Genomic Insights into Fusarium verticillioides Diversity: The Genome of Two Clinical Isolates and Their Demethylase Inhibitor Fungicides Susceptibility
Abstract
:1. Introduction
2. Materials and Methods
2.1. DNA Extraction and Sequencing
2.2. Genome Assembly and Annotations
2.3. Intraspecies Analysis
2.4. Susceptibility of F. verticillioides to Medical and Agricultural DMI Fungicides
3. Results
3.1. Genome Assemblies and Comparative Analysis
3.2. Fusarium verticillioides Diversity
3.3. Mitogenomes
3.4. DMI Susceptibility and CYP51 Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fisher, M.C.; Henk, D.A.; Briggs, C.J.; Brownstein, J.S.; Madoff, L.C.; McCraw, S.L.; Gurr, S.J. Emerging Fungal Threats to Animal, Plant and Ecosystem Health. Nature 2012, 484, 186–194. [Google Scholar] [CrossRef] [PubMed]
- WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action. Available online: https://www.who.int/publications/i/item/9789240060241 (accessed on 11 November 2024).
- Brown, G.D.; Ballou, E.R.; Bates, S.; Bignell, E.M.; Borman, A.M.; Brand, A.C.; Brown AJ, P.; Coelho, C.; Cook, P.C.; Farrer, R.A.; et al. The Pathobiology of Human Fungal Infections. Nat. Rev. Microbiol. 2024, 22, 687–704. [Google Scholar] [CrossRef] [PubMed]
- Azor, M.; Gené, J.; Cano, J.; Sutton, D.A.; Fothergill, A.W.; Rinaldi, M.G.; Guarro, J. In Vitro Antifungal Susceptibility and Molecular Characterization of Clinical Isolates of Fusarium verticillioides (F. Moniliforme) and Fusarium thapsinum. Antimicrob. Agents Chemother. 2008, 52, 2228. [Google Scholar] [CrossRef]
- Barberis, F.; Benedetti, M.F.; de Abreu, M.S.; Pola, S.J.; Posse, G.; Capece, P.; Lausi, A.F.; Nusblat, A.; Cuestas, M.L. Invasive Fusariosis in a Critically Ill Patient with Severe COVID-19 Pneumonia: A Case Report. Med. Mycol. Case Rep. 2021, 35, 5. [Google Scholar] [CrossRef]
- Castro López, N.; Casas, C.; Sopo, L.; Rojas, A.; Del Portillo, P.; Cepero de García, M.C.; Restrepo, S. Fusarium Species Detected in Onychomycosis in Colombia. Mycoses 2009, 52, 350–356. [Google Scholar] [CrossRef]
- Chang, S.C.; Macêdo, D.P.C.; Souza-Motta, C.M.; Oliveira, N.T. Use of Molecular Markers to Compare Fusarium verticillioides Pathogenic Strains Isolated from Plants and Humans. Genet. Mol. Res. 2013, 12, 2863–2875. [Google Scholar] [CrossRef]
- Cocchi, S.; Codeluppi, M.; Venturelli, C.; Bedini, A.; Grottola, A.; Gennari, W.; Cavrini, F.; Di Benedetto, F.; De Ruvo, N.; Rumpianesi, F.; et al. Fusarium verticillioides Fungemia in a Liver Transplantation Patient: Successful Treatment with Voriconazole. Diagn. Microbiol. Infect. Dis. 2011, 71, 438–441. [Google Scholar] [CrossRef]
- Dornbusch, H.J.; Buzina, W.; Summerbell, R.C.; Lass-Flörl, C.; Lackner, H.; Schwinger, W.; Sovinz, P.; Urban, C. Fusarium verticillioides Abscess of the Nasal Septum in an Immunosuppressed Child: Case Report and Identification of the Morphologically Atypical Fungal Strain. J. Clin. Microbiol. 2005, 43, 1998–2001. [Google Scholar] [CrossRef]
