Sensitivity Analysis of Pyrenophora tritici-repentis to Quinone-Outside Inhibitor and 14α-Demethylase Inhibitor Fungicides in Latvia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strains
2.2. Determination of Strain Sensitivity to Fungicides
2.3. Detection of QoI Target Site Mutations
3. Results
3.1. Determination of Strain Sensitivity to Fungicides
3.2. Detection of QoI Target Site Mutations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Gaile, Z.; Bankina, B.; Pluduma-Paunina, I.; Sterna, L.; Bimsteine, G.; Svarta, A.; Kaneps, J.; Arhipova, I.; Sutka, A. Performance of Winter Wheat (Triticum aestivum) Depending on Fungicide Application and Nitrogen Top-Dressing Rate. Agronomy 2023, 13, 318. [Google Scholar] [CrossRef]
- Rees, R.; Platz, G. Effects of yellow spot on wheat: Comparison of epidemics at different stages of crop development. Aust. J. Agric. Res. 1983, 34, 39–46. [Google Scholar] [CrossRef]
- Kremer, M.; Hoffmann, G. Effects of leaf infections by Drechslera tritici-repentis on the carbohydrate and nitrogen balance of wheat plants. Z. Pflanzenkrankh. Pflanzenschutz 1993, 100, 259–277. [Google Scholar]
- Wolf, E.D.; Effertz, R.; Ali, S.; Francl, L. Vistas of tan spot research. Can. J. Plant Pathol. 1998, 20, 349–370. [Google Scholar] [CrossRef]
- Moreno, M.V.; Stenglein, S.; Perelló, A. Pyrenophora tritici-repentis, causal agent of tan spot: A review of intraspecific genetic diversity. In Molecular Basis Plant Genetic Diversity; Caliskan, M., Ed.; InTechOpen: London, UK, 2012; pp. 297–330. [Google Scholar]
- Aboukhaddour, R.; Hafez, M.; Strelkov, S.E.; Fernandez, M.R. Tan spot disease under the lenses of plant pathologists. In Achieving Durable Disease Resistance in Cereals; Burleigh Dodds Science Publishing: Cambridge, UK, 2021; pp. 589–621. [Google Scholar]
- Kaņeps, J.; Moročko-Bičevska, I.; Bankina, B.; Fridmanis, D.; Roga, A.; Zhukovski, A.; Krupenko, N.; Buga, S.; Odintsova, I.; Radivon, V. Diversity in morphotypes and necrotrophic effectors (Nes) of Pyrenophora tritici-repentis strains in Latvia and Belarus. Cereal Res. Commun. 2022, 50, 1037–1043. [Google Scholar] [CrossRef]
- Gourlie, R.; McDonald, M.; Hafez, M.; Ortega-Polo, R.; Low, K.E.; Abbott, D.W.; Strelkov, S.E.; Daayf, F.; Aboukhaddour, R. The pangenome of the wheat pathogen Pyrenophora tritici-repentis reveals novel transposons associated with necrotrophic effectors ToxA and ToxB. BMC Biol. 2022, 20, 239. [Google Scholar] [CrossRef]
- Gurung, S.; Short, D.P.G.; Adhikari, T.B. Global population structure and migration patterns suggest significant population differentiation among isolates of Pyrenophora tritici-repentis. Fungal Genet. Biol. 2013, 52, 32–41. [Google Scholar] [CrossRef]
- Laribi, M.; Aboukhaddour, R.; Strelkov, S.E. Tan Spot (Pyrenophora tritici-repentis) of Wheat: A Minireview. Plant Health Cases 2024, 1–10. [Google Scholar] [CrossRef]
- Bankina, B.; Bimšteine, G.; Arhipova, I.; Kaņeps, J.; Darguža, M. Impact of crop rotation and soil tillage on the severity of winter wheat leaf blotches. Rural Sustain. Res. 2021, 45, 21–27. [Google Scholar] [CrossRef]
- Pilvere, I.; Nipers, A.; Krievina, A.; Upite, I.; Kotovs, D. LASAM Model: An Important Tool in the Decision Support System for Policymakers and Farmers. Agriculture 2022, 12, 705. [Google Scholar] [CrossRef]
- Jørgensen, L.N.; Olsen, L.V. Control of tan spot (Drechslera tritici-repentis) using cultivar resistance, tillage methods and fungicides. Crop Prot. 2007, 26, 1606–1616. [Google Scholar] [CrossRef]
