi, L.; Thomas, J.; Lytle, B.W.; Cosgrove, D.M. Survival after valve replacement for aortic stenosis:implications for decision making. J. Thorac. Cardiovasc. Surg. 2008, 135, 1270–1279. [Google Scholar] [CrossRef]
- Thierry, B.; Pierre, L.; Rym, E.K.; Pascal, C.; Claudia, L.; Alain, M.; Julie, B.L.; Anne-Lorraine, B.-S.-D.; Michel, M.; Michel, A. Very long-term outcomes of the Carpentier Edwards Perimount aortic valve in patients aged 50–65 years. Eur. J. Cardiothorac. Surg. 2016, 49, 1462–1468. [Google Scholar]
- Takkenberg, J.J.; Klieverik, L.M.; Schoof, P.H.; van-Suylen, R.J.; van-Herwerden, L.A.; Zondervan, P.E.; Roos-Hesselink, J.W.; Eijkemans, M.J.; Yacoub, M.H.; Bogers, A.J. The Ross procedure: A systematic review and metaanalysis. Circulation 2009, 119, 222–228. [Google Scholar] [CrossRef]
- Buratto, E.; Shi, W.Y.; Wynne, R.; Poh, C.L.; Larobina, M.; O’Keefe, M.; Goldblatt, J.; Tatoulis, J.; Skillington, P.D. Improved survival after the Ross procedure compared with mechanical aortic valve replacement. J. Am. Coll. Cardiol. 2018, 71, 1337–1344. [Google Scholar] [CrossRef]
- Hussain, S.T.; Majdalany, D.S.; Dunn, A.; Stewart, R.D.; Najm, H.K.; Svensson, L.G.; Houghtaling, P.L.; Blackstone, E.H.; Pettersson, G.B. Early and mid-term results of autograft rescue by Ross reversal: A one-valve disease need not become a two-valve disease. J. Thorac. Cardiovasc. Surg. 2018, 155, 562–572. [Google Scholar] [CrossRef] [PubMed]
- Glaser, N.; Jackson, V.; Holzmann, M.J.; FrancoCereceda, A.; Sartipy, U. Prosthetic valve endocarditis after surgical aortic valve replacement. Circulation 2017, 136, 329–331. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, Y.; Kuno, T.; Toyoda, N.; Fujisaki, T.; Takagi, H.; Itagaki, S.; Ibrahim, M.; Ouzounian, M.; El-Hamamsy, I.; Fukuhara, S. Ross procedure versus mechanical versus bioprosthetic aortic valve replacement: A network meta-analysis. J. Am. Heart Assoc. 2023, 12, e8066. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, T.H.; Thyregod, H.G.H.; Ihlemann, N.; Nissen, H.; Petursson, P.; Kjeldsen, B.J.; Steinbrüchel, D.A.; Olsen, P.S.; Søndergaard, L. Eight-year outcomes for patients with aortic valve stenosis at low surgical risk randomized to transcatheter vs. surgical aortic valve replacement. Eur. Heart J. 2021, 42, 2912–2919. [Google Scholar] [CrossRef] [PubMed]
- Moriyama, N.; Laakso, T.; Biancari, F.; Raivio, P.; Jalava, M.P.; Jaakkola, J.; Dahlbacka, S.; Kinnunen, E.-M.; Juvonen, T.; Husso, A.; et al. Prosthetic valve endocarditis after transcatheter or surgical aortic valve replacement with a bioprosthesis: Results from the FinnValve Registry. EuroIntervention 2019, 15, e500–e507. [Google Scholar] [CrossRef]
- Summers, M.R.; Leon, M.B.; Smith, C.R.; Kodali, S.K.; Thourani, V.H.; Herrmann, H.C.; Makkar, R.R.; Pibarot, P.; Webb, J.G.; Leipsic, J.; et al. Prosthetic valve endocarditis after TAVR and SAVR. Circulation 2019, 140, 1984–1994. [Google Scholar] [CrossRef]
- Leon, M.B.; Mack, M.J.; Hahn, R.T.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Alu, M.C.; Madhavan, M.V.; Chau, K.H.; Russo, M.; et al. Outcomes 2 years after transcatheter aortic valve replacement in patients at low surgical risk. J. Am. Coll. Cardiol. 2021, 77, 1149–1161. [Google Scholar] [CrossRef]
- Jiang, W.; Wu, W.; Guo, R.; Xie, M.; Yim, W.Y.; Wang, Y.; Hu, X. Predictors of prosthetic valve endocarditis following transcatheter aortic valve replacement: A metaanalysis. Heart Surg. Forum. 2021, 24, E101–E107. [Google Scholar] [CrossRef]
- Kolte, D.; Goldsweig, A.; Kennedy, K.F.; Abbott, J.D.; Gordon, P.C.; Sellke, F.W.; Ehsan, A.; Sodha, N.; Sharaf, B.L.; Aronow, H.D. Comparison of incidence, predictors, and outcomes of early infective endocarditis after transcatheter aortic valve implantation versus surgical aortic valve replacement in the United States. Am. J. Cardiol. 2018, 122, 2112–2119. [Google Scholar] [CrossRef]
- Abdelghani, M.; Nassif, M.; Blom, N.A.; Van Mourik, M.S.; Straver, B.; Koolbergen, D.R.; Kluin, J.; Tijssen, J.G.; Mulder, B.J.M.; Bouma, B.J.; et al. Infective endocarditis after Melody valve implantation in the pulmonary position: A systematic review. J. Am. Heart Assoc. 2018, 7, e008163. [Google Scholar] [CrossRef]
- Nordmeyer, J.; Ewert, P.; Gewillig, M.; AlJufan, M.; Carminati, M.; Kretschmar, O.; Uebing, A.; Dähnert, I.; Röhle, R.; Schneider, H.; et al. Acute and midterm outcomes of the post-approval MELODY Registry: A multicentre registry of transcatheter pulmonary valve implantation. Eur. Heart J. 2019, 40, 2255–2264. [Google Scholar] [CrossRef] [PubMed]
- Stammnitz, C.; Huscher, D.; Bauer, U.M.M.; Urban, A.; Nordmeyer, J.; Schubert, S.; Photiadis, J.; Berger, F.; Klaassen, S. Nationwide registry-based analysis of infective endocarditis risk after pulmonary valve replacement. J. Am. Heart Assoc. 2022, 11, 22231. [Google Scholar] [CrossRef] [PubMed]
- Mery, C.M.; Guzmán-Pruneda, F.A.; De León, L.E.; Zhang, W.; Terwelp, M.D.; Bocchini, C.E.; Adachi, I.; Heinle, J.S.; McKenzie, E.D.; Fraser, C.D. Risk factors for development of endocarditis and reintervention in patients undergoing right ventricle to pulmonary artery valved conduit placement. J. Thorac. Cardiovasc. Surg. 2016, 151, 432–441.e2. [Google Scholar] [CrossRef] [PubMed]
- Beckerman, Z.; De León, L.E.; Zea-Vera, R.; Mery, C.M.; Fraser, C.D. High incidence of late infective endocarditis in bovine jugular vein valved conduits. J. Thorac. Cardiovasc. Surg. 2018, 156, 728–734.e2. [Google Scholar] [CrossRef] [PubMed]
- Horgan, S.J.; Mediratta, A.; Gillam, L.D. Cardiovascular imaging in infective endocarditis. Circ. Cardiovasc. Imaging 2020, 13, 8956. [Google Scholar] [CrossRef]
- Dilsizian, V.; Budde, R.P.J.; Chen, W.; Mankad, S.V.; Lindner, J.R.; Nieman, K. Best practices for imaging cardiac device–related infections and endocarditis: A JACC: Cardiovascular Imaging expert panel statement. J. Am. Coll. Cardiol. 2022, 15, 891–911. [Google Scholar] [CrossRef]