- Georgiadou, S.P.; Velegraki, A.; Arabatzis, M.; Neonakis, I.; Chatzipanagiotou, S.; Dalekos, G.N.; Petinaki, E. Cluster of Fusarium verticillioides Bloodstream Infections among Immunocompetent Patients in an Internal Medicine Department after Reconstruction Works in Larissa, Central Greece. J. Hosp. Infect. 2014, 86, 267–271. [Google Scholar] [CrossRef]
- Macêdo DP, C.; Neves, R.P.; Fontan, J.; Souza-Motta, C.M.; Lima, D.A. Case of Invasive Rhinosinusitis by Fusarium verticillioides (Saccardo) Nirenberg in an Apparently Immunocompetent Patient. Med. Mycol. J. 2008, 46, 499–503. [Google Scholar] [CrossRef]
- Mochizuki, K.; Shiraki, I.; Murase, H.; Ohkusu, K.; Nishimura, K. Identification and Sensitivity of Two Rare Fungal Species Isolated from Two Patients with Fusarium Keratomycosis. J. Infect. Chemother. 2012, 18, 939–944. [Google Scholar] [CrossRef] [PubMed]
- Tortorano, A.M.; Prigitano, A.; Esposto, M.C.; Arsic Arsenijevic, V.; Kolarovic, J.; Ivanovic, D.; Paripovic, L.; Klingspor, L.; Nordøy, I.; Hamal, P.; et al. European Confederation of Medical Mycology (ECMM). Epidemiological Survey on Invasive Infections Due to Fusarium Species in Europe. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1623–1630. [Google Scholar] [CrossRef] [PubMed]
- Siegel, M.; Kan, V.; Varma, A.; Benator, D. Successful Treatment of Invasive Fusarium verticillioides Infection With Posaconazole in a Man With Acute Myelogenous Leukemia. Infect. Dis. Clin. Pract. 2010, 18, 71. [Google Scholar] [CrossRef]
- Sun, S.; Lyu, Q.; Han, L.; Ma, Q.; Hu, H.; He, S.; Tao, S.; Zhang, J.; Zhang, H.; Wang, L. Molecular identification and in vitro susceptibility of Fusarium from fungal keratitis in central China. Zhonghua Yan Ke Za Zhi 2015, 51, 660–667. [Google Scholar]
- Tortorano, A.M.; Prigitano, A.; Dho, G.; Esposto, M.C.; Gianni, C.; Grancini, A.; Ossi, C.; Viviani, M.A. Species Distribution and in Vitro Antifungal Susceptibility Patterns of 75 Clinical Isolates of Fusarium spp. from Northern Italy. Antimicrob. Agents Chemother. 2008, 52, 2683–2685. [Google Scholar] [CrossRef]
- Tupaki-Sreepurna, A.; Thanneru, V.; Natarajan, S.; Sharma, S.; Gopi, A.; Sundaram, M.; Kindo, A.J. Phylogenetic Diversity and In Vitro Susceptibility Profiles of Human Pathogenic Members of the Fusarium fujikuroi Species Complex Isolated from South India. Mycopathologia 2018, 183, 529–540. [Google Scholar] [CrossRef]
- Twarużek, M.; Soszczyńska, E.; Winiarski, P.; Zwierz, A.; Grajewski, J. The Occurrence of Molds in Patients with Chronic Sinusitis. Eur. Arch. Otorhinolaryngol. 2014, 271, 1143–1148. [Google Scholar] [CrossRef]
- Yassin, Z.; Salehi, Z.; Soleimani, M.; Lotfali, E.; Fattahi, M.; Sharifynia, S. Phylogenetic Relationship of Fusarium Species Isolated from Keratitis Using TEF1 and RPB2 Gene Sequences. Iran. J. Microbiol. 2022, 14, 417. [Google Scholar] [CrossRef]