- Jalli, M.; Huusela, E.; Jalli, H.; Kauppi, K.; Niemi, M.; Himanen, S.; Jauhiainen, L. Effects of crop rotation on spring wheat yield and pest occurrence in different tillage systems: A multi-year experiment in Finnish growing conditions. Front. Sustain. Food Syst. 2021, 5, 647335. [Google Scholar] [CrossRef]
- Jorgensen, L.N.; Heick, T.M. Azole Use in Agriculture, Horticulture, and Wood Preservation—Is It Indispensable? Front. Cell. Infect. Microbiol. 2021, 11, 730297. [Google Scholar] [CrossRef] [PubMed]
- Sierotzki, H. Respiration Inhibitors: Complex III. In Fungicide Resistance in Plant Pathogens: Principles and a Guide to Practical Management; Ishii, H., Hollomon, D.W., Eds.; Springer: Tokyo, Japan, 2015; pp. 119–143. [Google Scholar]
- Jørgensen, L.N.; Matzen, N.; Hansen, J.G.; Semaskiene, R.; Korbas, M.; Danielewicz, J.; Glazek, M.; Maumene, C.; Rodemann, B.; Weigand, S.; et al. Four azoles’ profile in the control of Septoria, yellow rust and brown rust in wheat across Europe. Crop Prot. 2018, 105, 16–27. [Google Scholar] [CrossRef]
- Jørgensen, L.N.; Oliver, R.P.; Heick, T.M. Occurrence and avoidance of fungicide resistance in cereal diseases. In Integrated Disease Management of Wheat and Barley; Burleigh Dodds Science Publishing: Cambridge, UK, 2018; pp. 255–280. [Google Scholar]
- Sierotzki, H.; Frey, R.; Wullschleger, J.; Palermo, S.; Karlin, S.; Godwin, J.; Gisi, U. Cytochrome b gene sequence and structure of Pyrenophora teres and P. tritici-repentis and implications for QoI resistance. Pest Manag. Sci. 2007, 63, 225–233. [Google Scholar] [CrossRef]
- Sautua, F.J.; Carmona, M.A. Detection and characterization of QoI resistance in Pyrenophora tritici-repentis populations causing tan spot of wheat in Argentina. Plant Pathol. 2021, 70, 2125–2136. [Google Scholar] [CrossRef]
- FRAC. Fungicide Resistance Action Committee. Available online: https://www.frac.info/home (accessed on 20 March 2024).
- Jess, S.; Kildea, S.; Moody, A.; Rennick, G.; Murchie, A.K.; Cooke, L.R. European Union policy on pesticides: Implications for agriculture in Ireland. Pest Manag. Sci. 2014, 70, 1646–1654. [Google Scholar] [CrossRef]
- Ezers, V.; Čūdure, R.; Krupenko, L.; Gudoviča, M. Latvijas Republikā Reģistrēto augu Aizsardzības Līdzekļu Saraksts (List of Registered Plant Protection Products in the Republic of Latvia); State Plant Protection Service: Riga, Latvia, 2024; pp. 77–173. (In Latvian) [Google Scholar]
- Patel, J.S.; Gudmestad, N.C.; Meinhardt, S.; Adhikari, T.B. Pyraclostrobin sensitivity of baseline and fungicide exposed isolates of Pyrenophora tritici-repentis. Crop Prot. 2012, 34, 37–41. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing: Vienna, Austria, 2023.
- Alves, K.D.S. ec50estimator: An Automated Way to Estimate EC50 for Stratified Datasets. 2022. Available online: https://cran.r-project.org/web/packages/ec50estimator/ec50estimator.pdf (accessed on 20 April 2024).
- Patil, I. Visualizations with statistical details: The ‘ggstatsplot’ approach. J. Open Source Softw. 2021, 6, 3167. [Google Scholar] [CrossRef]
- Kassambara, A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. 2023. Available online: https://rpkgs.datanovia.com/rstatix/ (accessed on 20 April 2024).
- Schloerke, B.; Cook, D.; Larmarange, J.; Briatte, F.; Marbach, M.; Thoen, E.; Elberg, A.; Crowley, J. GGally: Extension to ‘ggplot2’. 2024. Available online: https://www.rdocumentation.org/packages/GGally/versions/2.2.1 (accessed on 20 April 2024).