- Lo Presti, S.; Elajami, T.K.; Zmaili, M.; Reyaldeen, R.; Xu, B. Multimodality imaging in the diagnosis and management of prosthetic valve endocarditis: A contemporary narrative review. World J. Cardiol. 2021, 13, 254–270. [Google Scholar] [CrossRef]
- Montané, B.; Chahine, J.; Fiore, A.; Alzubi, J.; Alnajjar, H.; Mutti, J.; Grimm, R.A.; Griffin, B.P.; Xu, B. Diagnostic performance of contemporary transesophageal echocardiography with modern imaging for infective endocarditis. Cardiovasc. Diagn. Ther. 2023, 13, 25–37. [Google Scholar] [CrossRef]
- Roque, A.; Pizzi, M.N.; Fernández-Hidalgo, N.; Permanyer, E.; Cuellar-Calabria, H.; Romero-Farina, G.; Ríos, R.; Almirante, B.; Castell-Conesa, J.; Escobar, M.; et al. Morpho-metabolic post-surgical patterns of non-infected prosthetic heart valves by [18F]FDG PET/CTA: “normality” is a possible diagnosis. Eur. Heart J. Cardiovasc. Imaging 2020, 21, 24–33. [Google Scholar] [CrossRef]
- Granados, U.; Fuster, D.; Pericas, J.M.; Llopis, J.L.; Ninot, S.; Quintana, E.; Almela, M.; Paré, C.; Tolosana, J.M.; Falces, C.; et al. Diagnostic accuracy of 18F-FDG PET/CT in infective endocarditis and implantable cardiac electronic device infection: A cross-sectional study. J. Nucl. Med. 2016, 57, 1726–1732. [Google Scholar] [CrossRef]
- Wahadat, A.R.; Tanis, W.; Swart, L.E.; Scholtens, A.; Krestin, G.P.; van Mieghem, N.M.D.A.; Schurink, C.A.M.; van der Spoel, T.I.G.; Brink, F.S.v.D.; Vossenberg, T.; et al. Added value of 18F-FDG-PET/CT and cardiac CTA in suspected transcatheter aortic valve endocarditis. J. Nucl. Cardiol. 2021, 28, 2072–2082. [Google Scholar] [CrossRef] [PubMed]
- Régis, C.; Thy, M.; Mahida, B.; Deconinck, L.; Tubiana, S.; Iung, B.; Duval, X.; Rouzet, F. Absence of infective endocarditis relapse when end-oftreatment fluorodeoxyglucose positron emission tomography/computed tomography is negative. Eur. Heart J. Cardiovasc. Imaging 2023, 24, 1480–1488. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.; Glaudemans, A.W.J.M.; Touw, D.J.; van Melle, J.P.; Willems, T.P.; Maass, A.H.; Natour, E.; Prakken, N.H.J.; Borra, R.J.H.; van Geel, P.P.; et al. Diagnostic value of imaging in infective endocarditis: A systematic review. Lancet Infect. Dis. 2017, 17, e1–e14. [Google Scholar] [CrossRef] [PubMed]
- van der Vaart, T.W.; Bossuyt, P.M.M.; Durack, D.T.; Baddour, L.M.; Bayer, A.S.; Durante-Mangoni, E.; Holland, T.L.; Karchmer, A.W.; Miro, J.M.; Moreillon, P.; et al. External validation of the 2023 Duke-International Society for Cardiovascular Infectious Diseases diagnostic criteria for infective endocarditis. Clin. Infect. Dis. 2024, 78, 922–929. [Google Scholar] [CrossRef]
- Papadimitriou-Olivgeris, M.; Monney, P.; Frank, M.; Tzimas, G.; Tozzi, P.; Kirsch, M. Evaluation of the 2023 Duke-ISCVID criteria in a multicenter cohort of patients with suspected infective endocarditis. Clin. Infect. Dis. 2024, 78, 949–955. [Google Scholar] [CrossRef]
- Goehringer, F.; Lalloué, B.; Selton-Suty, C.; Alla FBotelho-Nevers, E.; Chirouze, C.; Curlier, E.; El Hatimi, S.; Gagneux-Brunon, A.; le Moing, V.; Lim, P.; et al. Compared performance of the 2023 Duke International Society for Cardiovascular Infectious Diseases, the 2000 modified Duke, and the 2015 ESC criteria for the diagnosis of infective endocarditis in a French Multicenter Prospective Cohort. Clin. Infect. Dis. 2024, 78, 937–948. [Google Scholar] [CrossRef]
- Chirouze, C.; Alla, F.; Fowler, V.G.; Sexton, D.J.; Corey, G.R.; Chu, V.H.; Wang, A.; Erpelding, M.L.; Durante-Mangoni, E.; Fernández-Hidalgo, N.; et al. Impact of early valve surgery on outcome of Staphylococcus aureus prosthetic valve infective endocarditis: Analysis in the international collaboration of endocarditis-prospective cohort study. Clin. Infect. Dis. 2015, 60, 741–749. [Google Scholar] [CrossRef]
- Lalani, T.; Chu, V.H.; Park, L.P.; Cecchi, E.; Corey, G.R.; Durante-Mangoni, E.; Fowler, V.G., Jr.; Gordon, D.; Grossi, P.; Hannan, M.; et al. In-hospital and 1-year mortality in patients undergoing early sur- gery for prosthetic valve endocarditis. JAMA Intern. Med. 2013, 173, 1495–1504. [Google Scholar] [CrossRef]
- Baddour, L.M.; Wilson, W.R.; Bayer, A.S.; Fowler, V.G., Jr.; Tleyjeh, I.M.; Rybak, M.J.; Barsic, B.; Lockhart, P.B.; Gewitz, M.H.; Levison, M.E.; et al. Infective endocarditis in adults: Diagnosis, antimicrobial therapy, and management of complications. Circulation 2015, 132, 1435–1486. [Google Scholar] [CrossRef]
- Pettersson, G.B.; Hussain, S.T. Current AATS guidelines on surgical treatment of infective endocarditis. Ann. Cardiothorac. Surg. 2019, 8, 630–644. [Google Scholar] [CrossRef]
- Mangner, N.; del Val, D.; Abdel-Wahab, M.; Crusius, L.; Durand, E.; Ihlemann, N.; Urena, M.; Pellegrini, C.; Giannini, F.; Gasior, T.; et al. Surgical treatment of patients with infective endocarditis after transcatheter aortic valve implantation. J. Am. Coll. Cardiol. 2022, 79, 772–785. [Google Scholar] [CrossRef] [PubMed]
- Santos-Martínez, S.; Alkhodair, A.; Nombela-Franco, L.; Saia, F.; Muñoz-García, A.J.; Gutiérrez, E.; Regueiro, A.; Jimenez-Diaz, V.A.; Rivero, F.; Romaguera, R.; et al. Transcatheter aortic valve replacement for residual lesion of the aortic valve following “healed” infective endocarditis. J. Am. Coll. Cardiol. Intv. 2020, 13, 1983–1996. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.H.; Biondi, N.L.; Zulfiqar, S.; Arif, I.; Das, M.; Budhiraja, M.; Aronow, W.S.; Sukhija, R.; Vimal, M. Challenging case of transcatheter mitral valve-in- valve-in-valve replacement. Am. J. Case Rep. 2023, 24, e938415. [Google Scholar] [CrossRef] [PubMed]
- Brankovic, M.; Hashemi, A.; Ansari, J.; Sharma, A. Transcatheter aortic valve replacement for aortic valve infective endocarditis: A systematic review and call for action. Cardiol. Ther. 2023, 12, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Leon, M.B.; Smith, C.R.; Mack, M.; Miller, D.C.; Moses, J.W.; Svensson, L.G.; Tuzcu, E.M.; Webb, J.G.; Fontana, G.P.; Makkar, R.R.; et al. PARTNER Trial Investigators. Transcatheter aortic-valve implantation foraortic stenosis in patients who cannot undergo surgery. N. Engl. J. Med. 2010, 363, 1597–1607. [Google Scholar]