- Lockhart, S.R.; Chowdhary, A.; Gold JA, W. The Rapid Emergence of Antifungal-Resistant Human-Pathogenic Fungi. Nat Rev Microbiol 2023, 21, 818–832. [Google Scholar] [CrossRef]
- Fisher, M.C.; Alastruey-Izquierdo, A.; Berman, J.; Bicanic, T.; Bignell, E.M.; Bowyer, P.; Bromley, M.; Brüggemann, R.; Garber, G.; Cornely, O.A.; et al. Tackling the Emerging Threat of Antifungal Resistance to Human Health. Nat. Rev. Microbiol. 2022, 20, 557–571. [Google Scholar] [CrossRef]
- Pasquali, M.; Pallez-Barthel, M.; Beyer, M. Searching Molecular Determinants of Sensitivity Differences towards Four Demethylase Inhibitors in Fusarium graminearum Field Strains. Pestic. Biochem. Physiol. 2020, 164, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, P.; Gruez, A.; Babin, A.-L.; Frippiat, J.-P.; Machouart, M.; Debourgogne, A. CYP51 Mutations in the Fusarium solani Species Complex: First Clue to Understand the Low Susceptibility to Azoles of the Genus Fusarium. J. Fungi 2022, 8, 533. [Google Scholar] [CrossRef] [PubMed]
- Lucio, J.; Gonzalez-Jimenez, I.; Rivero-Menendez, O.; Alastruey-Izquierdo, A.; Pelaez, T.; Alcazar-Fuoli, L.; Mellado, E. Point Mutations in the 14-α Sterol Demethylase Cyp51A or Cyp51C Could Contribute to Azole Resistance in Aspergillus flavus. Genes 2020, 11, 1217. [Google Scholar] [CrossRef]
- Sáenz, V.; Alvarez-Moreno, C.; Pape, P.L.; Restrepo, S.; Guarro, J.; Ramírez, A.M.C. A One Health Perspective to Recognize Fusarium as Important in Clinical Practice. J. Fungi 2020, 6, 235. [Google Scholar] [CrossRef]
- Al-Reedy, R.M.; Malireddy, R.; Dillman, C.B.; Kennell, J.C. Comparative Analysis of Fusarium Mitochondrial Genomes Reveals a Highly Variable Region That Encodes an Exceptionally Large Open Reading Frame. Fungal. Genet. Biol. 2012, 49, 2–14. [Google Scholar] [CrossRef]
- Ma, L.-J.; van der Does, H.C.; Borkovich, K.A.; Coleman, J.J.; Daboussi, M.-J.; Di Pietro, A.; Dufresne, M.; Freitag, M.; Grabherr, M.; Henrissat, B.; et al. Comparative Genomics Reveals Mobile Pathogenicity Chromosomes in Fusarium. Nature 2010, 464, 367–373. [Google Scholar] [CrossRef]
- Yao, G.; Chen, W.; Sun, J.; Wang, X.; Wang, H.; Meng, T.; Zhang, L.; Guo, L. Gapless Genome Assembly of Fusarium verticillioides, a Filamentous Fungus Threatening Plant and Human Health. Sci. Data 2023, 10, 229. [Google Scholar] [CrossRef]
- Navale, V.D.; Sawant, A.M.; Gowda, V.U.; Vamkudoth, K.R. Assembly, Annotation, and Comparative Whole Genome Sequence of Fusarium verticillioides Isolated from Stored Maize Grains. Pathogens 2022, 11, 810. [Google Scholar] [CrossRef]
- Yang, W.; Zhai, H.; Yang, L.; Yang, Q.; Song, L.; Wu, J.; Lai, Z.; Li, G. Gap-Free Nuclear and Mitochondrial Genomes of Fusarium verticillioides Strain HN2. PhytoFrontiersTM 2023, 3, 708–712. [Google Scholar] [CrossRef]
- Degradi, L.; Tava, V.; Kunova, A.; Cortesi, P.; Saracchi, M.; Pasquali, M. Telomere to Telomere Genome Assembly of Fusarium musae F31, Causal Agent of Crown Rot Disease of Banana. Mol. Plant-Microbe Interact. MPMI 2021, 34, 1455–1457. [Google Scholar] [CrossRef]