- Oliver, R.P. A reassessment of the risk of rust fungi developing resistance to fungicides. Pest Manag. Sci. 2014, 70, 1641–1645. [Google Scholar] [CrossRef] [PubMed]
- Lucas, J.A.; Hawkins, N.J.; Fraaije, B.A. Chapter Two—The Evolution of Fungicide Resistance. Adv. Appl. Microbiol. 2015, 90, 29–92. [Google Scholar] [PubMed]
- Beard, C.; Loughman, R.; Smith, A.; Speijers, J. Baseline sensitivity to three triazole fungicides in Pyrenophora tritici-repentis. Australas. Plant Pathol. 2009, 38, 168–172. [Google Scholar] [CrossRef]
- MacLean, D.E.; Aboukhaddour, R.; Tran, V.A.; Askarian, H.; Strelkov, S.E.; Turkington, T.K.; Kutcher, H.R. Race characterization of Pyrenophora tritici-repentis and sensitivity to propiconazole and pyraclostrobin fungicides. Can. J. Plant Pathol. 2017, 39, 433–443. [Google Scholar] [CrossRef]
- Pütsepp, R.; Mäe, A.; Põllumaa, L.; Andresen, L.; Kiiker, R. Fungicide Sensitivity Profile of Pyrenophora teres f. teres in Field Population. J. Fungi 2024, 10, 260. [Google Scholar] [CrossRef]
- Birr, T.; Hasler, M.; Verreet, J.-A.; Klink, H. Temporal Changes in Sensitivity of Zymoseptoria tritici Field Populations to Different Fungicidal Modes of Action. Agriculture 2021, 11, 269. [Google Scholar] [CrossRef]
- Rupp, S.; Weber, R.W.; Rieger, D.; Detzel, P.; Hahn, M. Spread of Botrytis cinerea Strains with Multiple Fungicide Resistance in German Horticulture. Front. Microbiol. 2016, 7, 2075. [Google Scholar] [CrossRef]
- Matsuzaki, Y.; Kiguchi, S.; Suemoto, H.; Iwahashi, F. Antifungal activity of metyltetraprole against the existing QoI-resistant isolates of various plant pathogenic fungi. Pest Manag. Sci. 2020, 76, 1743–1750. [Google Scholar] [CrossRef]
- Hoffmeister, M.; Mehl, A.; Hinson, A.; Siepe, I.; Taufferner, T.; Stammler, G.; Felsenstein, F. Acquired QoI resistance in Pyrenophora teres through an interspecific partial gene transfer by Pyrenophora tritici-repentis? J. Plant Dis. Prot. 2022, 129, 1073–1086. [Google Scholar] [CrossRef]
- Tonin, R.B.; Reis, E.M.; Avozani, A. Reduction in the in vitro sensitivity of Drechslera tritici-repentis, isolated from wheat, to strobilurin and triazole fungicides. Summa Phytopathol. 2017, 43, 20–25. [Google Scholar] [CrossRef]
- Jørgensen, L.N.; Matzen, N.; Havis, N.; Holdgate, S.; Clark, B.; Blake, J.; Glazek, M.; Korbas, M.; Danielewicz, J.; Maumene, C.; et al. Efficacy of common azoles and mefentrifluconazole against septoria, brown rust and yellow rust in wheat across Europe. In Modern Fungicides and Antifungal Compounds IX, Proceedings of the 19th International Reinhardsbrunn Symposium, Friedrichroda, Germany, 7–11 April 2019; Deutsche Phytomedizinische Gesellschaft: Braunschweig, Germany, 2020; Volume 9, pp. 27–34. [Google Scholar]
- Jørgensen, L.N.; Matzen, N.; Heick, T.M.; O’Driscoll, A.; Clark, B.; Waite, K.; Blake, J.; Glazek, M.; Maumene, C.; Couleaud, G. Shifting sensitivity of septoria tritici blotch compromises field performance and yield of main fungicides in Europe. Front. Plant Sci. 2022, 13, 1060428. [Google Scholar] [CrossRef]
- Ishii, H.; Bryson, P.K.; Kayamori, M.; Miyamoto, T.; Yamaoka, Y.; Schnabel, G. Cross-resistance to the new fungicide mefentrifluconazole in DMI-resistant fungal pathogens. Pestic. Biochem. Physiol. 2021, 171, 104737. [Google Scholar] [CrossRef] [PubMed]
Collection Year | Host | Country of Origin | Number of Strains | |
---|---|---|---|---|
Common Name | Scientific Name | |||
1970s | wheat | Triticum aestivum | Canada | 2 |