- Smith, C.R.; Leon, M.B.; Mack, M.J.; Miller, D.C.; Moses, J.W.; Svensson, L.G.; Tuzcu, E.M.; Webb, J.G.; Fontana, G.P.; Makkar, R.R.; et al. PARTNER Trial Investigators. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N. Engl. J. Med. 2011, 364, 2187–2198. [Google Scholar] [CrossRef]
- Mangner, N.; Woitek, F.; Haussig, S.; Schlotter, F.; Stachel, G.; Höllriegel, R.; Wilde, J.; Lindner, A.; Holzhey, D.; Leontyev, S.; et al. Incidence, predictors, and outcome of patients developing infective endocarditis following transfemoral transcatheter aortic valve replacement. J. Am. Coll. Cardiol. 2016, 67, 2907–2908. [Google Scholar] [CrossRef]
- Amat-Santos, I.J.; Messika-Zeitoun, D.; Eltchaninoff, H.; Kapadia, S.; Lerakis, S.; Cheema, A.N.; Gutiérrez-Ibanes, E.; Munoz-Garcia, A.J.; Pan, M.; Webb, J.G.; et al. Infective endocarditis after transcatheter aortic valve implantation: Results from a large multicenter registry. Circulation 2015, 131, 1566–1574. [Google Scholar] [CrossRef]
- Del Val, D.; Abdel-Wahab, M.; Mangner, N.; Durand, E.; Ihlemann, N.; Urena, M.; Pellegrini, C.; Giannini, F.; Gasior, T.; Wojakowski, W.; et al. Infective Endocarditis Caused by Staphylococcus aureus After Transcatheter Aortic Valve Replacement. Can. J. Cardiol. 2022, 38, 102–112. [Google Scholar] [CrossRef]
- Aung, T.; Poon, K.; Horvath, R.; Coulter, C.; Walters, D.L. A case series of medically managed infective endocarditis after transcatheter aortic valve replacement. Scand. J. Infect. Dis. 2013, 45, 489–493. [Google Scholar] [CrossRef]
- Latib, A.; Naim, C.; De Bonis, M.; Sinning, J.M.; Maisano, F.; Barbanti, M.; Parolari, A.; Lorusso, R.; Testa, L.; Actis Dato, G.M.; et al. TAVR-associated prosthetic valve infective endocarditis: Results of a large, multicenter registry. J. Am. Coll. Cardiol. 2014, 64, 2176–2178. [Google Scholar] [CrossRef] [PubMed]
- Olsen, N.T.; De Backer, O.; Thyregod, H.G.; Vejlstrup, N.; Bundgaard, H.; Søndergaard, L.; Ihlemann, N. Prosthetic valve endocarditis after transcatheter aortic valve implantation. Circ. Cardiovasc. Interv. 2015, 8, e001939. [Google Scholar] [CrossRef] [PubMed]
- Puls, M.; Eiffert, H.; Hünlich, M.; Schöndube, F.; Hasenfuß, G.; Seipelt, R.; Schillinger, W. Prosthetic valve endocarditis after transcatheter aortic valve implantation: The incidence in a single-centre cohort and reflections on clinical, echocardiographic and prognostic features. Euro. Interv. 2013, 8, 1407–1418. [Google Scholar] [CrossRef] [PubMed]
- Butt, J.H.; Ihlemann, N.; De Backer, O.; Søndergaard, L.; Havers-Borgersen, E.; Gislason, G.H.; Torp-Pedersen, C.; Køber, L.; Fosbøl, E.L. Long-Term Risk of Infective Endocarditis After Transcatheter Aortic Valve Replacement. J. Am. Coll. Cardiol. 2019, 73, 1646–1655. [Google Scholar] [CrossRef] [PubMed]
- Amat-Santos, I.J.; Ribeiro, H.B.; Urena, M.; Allende, R.; Houde, C.; Bédard, E.; Perron, J.; DeLarochellière, R.; Paradis, J.M.; Dumont, E.; et al. Prosthetic valve endocarditis after transcatheter valve replacement: A systematic review. JACC Cardiovasc. Interv. 2015, 8, 334–346. [Google Scholar] [CrossRef] [PubMed]
- Panagides, V.; Cuervo, G.; Llopis, J.; Abdel-Wahab, M.; Mangner, N.; Habib, G.; Regueiro, A.; Mestres, C.A.; Tornos, P.; Durand, E.; et al. Infective endocarditis after transcatheter versus surgical aortic valve replacement. Clin. Infect. Dis. 2024, 78, 179–187. [Google Scholar] [CrossRef]
- Shrestha, N.K.; Shah, S.Y.; Hussain, S.T.; Pettersson, G.B.; Griffin, B.P.; Nowacki, A.S.; Gordon, S.M. Association of surgical treatment with survival in patients with prosthetic valve endocarditis. Ann. Thorac. Surg. 2020, 109, 1834–1843. [Google Scholar] [CrossRef]
- Habib, G.; Erba, P.A.; Iung, B.; Donal, E.; Cosyns, B.; Laroche, C.; Popescu, B.A.; Prendergast, B.; Tornos, P.; Sadeghpour, A.; et al. Clinical presentation, aetiology and outcome of infective endocarditis. Results of the ESC-EORP EUROENDO (European Infective Endocarditis) registry: A prospective cohort study. Eur. Heart J. 2019, 40, 3222–3232. [Google Scholar] [CrossRef]
- Savage, E.B.; Saha-Chaudhuri, P.; Asher, C.R.; Brennan, J.M.; Gammie, J.S. Outcomes and prosthesis choice for active aortic valve infective endocarditis: Analysis of the Society of Thoracic Surgeons Adult Cardiac Surgery Database. Ann. Thorac. Surg. 2014, 98, 806–814. [Google Scholar] [CrossRef]
- David, T.E.; Gavra, G.; Feindel, C.M.; Regesta, T.; Armstrong, S.; Maganti, M.D. Surgical treatment of active infective endocarditis: A continued challenge. J. Thorac. Cardiovasc. Surg. 2007, 133, 144–149. [Google Scholar] [CrossRef]
- Moon, M.R.; Miller, D.C.; Moore, K.A.; Oyer, P.E.; Mitchell, R.S.; Robbins, R.C.; Stinson, E.B.; Shumway, N.E.; Reitz, B.A. Treatment of endocarditis with valve replacement: The question of tissue versus mechanical prosthesis. Ann. Thorac. Surg. 2007, 1, 1164–1171. [Google Scholar] [CrossRef] [PubMed]
- Sabik, J.F.; Lytle, B.W.; Blackstone, E.H.; Marullo, A.G.; Pettersson, G.B.; Cosgrove, D.M. Aortic root replacement with cryopreserved allograft for prosthetic valve endocarditis. Ann. Thorac. Surg. 2002, 74, 650–659. [Google Scholar] [CrossRef] [PubMed]
- Witten, J.C.; Umana-Pizano, J.; Houghtaling, P.L.; Insler, J.E.; Erten, O.; Nowicki, E.R.; Svensson, L.G.; Blackstone, E.H.; Unai, S.; Pettersson, G.B. Aortic root allograft reoperations. J. Thorac. Cardiovasc. Surg. 2023, 168, 440–452.e14. [Google Scholar] [CrossRef] [PubMed]
- Klieverik, L.M.; Yacoub, M.H.; Edwards, S.; Bekkers, J.A.; Roos-Hesselink, J.W.; Kappetein, A.P.; Takkenberg, J.J.; Bogers, A.J. Surgical treatment of active native aortic valve endocarditis with allografts and mechanical prostheses. Ann. Thorac. Surg. 2009, 88, 1814–1821. [Google Scholar] [CrossRef]
- Moore, R.A.; Witten, J.C.; Lowry, A.M.; Shrestha, N.K.; Blackstone, E.H.; Unai, S.; Pettersson, G.B.; Wierup, P.; Chemtob, R.A.; Gillinov, A.M.; et al. Isolated mitral valve endocarditis: Patient, disease, and surgical factors that influence outcomes. J. Thorac. Cardiovasc. Surg. 2022, 167, 127–140.e15. [Google Scholar] [CrossRef]