- Lang, B.F.; Beck, N.; Prince, S.; Sarrasin, M.; Rioux, P.; Burger, G. Mitochondrial Genome Annotation with MFannot: A Critical Analysis of Gene Identification and Gene Model Prediction. Front. Plant Sci. 2023, 14, 1222186. [Google Scholar] [CrossRef] [PubMed]
- Burger, G.; Yan, Y.; Javadi, P.; Lang, B.F. Group I-Intron Trans-Splicing and mRNA Editing in the Mitochondria of Placozoan Animals. Trends Genet. 2009, 25, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Lopes, D.; Aveiro, S.S.; Cruz, S.; Cartaxana, P.; Domingues, P. Proteomic Analysis of the Mucus of the Photosynthetic Sea Slug Elysia Crispata. J. Proteom. 2024, 294, 105087. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Augustijn, H.E.; Reitz, Z.L.; Biermann, F.; Alanjary, M.; Fetter, A.; Terlouw, B.R.; Metcalf, W.W.; Helfrich, E.J.N.; et al. antiSMASH 7.0: New and Improved Predictions for Detection, Regulation, Chemical Structures and Visualisation. Nucleic Acids Res. 2023, 51, W46–W50. [Google Scholar] [CrossRef]
- Sperschneider, J.; Dodds, P.N. EffectorP 3.0: Prediction of Apoplastic and Cytoplasmic Effectors in Fungi and Oomycetes. Mol. Plant-Microbe Interact. MPMI 2022, 35, 146–156. [Google Scholar] [CrossRef]
- Geiser, D.M.; Al-Hatmi AM, S.; Aoki, T.; Arie, T.; Balmas, V.; Barnes, I.; Bergstrom, G.C.; Bhattacharyya, M.K.; Blomquist, C.L.; Bowden, R.L.; et al. Phylogenomic Analysis of a 55.1-Kb 19-Gene Dataset Resolves a Monophyletic Fusarium That Includes the Fusarium solani Species Complex. Phytopathology 2021, 111, 1064–1079. [Google Scholar] [CrossRef]
- Trifinopoulos, J.; Nguyen, L.-T.; von Haeseler, A.; Minh, B.Q. W-IQ-TREE: A Fast Online Phylogenetic Tool for Maximum Likelihood Analysis. Nucleic Acids Res. 2016, 44, W232–W235. [Google Scholar] [CrossRef]
- Tava, V.; Prigitano, A.; Cortesi, P.; Esposto, M.C.; Pasquali, M. Fusarium musae from Diseased Bananas and Human Patients: Susceptibility to Fungicides Used in Clinical and Agricultural Settings. J. Fungi 2021, 7, 784. [Google Scholar] [CrossRef]
- Mullins JG, L.; Parker, J.E.; Cools, H.J.; Togawa, R.C.; Lucas, J.A.; Fraaije, B.A.; Kelly, D.E.; Kelly, S.L. Molecular Modelling of the Emergence of Azole Resistance in Mycosphaerella graminicola. PLoS ONE 2011, 6, e20973. [Google Scholar] [CrossRef]
- Fan, J.; Chen, F.; Diao, Y.; Cools, H.J.; Kelly, S.L.; Liu, X. The Y123H Substitution Perturbs FvCYP51B Function and Confers Prochloraz Resistance in Laboratory Mutants of Fusarium verticillioides. Plant Pathol. 2014, 63, 952–960. [Google Scholar] [CrossRef]
- Song, J.; Zhang, S.; Lu, L. Fungal Cytochrome P450 Protein Cyp51: What We Can Learn from Its Evolution, Regulons and Cyp51-Based Azole Resistance. Fungal Biol. Rev. 2018, 32, 131–142. [Google Scholar] [CrossRef]
- Mao, C.-X.; Luo, J.; Zhang, Y.; Zhang, C.-Q. Targeted deletion of three CYP51s in Fusarium fujikuroi and their different roles in determining sensitivity to 14α-demethylase inhibitor fungicides. Pest Manag. Sci. 2023, 79, 1324–1330. [Google Scholar] [CrossRef] [PubMed]