1998 | wheat | Triticum aestivum | USA | 2 |
2001 | wheat | Triticum aestivum | Czech Republic | 1 |
2002 | wheat | Triticum aestivum | Czech Republic | 1 |
2003 | wheat | Triticum aestivum | Latvia | 3 |
2010 | wheat | Triticum aestivum | Latvia | 3 |
2010 | wheat | Triticum aestivum | Finland | 1 |
2011 | wheat | Triticum aestivum | Czech Republic | 2 |
2012 | wheat | Triticum aestivum | Czech Republic | 2 |
2019 | wheat | Triticum aestivum | Latvia | 12 |
2020 | couch grass | Elymus repens | Latvia | 2 |
2020 | orchard grass | Dactylis glomerata | Latvia | 2 |
2020 | triticale | xTriticosecale | Latvia | 1 |
2021 | perennial ryegrass | Lolium perenne | Latvia | 1 |
2021 | triticale | xTriticosecale | Latvia | 1 |
2021 | orchard grass | Dactylis glomerata | Latvia | 1 |
2021 | meadow fescue | Festuca pratensis | Latvia | 1 |
2021 | red fescue | Festuca rubra | Latvia | 1 |
2021 | couch grass | Elymus repens | Latvia | 1 |
2021 | wheat | Triticum aestivum | Latvia | 34 |
2022 | spelt wheat | Triticum spelta | Latvia | 18 |
2022 | wheat | Triticum aestivum | Lithuania | 1 |
Total | 93 |
Collection Year | Strain | Country of Origin | Host |
---|---|---|---|
2003 | PTR1 | Latvia | Triticum aestivum |
2020 | 20PTR006 | Elymus repens | |
2021 | 21PTR069 | Dactylis glomerata | |
21PTR053 | Triticum aestivum | ||
21PTR037 | Lollium perenne | ||
21PTR081 | Festuca rubra |
Active Ingredient | Strain | EC50 Value, mg L−1 | Standard Error |
---|---|---|---|
pyraclostrobin | PTR1 | 0.076 | 0.015 |
21PTR069 | 1.140 | 0.205 | |
21PTR053 | 1.140 | 0.219 | |
20PTR006 | 1.228 | 0.246 | |
21PTR037 | 3.521 | 0.529 | |
21PTR081 | 4.462 | 1.083 | |
azoxystrobin | PTR1 | 0.351 | 0.055 |
21PTR037 | 0.893 | 0.046 | |
21PTR081 | 1.061 | 0.064 | |
20PTR006 | 1.912 | 0.117 | |
21PTR069 | 2.028 | 0.092 | |
21PTR053 | 2.235 | 0.109 | |
prothioconazole | 21PTR037 | 0.091 | 0.016 |
21PTR081 | 0.139 | 0.013 | |
21PTR069 | 0.186 | 0.015 | |
20PTR006 | 0.201 | 0.012 | |
21PTR053 | 0.310 | 0.030 | |
PTR1 | 0.980 | 0.232 | |
mefentrifluconazole | 21PTR081 | 1.663 | 0.127 |
21PTR037 | 2.086 | 0.313 | |
21PTR069 | 3.557 | 0.354 | |
20PTR006 | 5.132 | 0.421 | |
21PTR053 | 6.920 | 0.370 | |
PTR1 | 12.425 | 0.679 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaņeps, J.; Bankina, B.; Moročko-Bičevska, I.; Apsīte, K.; Roga, A.; Fridmanis, D. Sensitivity Analysis of Pyrenophora tritici-repentis to Quinone-Outside Inhibitor and 14α-Demethylase Inhibitor Fungicides in Latvia. Pathogens 2024, 13, 1060. https://doi.org/10.3390/pathogens13121060
Kaņeps J, Bankina B, Moročko-Bičevska I, Apsīte K, Roga A, Fridmanis D. Sensitivity Analysis of Pyrenophora tritici-repentis to Quinone-Outside Inhibitor and 14α-Demethylase Inhibitor Fungicides in Latvia. Pathogens. 2024; 13(12):1060. https://doi.org/10.3390/pathogens13121060
Chicago/Turabian StyleKaņeps, Jānis, Biruta Bankina, Inga Moročko-Bičevska, Katrīna Apsīte, Ance Roga, and Dāvids Fridmanis. 2024. "Sensitivity Analysis of Pyrenophora tritici-repentis to Quinone-Outside Inhibitor and 14α-Demethylase Inhibitor Fungicides in Latvia" Pathogens 13, no. 12: 1060. https://doi.org/10.3390/pathogens13121060
APA StyleKaņeps, J., Bankina, B., Moročko-Bičevska, I., Apsīte, K., Roga, A., & Fridmanis, D. (2024). Sensitivity Analysis of Pyrenophora tritici-repentis to Quinone-Outside Inhibitor and 14α-Demethylase Inhibitor Fungicides in Latvia. Pathogens, 13(12), 1060. https://doi.org/10.3390/pathogens13121060