- Fukushima, S.; Tesar, P.J.; Pearse, B.; Jalali, H.; Sparks, L.; Fraser, J.F.; Pohlner, P.G. Long-term clinical outcomes after aortic valve replacement using cryopreserved aortic allograft. J. Thorac. Cardiovasc. Surg. 2014, 148, 65–72.e62. [Google Scholar] [CrossRef]
- Arabkhani, B.; Bekkers, J.A.; Andrinopoulou, E.R.; Roos-Hesselink, J.W.; Takkenberg, J.J.; Bogers, A.J. Allografts in aortic position: Insights from a 27-year, single-center prospective study. J. Thorac. Cardiovasc. Surg. 2016, 152, 1572–1579.e1573. [Google Scholar] [CrossRef]
- Musci, M.; Weng, Y.; Humbler Amiri, A.; Pasic, M.; Kosky, S.; Stein, J.; Siniawski, H.; Hetzer, R. Homograft aortic root replacement in native or prosthetic active infective endocarditis: Twenty-year single-center experience. J. Thorac. Cardiovasc. Surg. 2010, 139, 665–673. [Google Scholar] [CrossRef]
- Yankah, A.C.; Klose, H.; Petzina, R.; Musci, M.; Siniawski, H.; Hetzer, R. Surgical management of acute aortic root endocarditis with viable homograft: 13-year experience. Eur. J. Cardiothorac. Surg. 2002, 21, 260–267.60. [Google Scholar] [CrossRef]
- Perrotta, S.; Jeppsson, A.; Frojd, V.; Svensson, G. Surgical Treatment of Aortic Prosthetic Valve Endocarditis: A 20-Year Single Center Experience. Ann. Thorac. Surg. 2016, 101, 1426–1432. [Google Scholar] [CrossRef]
- Olivito, S.; Lalande, S.; Nappi, F.; Hammoudi, N.; D’Alessandro, C.; Fouret, P.; Acar, C. Structural deterioration of the cryopreserved mitral homograft valve. J. Thorac. Cardiovasc. Surg. 2012, 144, 313–320.e1. [Google Scholar] [CrossRef] [PubMed]
- Nappi, F.; Spadaccio, C.; Acar, C. Use of allogeneic tissue to treat infective valvular disease: Has everything been said? J. Thorac. Cardiovasc. Surg. 2017, 153, 824–828. [Google Scholar] [CrossRef] [PubMed]
- Acar, C. Monobloc or separate aortic and mitral homografts? J. Thorac. Cardiovasc. Surg. 2006, 132, 442–443. [Google Scholar] [CrossRef] [PubMed]
- Steffen, V.; Marsch, G.; Burgwitz, K.; Kuehn, C.; Teebken, O.E. Resistance to infection of long-term cryopreserved human aortic valve allografts. J. Thorac. Cardiovasc. Surg. 2016, 151, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
- Fauchier, L.; Bisson, A.; Herbert, J.; Lacour, T.; Bourguignon, T.; Etienne, C.S.; Bernard, A.; Deharo, P.; Bernard, L.; Babuty, D. Incidence and outcomes of infective endocarditis after transcatheter aortic valve implantation versus surgical aortic valve replacement. Clin. Microbiol. Infect. 2020, 26, 1368–1374. [Google Scholar] [CrossRef]
- Østergaard, L.; Lauridsen, T.K.; Iversen, K.; Bundgaard, H.; Søndergaard, L.; Ihlemann, N.; Moser, C.; Fosbøl, E. Infective endocarditis in patients who have undergone transcatheter aortic valve implantation: A review. Clin. Microbiol. Infect. 2020, 26, 999–1007. [Google Scholar] [CrossRef]
- Strange, J.E.; Østergaard, L.; Køber, L.; Bundgaard, H.; Iversen, K.; Voldstedlund, M.; Gislason, G.H.; Olesen, J.B.; Fosbøl, E.L. Patient characteristics, microbiology, and mortality of infective endocarditis after transcatheter aortic valve implantation. Clin. Infect. Dis. 2023, 77, 1617–1625. [Google Scholar] [CrossRef]
- Mangner, N.; Leontyev, S.; Woitek, F.J.; Kiefer, P.; Haussig, S.; Binner, C.; Mende, M.; Schlotter, F.; Stachel, G.; Höllriegel, R.; et al. Cardiac surgery compared with antibiotics only in patients developing infective endocarditis after transcatheter aortic valve replacement. J. Am. Heart Assoc. 2018, 7, e010027. [Google Scholar] [CrossRef]
- Bansal, A.; Jaber, W.A.; Reed, G.W.; Puri, R.; Krishnaswamy, A.; Yun, J.; Unai, S.; Kapadia, S.R. Surgical versus medical management of infective endocarditis after TAVR. Catheter Cardiovasc. Interv. 2022, 99, 1592–1596. [Google Scholar] [CrossRef]
- Saha, S.; Joskowiak, D.; Marin-Cuartas, M.; Diab, M.; Schwaiger, B.M.; Sandoval-Boburg, R.; Popov, A.F.; Weber, C.; Varghese, S.; Martens, A.; et al. Surgery for infective endocarditis following lowintermediate risk transcatheter aortic valve replacement—A multicentre experience. Eur. J. Cardiothorac. Surg. 2022, 62, 75. [Google Scholar] [CrossRef]
- Benedetto, U.; Spadaccio, C.; Gentile, F.; Moon, M.R.; Nappi, F. A narrative review of early surgery versus conventional treatment 770 for infective endocarditis: Do we have an answer? Ann. Transl. Med. 2020, 8, 1626. [Google Scholar] [CrossRef] [PubMed]
- Nappi, F.; Spadaccio, C.; Moon, M.R. A management framework for left sided endocarditis: A narrative review. Ann. Transl. Med. 2020, 8, 1627. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, N.; Itagaki, S.; Egorova, N.N.; Tannous, H.; Anyanwu, A.C.; El-Eshmawi, A.; Adams, D.H.; Chikwe, J. Real-world outcomes of surgery for native mitral valve endocarditis. J. Thorac. Cardiovasc. Surg. 2017, 154, 1906–1912.e9. [Google Scholar] [CrossRef] [PubMed]
- Gaca, J.G.; Sheng, S.; Daneshmand, M.A.; O’brien, S.; Rankin, J.S.; Brennan, J.M.; Hughes, G.C.; Glower, D.D.; Gammie, J.S.; Smith, P.K. Outcomes for endocarditis surgery in North America: A simplified risk scoring system. J. Thorac. Cardiovasc. Surg. 2011, 141, e1–e2. [Google Scholar] [CrossRef] [PubMed]
- Pollari, F.; Spadaccio, C.; Cuomo, M.; Chello, M.; Nenna, A.; Fischlein, T.; Nappi, F. Sharing of decision-making for infective endocarditis surgery: A narrative review of clinical and ethical implications. Ann. Transl. Med. 2020, 8, 1624. [Google Scholar] [CrossRef]
- Nashef, S.A.; Roques, F.; Michel, P.; Gauducheau, E.; Lemeshow, S.; Salamon, R. European system for cardiac operative risk evaluation (EuroSCORE). Eur. J. Cardiothorac. Surg. 1999, 16, 9–13. [Google Scholar] [CrossRef]
- De Feo, M.; Cotrufo, M.; Carozza, A.; De Santo, L.S.; Amendolara, F.; Giordano, S.; Della Ratta, E.E.; Nappi, G.; Della Corte, A. The need for a specific risk prediction system in native valve infective endocarditis surgery. Sci. World J. 2012, 2012, 307571. [Google Scholar] [CrossRef]