- Snelders, E.; Karawajczyk, A.; Schaftenaar, G.; Verweij, P.E.; Melchers, W.J.G. Azole Resistance Profile of Amino Acid Changes in Aspergillus fumigatus CYP51A Based on Protein Homology Modeling. Antimicrob. Agents Chemother. 2010, 54, 2425–2430. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, R.S.; Robbins, N.; Cowen, L.E. Regulatory Circuitry Governing Fungal Development, Drug Resistance, and Disease. Microbiol. Mol. Biol. Rev. 2011, 75, 213–267. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Fu, M.; Zhang, Y.; Lu, L. A Ubiquitin-Mediated Post-Translational Degradation of Cyp51A Contributes to a Novel Azole Resistance Mode in Aspergillus fumigatus. Microbiol. Res. 2024, 289, 127891. [Google Scholar] [CrossRef]
- Degradi, L.; Tava, V.; Prigitano, A.; Esposto, M.C.; Tortorano, A.M.; Saracchi, M.; Kunova, A.; Cortesi, P.; Pasquali, M. Exploring Mitogenomes Diversity of Fusarium musae from Banana Fruits and Human Patients. Microorganisms 2022, 10, 1115. [Google Scholar] [CrossRef]
- O’Donnell, K.; Sutton, D.A.; Rinaldi, M.G.; Magnon, K.C.; Cox, P.A.; Revankar, S.G.; Sanche, S.; Geiser, D.M.; Juba, J.H.; van Burik, J.-A.H.; et al. Genetic Diversity of Human Pathogenic Members of the Fusarium oxysporum Complex Inferred from Multilocus DNA Sequence Data and Amplified Fragment Length Polymorphism Analyses: Evidence for the Recent Dispersion of a Geographically Widespread Clonal Lineage and Nosocomial Origin. J. Clin. Microbiol. 2004, 42, 5109–5120. [Google Scholar] [CrossRef]
Strain ID | Accession Number | Isolation Year | Isolation Host | Isolation Country |
---|---|---|---|---|
FV54917 | GCA_040113465.1 | 2022 | MAIZE ROOT | USA |
FV-FL-03 | GCA_040113355.1 | 2022 | MAIZE KERNEL | USA |
FV-FL-04 | GCA_040113345.1 | 2022 | MAIZE KERNEL | USA |
FV-FL-05 | GCA_040113015.1 | 2022 | ND | USA |
FV-NC-01 | GCA_040112945.1 | 2022 | MAIZE KERNEL | USA |
FV-NC-02 | GCA_040112935.1 | 2022 | MAIZE KERNEL | USA |
FV-NE-01 | GCA_040112915.1 | 2022 | MAIZE STALK | USA |
FV-NE-02 | GCA_040112925.1 | 2022 | MAIZE STALK | USA |
FV-TN-02 | GCA_040112855.1 | 2022 | MAIZE KERNEL | USA |
FV-TN-03 | GCA_040112835.1 | 2022 | MAIZE KERNEL | USA |
FV-TN-04 | GCA_040112765.1 | 2022 | MAIZE KERNEL | USA |
HN2 | GCA_026119585.1 | ND | MAIZE | CHINA |
LH-A398 | GCA_037043915.1 | 2021 | HENS FECES | ND |
NRRL_20984 | GCA_013759275.1 | ND | MAIZE | USA |
REC01 | GCA_033807555.1 | 2022 | MAIZE | PERU |
S1123A | GCA_025503005.1 | 2019 | HUMAN FECES | ND |
ZH12-2 | GCA_037214365.1 | ND | MAIZE | ND |
IUM05-0160 | This study | 2005 | HUMAN BLOOD | ITALY |
366 | GCA_037954515.1 | ND | ND | ND |
IUM09-1037 | This study | 2009 | HUMAN BLOOD | ITALY |
7600c | GCA_027571605.1 | ND | MAIZE | ND |
7600 | GCA_000149555.1 | ND | MAIZE | ND |
ITEM 10027 | GCA_031360185.1 | 2000 | MAIZE | ITALY |
BRIP_14953 | GCA_003316975.2 | 1977 | MAIZE | AUSTRALIA |
BRIP_53263 | GCA_003317015.2 | 2009 | SORGHUM | AUSTRALIA |
BRIP_53590 | GCA_003316995.2 | 2010 | MAIZE | AUSTRALIA |
BIONCL14 | GCA_033110985.1 | ND | ND | ND |
FN | GCA_031841155.1 | 2015 | SUGARCANE LEAVES | CHINA |
FV6396 | GCA_040113455.1 | 2022 | CHICKEN FEED | USA |
FV13563 | GCA_040113975.1 | 2021 | PINUS TAEDA | USA |
FV20956 | GCA_040113985.1 | 2021 | MAIZE | USA |
FV20984 | GCA_040113995.1 | 2021 | MAIZE | USA |
FV25055 | GCA_040113965.1 | 2021 | CLINICAL ISOLATE | ND |
FV25058 | GCA_040113955.1 | 2021 | PINUS SEED | USA |
FV25111 | GCA_040113895.1 | 2021 | LEMON TREE | USA |
FV25228 | GCA_040113885.1 | 2021 | HUMAN HAND | ND |
FV25457 | GCA_040113875.1 | 2021 | MAIZE KERNEL | GEORGIA (USA) |
FV26518 | GCA_040113865.1 | 2021 | GARDEN SOIL | USA |
FV32969 | GCA_040113675.1 | 2021 | ANIMAL FEED | GEORGIA (USA) |
FV32970 | GCA_040113665.1 | 2021 | ND | ND |
FV32973 | GCA_040113655.1 | 2021 | HUMAN SKIN | USA |
FV34183 | GCA_040113695.1 | 2021 | ND | ND |
FV34713 | GCA_040113565.1 | 2021 | MAIZE KERNEL | GUATEMALA |
FV34715 | GCA_040113575.1 | 2021 | MAIZE KERNEL | GUATEMALA |
FV34717 | GCA_040113545.1 | 2021 | MAIZE KERNEL | GUATEMALA |
FV34754 | GCA_040113585.1 | 2021 | MAIZE KERNEL | GUATEMALA |
Strain ID | Busco % | Genome Size (Mb) | Genes n° | Effectors > 90% | Effectors > 50% | Secondary Metabolite Clusters | mtDNA |
---|---|---|---|---|---|---|---|
FV54917 | 99.8 | 41.95 | 14,251 | 349 | 4764 | 44 | NA |
FV-FL-03 | 99.8 | 42.02 | 14,279 | 337 | 4784 | 48 | NA |
FV-FL-04 | 99.8 | 42.02 | 14,279 | 349 | 4749 | 50 | NA |
FV-FL-05 | 99.8 | 42.15 | 14,336 | 355 | 4804 | 45 | NA |
FV-NC-01 | 99.8 | 43.07 | 14,450 | 373 | 4856 | 49 | NA |
FV-NC-02 | 99.7 | 42.46 | 14,365 | 373 | 4825 | 47 | NA |
FV-NE-01 | 99.8 | 42.54 | 14,426 | 358 | 4822 | 46 | NA |
FV-NE-02 | 99.8 | 42.82 | 14,424 | 354 | 4820 | 45 | NA |
FV-TN-02 | 99.8 | 42.48 | 14,336 | 355 | 4746 | 48 | NA |
FV-TN-03 | 99.5 | 41.31 | 14,115 | 350 | 4684 | 45 | NA |
FV-TN-04 | 99.7 | 42.30 | 14,294 | 355 | 4747 | 46 | NA |
HN2 | 99.8 | 42.81 | 14,103 | 342 | 4713 | 46 | 53,764 bp |
LH-A398 | 99.7 | 43.18 | 14,270 | 347 | 4772 | 47 | NA |
NRRL_20984 | 99.5 | 41.92 | 14,343 | 351 | 4787 | 46 | NA |
REC01 | 99.6 | 42.82 | 14,396 | 345 | 4833 | 48 | NA |
S1123A | 99.8 | 43.18 | 14,299 | 349 | 4754 | 46 | 58,870 bp |
ZH12-2 | 99.8 | 43.12 | 14,267 | 350 | 4742 | 45 | 53,773 bp |
IUM05-0160 | 99.8 | 43.61 | 14,397 | 351 | 4814 | 45 | 53,772 bp |
366 | 99.9 | 44.03 | 14,233 | 348 | 4723 | 46 | NA |
IUM09-1037 | 99.8 | 43.43 | 13,860 | 343 | 4712 | 48 | 53,760 bp |
7600c | 99.8 | 41.99 | 14,185 | 338 | 4728 | 48 | NA |
7600 | 99.6 | 41.88 | 16,290 | -- | -- | 47 | 53,753 bp |
ITEM 10027 | 99.8 | 43.50 | 14,329 | 300 | 4754 | 47 | 53,763 bp |
BRIP_14953 | 99.7 | 42.54 | 14,185 | 336 | 4722 | 43 | NA |
BRIP_53263 | 99.7 | 42.40 | 14,289 | 363 | 4773 | 46 | NA |
BRIP_53590 | 99.8 | 42.29 | 14,193 | 350 | 4731 | 44 | NA |
BIONCL14 | 98.5 | 41.39 | 14,031 | 360 | 4718 | 46 | NA |