- Squiers, J.J.; DiMaio, J.M.; Banwait, J.K.; Mack, M.J.; Ryan, W.H.; Baxter, R.; Hamandi, M.; Shih, E.; Gonzalez-Stawinski, G.; Roberts, C.; et al. Surgical treatment of infective endocarditis at comprehensive versus primary valve centers. J. Thorac. Cardiovasc. Surg. 2023, 166, 442–452.e6. [Google Scholar] [CrossRef]
- Calzado, S.; Hernández-Meneses, M.; Llopis, J.; Boix-Palop, L.; Dietl, B.; Calbo, E.; Andrés, M.; García, X.; Agustí, C.; Dorca, E.; et al. The hidden side of infective endocarditis: Diagnostic and management of 500 consecutive cases in noncardiac surgery centers (2009–2018). Surgery 2023, 174, 602–610. [Google Scholar] [CrossRef]
- Østergaard, L.; Oestergaard, L.B.; Lauridsen, T.K.; Dahl, A.; Chaudry, M.; Gislason, G.; Torp-Pedersen, C.; Bruun, N.E.; Valeur, N.; Køber, L.; et al. Long-term causes of death in patients with infective endocarditis who undergo medical therapy only or surgical treatment: A nationwide population-based study. Eur. J. Cardiothorac. Surg. 2018, 54, 860–866. [Google Scholar] [CrossRef]
- Chu, V.H.; Park, L.P.; Athan, E.; Freiberger, T.; Lamas, C.; Miro, J.M.; Mudrick, D.W.; Strahilevitz, J.; Tribouilloy, C.; Durante-Mangoni, E.; et al. Association between surgical indications, operative risk, and clinical outcome in infective endocarditis: A prospective study from the International Collaboration on Endocarditis. Circulation 2015, 131, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Okita, Y.; Minakata, K.; Yasuno, S.; Uozumi, R.; Sato, T.; Ueshima, K.; Konishi, H.; Morita, N.; Harada, M.; Kobayashi, J.; et al. Optimal timing of surgery for active infective endocarditis with cerebral complications: A Japanese multicentre study. Eur. J. Cardiothorac. Surg. 2016, 50, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Hui, F.K.; Bain, M.; Obuchowski, N.A.; Gordon, S.; Spiotta, A.M.; Moskowitz, S.; Toth, G.; Hussain, S. Mycotic aneurysm detection rates with cerebral angiography in patients with infective endocarditis. J. Neurointerv. Surg. 2015, 7, 449–452. [Google Scholar] [CrossRef] [PubMed]
- Flameng, W.; Daenen, W.; Jashari, R.; Herijgers, P.; Meuris, B. Durability of homografts used to treat complex aortic valve endocarditis. Ann. Thorac. Surg. 2015, 99, 1234–1238. [Google Scholar] [CrossRef] [PubMed]
- Svensson, L.G.; Pillai, S.T.; Rajeswaran, J.; Desai, M.Y.; Griffin, B.; Grimm, R.; Hammer, D.F.; Thamilarasan, M.; Roselli, E.E.; Pettersson, G.B.; et al. Long-term survival, valve durability, and reoperation for 4 aortic root procedures combined with ascending aorta replacement. J. Thorac. Cardiovasc. Surg. 2016, 151, 764–774.e4. [Google Scholar] [CrossRef]
- Joudinaud, T.M.; Baron, F.; Raffoul, R.; Pagis, B.; Vergnat, M.; Parisot, C.; Hvass, U.; Nataf, P.R. Redo aortic root surgery for failure of an aortic homograft is a major technical challenge. Eur. J. Cardiothorac. Surg. 2008, 33, 989–994. [Google Scholar] [CrossRef]
- Horke, A.; Bobylev, D.; Avsar, M.; Meyns, B.; Rega, F.; Hazekamp, M.; Huebler, M.; Schmiady, M.; Tzanavaros, I.; Cesnjevar, R.; et al. Paediatric aortic valve replacement using decellularized allografts. Eur. J. Cardiothorac. Surg. 2020, 58, 817–824. [Google Scholar] [CrossRef]
- Santarpino, G.; Pietsch, L.E.; Jessl, J.; Pfeiffer, S.; Pollari, F.; Pauschinger, M.; Fischlein, T. Transcatheter aortic valve-in-valve implantation and sutureless aortic valve replacement: Two strategies for one goal in redo patients. Minerva. Cardioangiol. 2016, 64, 581–585. [Google Scholar]
- Santarpino, G.; Pollari, F.; Fischlein, T. Aortic Valve Stenosis in Redo Operations in Octogenarians: Transcatheter Aortic Valve Implantation or Surgical Intervention? That Is the Question. Ann. Thorac. Surg. 2015, 100, 378–379. [Google Scholar] [CrossRef]
- Kowert, A.; Vogt, F.; Beiras-Fernandez, A.; Reichart, B.; Kilian, E. Outcome after homograft redo operation in aortic position. Eur. J. Cardiothorac. Surg. 2012, 41, 404–408. [Google Scholar] [CrossRef]
- Dainese, L.; Fusari, M.; Trabattoni, P.; Biglioli, P. Redo in aortic homograft replacement: Transcatheter aortic valve as a valid alternative to surgical replacement. J. Thorac. Cardiovasc. Surg. 2010, 139, 1656–1657. [Google Scholar] [CrossRef] [PubMed]
- Laborde, F.; Fischlein, T.; Hakim-Meibodi, K.; Misfeld, M.; Carrel, T.; Zembala, M.; Madonna, F.; Meuris, B.; Haverich, A.; Shrestha, M.; et al. Clinical and haemodynamic outcomes in 658 patients receiving the Perceval sutureless aortic valve: Early results from a prospective European multicentre study (the Cavalier trial). Eur. J. Cardiothorac. Surg. 2016, 49, 978–986. [Google Scholar] [CrossRef] [PubMed]
- Roselló-Díez, E.; Cuerpo, G.; Estévez, F.; Muñoz-Guijosa, C.; Tauron, M.; Cuenca, J.J.; González-Pinto, Á.; Padró, J.M. Use of the perceval sutureless valve in active prosthetic aortic valve endocarditis. Ann. Thorac. Surg. 2018, 105, 1168–1174. [Google Scholar] [CrossRef] [PubMed]
- Szczechowicz, M.; Mashhour, A.; Chaduneli, O.; Weymann, A. Implantation of Perceval valve in mitral position: A new technique. J. Thorac. Cardiovasc. Surg. 2019, 157, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Lesser, J.R.; Schneider, L.M.; Burns, M.R.; Gössl, M.; Garberich, R.; Niikura, H.; Witt, D.; Sorajja, P. Prospective evaluation for hypoattenuated leaflet thickening following transcatheter aortic valve implantation. Am. J. Cardiol. 2019, 123, 658–666. [Google Scholar] [CrossRef]
- Stulak, J.M.; Burkhart, H.M.; Sundt, T.M., III. Spectrum and outcome of reoperations after the Ross procedure. Spectrum and outcome of reoperations after the Ross procedure. Circulation 2010, 122, 1153–1158. [Google Scholar] [CrossRef]
- Nappi, F.; Spadaccio, C.; Al-Attar, N.; Acar, C. The Ross procedure at the crossroads: Lessons from biology: Is Dr Ross’s dream concluded? Int. J. Cardiol. 2015, 178, 37–39. [Google Scholar] [CrossRef]
- Spadaccio, C.; Montagnani, S.; Acar, C.; Nappi, F. Introducing bioresorbable scaffolds into the show. A potential adjunct to resuscitate Ross procedure. Int. J. Cardiol. 2015, 190, 50–52. [Google Scholar] [CrossRef]
- Nappi, F.; Spadaccio, C.; Chello, M.; Acar, C. The Ross procedure: Underuse or under-comprehension? J. Thorac. Cardiovasc. Surg. 2015, 149, 1463–1464. [Google Scholar] [CrossRef]
- Nappi, F.; Avtaar Singh, S.S.; Spadaccio, C.; Acar, C. Ross operation 23 years after surgery: It should not be a “forgotten” option. J. Card. Surg. 2020, 35, 952–956. [Google Scholar] [CrossRef]
- Nappi, F.; Singh, S.S.A.; Lusini, M.; Nenna, A.; Gambardella, I.; Chello, M. The use of allogenic and autologous tissue to treat aortic valve endocarditis. Ann. Transl. Med. 2019, 7, 491. [Google Scholar] [CrossRef] [PubMed]
- Danneels, P.; Hamel, J.-F.; Picard, L.; Rezig, S.; Martinet, P.; Lorleac’h, A.; Talarmin, J.P.; Buzelé, R.; Guimard, T.; Le Moal, G.; et al. Impact of Enterococcus faecalis endocarditis treatment on risk of relapse. Clin. Infect. Dis. 2023, 76, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Freitas-Ferraz, A.B.; Tirado-Conte, G.; Vilacosta, I.; Olmos, C.; Sáez, C.; López, J.; Sarriá, C.; Pérez-García, C.N.; García-Arribas, D.; Ciudad, M.; et al. Contemporary epidemiology and outcomes in recurrent infective endocarditis. Heart 2020, 106, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Parra, J.; Kestler, M.; Ramos-Martínez, A.; Bouza, E.; Valerio, M.; de Alarcón, A.; Luque, R.; Goenaga, M.Á.; Echeverría, T.; Fariñas, M.C.; et al. Clinical factors associated with reinfection versus relapse in infective endocarditis: Prospective cohort study. J. Clin. Med. 2021, 10, 748. [Google Scholar] [CrossRef] [PubMed]
- Weber, C.; Petrov, G.; Luehr, M.; Aubin, H.; Tugtekin, S.M.; Borger, M.A.; Akhyari, P.; Wahlers, T.; Hagl, C.; Matschke, K.; et al. Surgical results for prosthetic versus native valve endocarditis: A multicenter analysis. J. Thorac. Cardiovasc. Surg. 2021, 161, 609–619.e10. [Google Scholar] [CrossRef]
- Luehr, M.; Bauernschmitt, N.; Peterss, S.; Li, Y.; Heyn, O.; Dashkevich, A.; Oberbach, A.; Bagaev, E.; Pichlmaier, M.A.; Juchem, G.; et al. Incidence and surgical outcomes of patients with native and prosthetic aortic valve endocarditis. Ann. Thorac. Surg. 2020, 110, 93–101. [Google Scholar] [CrossRef]
- Manne, M.B.; Shrestha, N.K.; Lytle, B.W.; Nowicki, E.R.; Blackstone, E.; Gordon, S.M.; Pettersson, G.; Fraser, T.G. Outcomes after surgical treatment of native and prosthetic valve infective endocarditis. Ann. Thorac. Surg. 2012, 93, 489–493. [Google Scholar] [CrossRef]
- Caceres Polo, M.; Thibault, D.; Jawitz, O.K.; Zwischenberger, B.A.; O’Brien, S.M.; Thourani, V.H.; Jacobs, J.P.; Hooker, R.L. Aortic prosthetic valve endocarditis: Analysis of The Society of Thoracic Surgeons database. Ann. Thorac. Surg. 2022, 114, 2140–2147. [Google Scholar] [CrossRef]
- Giambuzzi, I.; Bonalumi, G.; Di Mauro, M.; Alamanni, F.; Zanobini, M. Surgical aortic mitral curtain replacement: Systematic review and metanalysis of early and longterm results. J. Clin. Med. 2021, 10, 3163. [Google Scholar] [CrossRef]
- Weber, C.; Rahmanian, P.B.; Nitsche, M.; Gassa, A.; Eghbalzadeh, K.; Hamacher, S.; Merkle, J.; Deppe, A.C.; Sabashnikov, A.; Kuhn, E.W.; et al. Higher incidence of perivalvular abscess determines perioperative clinical outcome in patients undergoing surgery for prosthetic valve endocarditis. BMC Cardiovasc. Disord. 2020, 20, 47. [Google Scholar] [CrossRef]
- Sommerstein, R.; Atkinson, A.; Kuster, S.P.; Thurneysen, M.; Genoni, M.; Troillet, N.; Marschall, J.; Widmer, A.F.; Swissnoso; Balmelli, C.; et al. Antimicrobial prophylaxis and the prevention of surgical site infection in cardiac surgery: An analysis of 21 007 patients in Switzerland. Eur. J. Cardiothorac. Surg. 2019, 56, 800–806. [Google Scholar] [CrossRef] [PubMed]
- Bratzler, D.W.; Houck, P.M. Antimicrobial prophylaxis for surgery: An advisory statement from the National Surgical Infection Prevention Project. Am. J. Surg. 2005, 189, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Conen, A.; Stortecky, S.; Moreillon, P.; Hannan, M.M.; Franzeck, F.C.; Jeger, R.; Widmer, A.F. A review of recommendations for infective endocarditis prevention in patients undergoing transcatheter aortic valve implantation. Euro Interv. 2021, 16, 1135–1140. [Google Scholar] [CrossRef] [PubMed]
- Thornhill, M.H.; Gibson, T.B.; Yoon, F.; Dayer, M.J.; Prendergast, B.D.; Lockhart, P.B.; O’Gara, P.T.; Baddour, L.M. Antibiotic prophylaxis against infective endocarditis before invasive dental procedures. J. Am. Coll. Cardiol. 2022, 80, 1029–1041. [Google Scholar] [CrossRef] [PubMed]
- Wilson, W.R.; Gewitz, M.; Lockhart, P.B.; Bolger, A.F.; DeSimone, D.C.; Kazi, D.S.; Couper, D.J.; Beaton, A.; Kilmartin, C.; Miro, J.M.; et al. Prevention of viridans group streptococcal infective endocarditis: A scientific statement from the American Heart Association. Circulation 2021, 143, e963–e978. [Google Scholar] [CrossRef]
- Wilson, W.; Taubert, K.A.; Gewitz, M.; Lockhart, P.B.; Baddour, L.M.; Levison, M.; Bolger, A.; Cabell, C.H.; Takahashi, M.; Baltimore, R.S.; et al. Prevention of infective endocarditis: Guidelines from the American Heart Association: A guideline from the American Heart Association Rheumatic Fever, Endocarditis and Kawasaki Disease Committee, Council on Cardiovascular Disease in the Young, and the Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and the Quality of Care and Outcomes Research Interdisciplinary Working Group. J. Am. Dent. Assoc. 2008, 139, 3S–24S. [Google Scholar] [CrossRef]
- Epprecht, J.; Ledergerber, B.; Frank, M.; Greutmann, M.; van Hemelrijck, M.; Ilcheva, L.; Padrutt, M.; Stadlinger, B.; Özcan, M.; Carrel, T.; et al. Increase in Oral Streptococcal Endocarditis Among Moderate-Risk Patients: Impact of Guideline Changes on Endocarditis Prevention. JACC Adv. 2024, 3, 101266, eCollection 2024 Oct. [Google Scholar] [CrossRef]
- Carvajal, V.; Reyes, F.B.; Gonzalez, D.; Schwartz, M.; Whiltlow, A.; Alegria, J.R. Endocarditis in Adult Congenital Heart Disease Patients: Prevention, Recognition, and Management. Curr. Cardiol. Rep. 2024, 26, 1031–1045. [Google Scholar] [CrossRef]