FN | 99.3 | 44.65 | 14,610 | 352 | 4943 | 46 | 53,536 bp |
FV6396 | 99.6 | 42.59 | 14,358 | 363 | 4823 | 45 | NA |
FV13563 | 99.6 | 42.02 | 14,314 | 360 | 4789 | 48 | NA |
FV20956 | 99.6 | 42.10 | 14,251 | 354 | 4759 | 48 | NA |
FV20984 | 99.7 | 42.11 | 14,299 | 347 | 4750 | 46 | NA |
FV25055 | 99.7 | 42.70 | 14,420 | 357 | 4800 | 48 | NA |
FV25058 | 99.8 | 41.72 | 14,131 | 347 | 4707 | 45 | NA |
FV25111 | 99.8 | 41.81 | 14,260 | 339 | 4759 | 48 | NA |
FV25228 | 99.8 | 41.79 | 14,214 | 349 | 4741 | 47 | NA |
FV25457 | 99.8 | 42.06 | 14,264 | 353 | 4746 | 47 | NA |
FV26518 | 99.7 | 41.25 | 14,061 | 350 | 4713 | 43 | NA |
FV32969 | 99.4 | 41.02 | 14,014 | 343 | 4688 | 44 | NA |
FV32970 | 99.7 | 41.47 | 14,139 | 357 | 4730 | 45 | NA |
FV32973 | 99.5 | 41.47 | 14,128 | 353 | 4730 | 44 | NA |
FV34183 | 99.8 | 42.25 | 14,326 | 354 | 4759 | 45 | NA |
FV34713 | 99.8 | 42.26 | 14,293 | 343 | 4772 | 48 | NA |
FV34715 | 99.7 | 41.96 | 14,263 | 343 | 4763 | 48 | NA |
FV34717 | 99.7 | 41.16 | 13,896 | 345 | 4683 | 43 | NA |
FV34754 | 99.3 | 41.13 | 13,920 | 341 | 4651 | 45 | NA |
Isolation Source/Strain | ITRA | VORI | POSA | ISAV | PROCH | TEBU | EPOXI | DIFENO | PROPI | TETRA | FLUSI | FENBU |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Human/IUM09-1037 | >16 | 1 | 0.5 | 2 | 0.12 | 1 | 0.5 | 2 | 0.5 | >16 | 0.5 | 2 |
Human/IUM05-0160 | 4 | 1 | 0.5 | 1 | 0.12 | 1 | 0.5 | 2 | 1 | >16 | 1 | 2 |
Maize/7600 | 0.5 | 1 | 0.5 | 1 | 0.25 | 0.5 | 0.12 | 2 | 0.25 | 1 | 0.25 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Degradi, L.; Tava, V.; Esposto, M.C.; Prigitano, A.; Bulgari, D.; Kunova, A.; Saracchi, M.; Cortesi, P.; Pasquali, M. Genomic Insights into Fusarium verticillioides Diversity: The Genome of Two Clinical Isolates and Their Demethylase Inhibitor Fungicides Susceptibility. Pathogens 2024, 13, 1062. https://doi.org/10.3390/pathogens13121062
Degradi L, Tava V, Esposto MC, Prigitano A, Bulgari D, Kunova A, Saracchi M, Cortesi P, Pasquali M. Genomic Insights into Fusarium verticillioides Diversity: The Genome of Two Clinical Isolates and Their Demethylase Inhibitor Fungicides Susceptibility. Pathogens. 2024; 13(12):1062. https://doi.org/10.3390/pathogens13121062
Chicago/Turabian StyleDegradi, Luca, Valeria Tava, Maria Carmela Esposto, Anna Prigitano, Daniela Bulgari, Andrea Kunova, Marco Saracchi, Paolo Cortesi, and Matias Pasquali. 2024. "Genomic Insights into Fusarium verticillioides Diversity: The Genome of Two Clinical Isolates and Their Demethylase Inhibitor Fungicides Susceptibility" Pathogens 13, no. 12: 1062. https://doi.org/10.3390/pathogens13121062
APA StyleDegradi, L., Tava, V., Esposto, M. C., Prigitano, A., Bulgari, D., Kunova, A., Saracchi, M., Cortesi, P., & Pasquali, M. (2024). Genomic Insights into Fusarium verticillioides Diversity: The Genome of Two Clinical Isolates and Their Demethylase Inhibitor Fungicides Susceptibility. Pathogens, 13(12), 1062. https://doi.org/10.3390/pathogens13121062