- Scialla, S.; Martuscelli, G.; Nappi, F.; Singh, S.S.A.; Iervolino, A.; Larobina, D.; Ambrosio, L.; Raucci, M.G. Trends in Managing Cardiac and Orthopaedic Device-Associated Infections by Using Therapeutic Biomaterials. Polymers 2021, 13, 1556. [Google Scholar] [CrossRef]
- Ionescu, A.; Payne, N.; Fraser, A.G.; Giddings, J.; Grunkemeier, G.L.; Butchart, E.G. Incidence of embolism and paravalvar leak after St Jude Silzone valve implantation: Experience from the Cardiff Embolic Risk Factor Study. Heart 2003, 89, 1055–1061. [Google Scholar] [CrossRef]
- Schaff, H.V.; Carrel, T.P.; Jamieson, W.R.; Jones, K.W.; Rufilanchas, J.J.; Cooley, D.A.; Hetzer, R.; Stumpe, F.; Duveau, D.; Moseley, P.; et al. Paravalvular leak and other events in Silzone-coated mechanical heart valves: A report from AVERT. Ann. Thorac. Surg. 2002, 73, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Shinefield, H.; Black, S.; Fattom, A.; Horwith, G.; Rasgon, S.; Ordonez, J.; Yeoh, H.; Law, D.; Robbins, J.B.; Schneerson, R.; et al. Use of a Staphylococcus aureus conjugate vaccine in patients receiving hemodialysis. N. Engl. J. Med. 2002, 346, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Fowler, V.G., Jr.; Allen, K.B.; Moreira, E.D.; Moustafa, M.; Isgro, F.; Boucher, H.W.; Corey, G.R.; Carmeli, Y.; Betts, R.; Hartzel, J.S.; et al. Effect of an investigational vaccine for preventing Staphylococcus aureus infections after cardiothoracic surgery: A randomized trial. JAMA 2013, 309, 1368–1378. [Google Scholar] [CrossRef] [PubMed]
- Bagnoli, F.; Fontana, M.R.; Soldaini, E.; Mishra, R.P.; Fiaschi, L.; Cartocci, E.; Nardi-Dei, V.; Ruggiero, P.; Nosari, S.; De Falco, M.G.; et al. Vaccine composition formulated with a novel TLR7-dependent adjuvant induces high and broad protection against Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 2015, 112, 3680–3685. [Google Scholar] [CrossRef] [PubMed]
2000 Modified DUKE Criteria | 2015 and 2023 European Society of Cardiology (ESC) Criteria | 2023 DUKE/International Society for Cardiovascular Infectious Diseases (ISCVID) Criteria |
MAJOR CRITERIA | MAJOR CRITERIA | MAJOR CRITERIA |
Microbiologic Major Criteria | Microbiologic Major Criteria | Microbiologic Major Criteria |
Blood Cultures | Blood Cultures | Blood Cultures |
Typical microorganisms consistent with IE from two separate blood cultures: Viridans streptococci, Streptococcus bovis, HACEK group, Staphylococcus aureus, or community-acquired enterococci, in the absence of a primary focus | Typical microorganisms consistent with IE from two separate blood cultures: Viridans streptococci, Streptococcus bovis, HACEK group, Staphylococcus aureus, or Enterococcus faecalis | Microorganisms that commonly cause IE * isolated from two or more separate blood culture sets. * Staphylococcus aureus, Staphylococcus lugdunensis, Enterococcus faecalis, streptococci of the following groups: S. mitis/oralis (including S. peroris and excluding S. pneumoniae), S. bovis/equinus (including S. gallolyticus and S. infantarius), S. sanguinis/parasanguinis, S. salivarius (including S. vestibularis), S. mutans (including S. sobrinus), S. gordonii, S. cristatus/sinensis, Granulicatella spp., Abiotrophia defectiva, Gemella spp., HACEK group organisms (Haemophilus species, Aggregatibacter actinomycetemcomitans, Cardiobacterium hominis, Eikenella corrodens, Kingella kingae) |
Microorganisms consistent with IE from persistently positive blood cultures, defined as follows: At least 2 positive cultures of blood samples drawn 112 h apart or all of 3 or a majority of >4 separate cultures of blood (with first and last sample drawn at least 1 h apart) | Microorganisms consistent with IE from persistently positive blood cultures, defined as follows: At least 2 positive cultures of blood samples drawn > 12 h apart or all of 3 or a majority of >4 separate cultures of blood (with first and last sample drawn at least 1 h apart) | Infectious agents that infrequently or intermittently induce IE, identified from three or more discrete blood culture samples. |
2000 Modified DUKE Criteria | 2015 and 2013 European Society of Cardiology (ESC) Criteria | 2023 DUKE/International Society for Cardiovascular Infectious Diseases (ISCVID) Criteria |
MAJOR CRITERIA | MAJOR CRITERIA | MAJOR CRITERIA |
Laboratory Tests | Laboratory Tests | Laboratory Tests |
A confirmed positive blood culture for Coxiella burnetii or an antiphase I IgG antibody titre of >1:800 is the definitive indicator. | A confirmed positive blood culture for Coxiella burnetii or an antiphase I IgG antibody titre of >1:800 is the definitive indicator | A positive PCR or other nucleic-acid-based technique (amplicon (16S or 18S) or shotgun (metagenomic) sequencing) for Coxiella burnetii, Bartonella species, or Tropheryma whipplei from blood. The patient must have a Coxiella burnetii antiphase I IgG antibody titre of >1:800, or the bacteria must be isolated from a single blood culture. The definitive test is an indirect immunofluorescence assay (IFA) for the detection of IgM and IgG antibodies to Bartonella henselae or Bartonella quintana with an IgG titre of >1:800. |
Imaging Major Criteria | Imaging Major Criteria | Imaging Major Criteria |
The echocardiogram is positive for IE. This is defined as follows: The following are indicative of IE:
| The echocardiogram shows a positive result for IE. The following are present:
The presence of aberrant activity at the site of prosthetic valve implantation is unequivocally identified by [18F]FDG PET/CT(irrespective of the interval from surgery) or radiolabelled leukocytes SPECT/CT. Definite paravalvular lesions by cardiac CT. | Echocardiography and/or Cardiac CT showing:
The echocardiography shows significantly worse valvular regurgitation than the previous imaging. Worsening or changing of pre-existing regurgitation is not sufficient. [18F]FDG PET/CT metabolic activity involving a native or prosthetic valve, ascending aortic graft (with concomitant evidence of valve involvement), cardiac device leads, or other intracardiac prosthetic material, detected at least 3 months after prosthetic valve surgical implantation, is abnormal. |
GAMES Investigators’ Criteria for Using OPAT in Prosthetic Valve Endocarditis Patients | ||
---|---|---|
Recommendation | Indications | Applications |
A rapid transfer to OPAT is to be initiated at the 10-day mark following admission. | This indication covers all cases caused by viridans or bovis (gallolyticus) group streptococci or Enterococcus faecalis, provided that the patient is not undergoing cardiac surgery. | The blood cultures taken at 72 h yielded negative results. There were no severe clinical complications, no anticoagulation issues, and a TEE ruled out severe aortic regurgitation and prosthetic dysfunction. |
The transfer to OPAT is postponed for a minimum of three weeks after admission/surgery. | This indication applies to all cardiac surgery cases that do not fall into any of the following two categories:
|
|
2000 Modified DUKE Criteria | 2015 and 2013 European Society of Cardiology (ESC) Criteria | 2023 DUKE/International Society for Cardiovascular Infectious Diseases (ISCVID) Criteria |
---|---|---|
Surgical Major Criteria | Surgical Major Criteria | Surgical Major Criteria |
- | - | Evidence of IE was documented by direct inspection during the course of cardiac surgery, without subsequent histologic or microbiologic confirmation. |
Minor Criteria | Minor Criteria | Minor Criteria |
Predisposition: heart condition or drug use | Predisposition: heart condition or drug use | Predisposition:
|
Fever, temperature > 38 °C | Fever, temperature > 38 °C | Fever, temperature > 38 °C |
Vascular manifestations, major arterial emboli, septic pulmonary infarcts, mycotic aneurysms, intracranial haemorrhages, conjunctival haemorrhages, and Janeway lesions. | Vascular manifestation (including those detected by imaging only): major arterial emboli, septic pulmonary infarcts, infectious (mycotic) aneurysm, intracranial haemorrhage, conjunctival haemorrhages, and Janeway’s lesions. | Vascular manifestation: Clinical or radiological evidence of arterial emboli, septic pulmonary infarcts, cerebral or splenic abscess, hematogenous spondylodiscitis, mycotic aneurysm, intracranial haemorrhage, conjunctival haemorrhages, Janeway lesions, and purulent purpura. |
Microbiological evidence: positive blood culture but does not meet a major criterion as noted above or serological evidence of active infection with organism consistent with IE. | Microbiological evidence: positive blood culture but does not meet a major criterion as noted above or serological evidence of active infection with organism consistent with IE. | Microbiologic evidence, falling short of a major criterion:
|
Immunologic manifestation: glomerulonephritis, Osler’s nodes, Roth’s spots, and rheumatoid factor. | Immunologic manifestation: glomerulonephritis, Osler’s nodes, Roth’s spots, and rheumatoid factor. | Immunologic manifestation: immune-complex-mediated glomerulonephritis, Osler’s nodes, Roth’s spots, and positive rheumatoid factor. |
First Author, Year (Ref. ϕ) | No. of TAVR-IE Patients | Microbiology | 1-Yr Incidence of TAVR-IE | In-Hospital Mortality | 1-Yr-Mortality |
---|---|---|---|---|---|
Leon et al. PARTNER B, 2010 NEJM [136] | 2 (cohort of 179) | Not indicated | 1.12% γ | Not indicated | 100% |
Smith et al. PARTNER A, 2011 NEJM [137] | 3 (cohort of 344) | Not indicated | 0.87% γ | Not indicated | 33% |
Aung et al., 2013 SJID [141] | 4 (cohort of 132) | Enterococci (75%), oral streptococci (25%) | 3.0% | 0% | 0% |
Latib et al., 2014 JACC [142] | 29 (cohort of 2572) | Enterococci (21%), CoNS (17%), S. aureus (14%), oral streptococci (3.4%) | 0.89% γ | 45% | Not indicated |
Olsen et al., 2015 CCI 2015 [143] | 18 (cohort of 509) | Enterococci (33%), S. aureus (17%), oral streptococci (17%), CoNS (11%) | 3.1% | 11% | Not indicated |
Puls et al., 2013 Eurointervention [144] | 5 (cohort of 180) | Enterococcus (40%), oral streptococci (20%), S. aureus (20%), E. coli (20%) | 2.78% | 40% | 40% |
Mangner et al., 2016 JACC [138] | 55 (cohort of 1820) | S. aureus (38%), enterococci (31%), CoNS (9.1%), oral streptococci (3.6%) | 2.25% γ | 64% | 75% |
Amat-Santos et al., 2015 Circulation [139] | 53 (cohort of 7944) | CoNS (24%), Staphylococcus aureus (21%), enterococci (21%), oral streptococci (5.7%) | 0.5% | 47% | 66% |
Raguiero et al., 2016 JAMA [30] | 250 (cohort of 20,006) | Enterococcus (25%), S. aureus (24%), CoNS (17%) | 1.1% per person-year | 36% | 66.7% (2-yr mortality) |
* Butt et al., 2019 JACC [145] | TAVR cohort of 2632 | Not indicated | 2.3% | 20.9% | Higher risk of death HR: 2.05; 95% CI: 1.82 to 2.32 |
del Val et al., 2022 CJC [140] | 604 (cohort of 40,345) | Non-S. aureus (432) S. aureus (141) | Non-S. aureus 6.3 months vs. S. aureus 4.7 months | S. aureus group (47.8% vs. 26.9%) | S. aureus group (71.5% vs. 49.6%) |
** Amat-Santos et al., 2015 JACC cardio int [146] | 60 32 TAVRs, 28 TPVRs (28 publications) | Enterococcus (34.4%), S. aureus (29.4%), | Not indicated | 34.4% | TPVR-PVE patients (75%) were managed surgically, and in-hospital mortality was 7.1%. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nappi, F. Advancements and Challenges in the Management of Prosthetic Valve Endocarditis: A Review. Pathogens 2024, 13, 1039. https://doi.org/10.3390/pathogens13121039
Nappi F. Advancements and Challenges in the Management of Prosthetic Valve Endocarditis: A Review. Pathogens. 2024; 13(12):1039. https://doi.org/10.3390/pathogens13121039
Chicago/Turabian StyleNappi, Francesco. 2024. "Advancements and Challenges in the Management of Prosthetic Valve Endocarditis: A Review" Pathogens 13, no. 12: 1039. https://doi.org/10.3390/pathogens13121039
APA StyleNappi, F. (2024). Advancements and Challenges in the Management of Prosthetic Valve Endocarditis: A Review. Pathogens, 13(12), 1039. https://doi.org/10.3390/pathogens13121039