Heat Treatment as a Safe-Handling Procedure for Rift Valley Fever Virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Lines
2.2. Viral Production
2.3. Heat Inactivation
2.4. Median TCID50 Assay
2.5. Viral Quantification by RT-PCR
2.6. Measure of Inactivation Efficiency
2.7. Determination of D- and Z-Values
2.8. Statistical Analyses
3. Results
3.1. Infection of Various Cell Lines with RVFV
3.2. Efficacy of Heat Treatment on RVFV Inactivation
3.3. RVFV RNA Detection After Heat Inactivation
3.4. RVFV Inactivation in Human Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hartman, A. Rift Valley Fever. Clin. Lab. Med. 2017, 37, 285–301. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, S.; Lokugamage, N.; Ikegami, T. The L, M, and S Segments of Rift Valley Fever Virus MP-12 Vaccine Independently Contribute to a Temperature-Sensitive Phenotype. J. Virol. 2016, 90, 3735–3744. [Google Scholar] [CrossRef] [PubMed]
- Ganaie, S.S.; Schwarz, M.M.; McMillen, C.M.; Price, D.A.; Feng, A.X.; Albe, J.R.; Wang, W.; Miersch, S.; Orvedahl, A.; Cole, A.R. Lrp1 is a host entry factor for Rift Valley fever virus. Cell 2021, 184, 5163–5178.e24. [Google Scholar] [CrossRef] [PubMed]
- Gwon, Y.-D.; Nematollahi Mahani, S.A.; Nagaev, I.; Mincheva-Nilsson, L.; Evander, M. Rift Valley Fever Virus Propagates in Human Villous Trophoblast Cell Lines and Induces Cytokine mRNA Responses Known to Provoke Miscarriage. Viruses 2021, 13, 2265. [Google Scholar] [CrossRef]
- Shieh, W.J.; Paddock, C.D.; Lederman, E.; Rao, C.Y.; Gould, L.H.; Mohamed, M.; Mosha, F.; Mghamba, J.; Bloland, P.; Njenga, M.K. Pathologic Studies on Suspect Animal and Human Cases of Rift Valley Fever from an Outbreak in Eastern Africa, 2006–2007. Am. J. Trop. Med. Hyg. 2010, 83, 38–42. [Google Scholar] [CrossRef]
- Smith, D.R.; Steele, K.E.; Shamblin, J.; Honko, A.; Johnson, J.; Reed, C.; Kennedy, M.; Chapman, J.L.; Hensley, L.E. The pathogenesis of Rift Valley fever virus in the mouse model. Virology 2010, 407, 256–267. [Google Scholar] [CrossRef]
- Xu, L.; Paine, A.C.; Barbeau, D.J.; Alencastro, F.; Duncan, A.W.; McElroy, A.K. Limiting viral replication in hepatocytes alters Rift Valley fever virus disease manifestations. J. Virol. 2023, 97, e00853-23. [Google Scholar] [CrossRef]
- Lapa, D.; Pauciullo, S.; Ricci, I.; Garbuglia, A.R.; Maggi, F.; Scicluna, M.T.; Tofani, S. Rift Valley Fever Virus: An Overview of the Current Status of Diagnostics. Biomedicines 2024, 12, 540. [Google Scholar] [CrossRef]
- Bergren, N.A.; Patterson, E.I.; Blair, H.; Ellis, R.P.; Kading, R.C. Methods for successful inactivation of Rift Valley fever virus in infected mosquitoes. J. Virol. Methods 2020, 276, 113794. [Google Scholar] [CrossRef]
- Rangel, M.V.; Bourguet, F.A.; Hall, C.I.; Weilhammer, D.R. Evaluation of Inactivation Methods for Rift Valley Fever Virus in Mouse Microglia. Pathogens 2024, 13, 159. [Google Scholar] [CrossRef]
- Batéjat, C.; Grassin, Q.; Manuguerra, J.-C.; Leclercq, I. Heat inactivation of the severe acute respiratory syndrome coronavirus 2. J. Biosaf. Biosecur. 2021, 3, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Delpuech, O.; Douthwaite, J.A.; Hill, T.; Niranjan, D.; Malintan, N.T.; Duvoisin, H.; Elliott, J.; Goodfellow, I.; Hosmillo, M.; Orton, A.L. Heat inactivation of clinical COVID-19 samples on an industrial scale for low risk and efficient high-throughput qRT-PCR diagnostic testing. Sci. Rep. 2022, 12, 2883. [Google Scholar] [CrossRef] [PubMed]
- Hessling, M.; Fehler, N.; Gierke, A.-M.; Sicks, B.; Vatter, P. Heat Inactivation of Influenza Viruses—Analysis of Published Data and Estimations for Required Decimal Reduction Times for Different Temperatures and Media. Microbiol. Res. 2022, 13, 853–871. [Google Scholar] [CrossRef]
- Gamble, A.; Fischer, R.J.; Morris, D.H.; Yinda, C.K.; Munster, V.J.; Lloyd-Smith, J.O. Heat-Treated Virus Inactivation Rate Depends Strongly on Treatment Procedure: Illustration with SARS-CoV-2. Appl. Environ. Microbiol. 2021, 87, e00314-21. [Google Scholar] [CrossRef]
- Qiagen RNeasy Mini Handbook Online. Available online: https://www.qiagen.com/us/resources/resourcedetail?id=14e7cf6e-521a-4cf7-8cbc-bf9f6fa33e24&lang=en (accessed on 2 July 2023).
- Altona Diagnostics RealStar® Rift Valley Fever Virus RT-PCR Kit 1.0. Available online: https://www.altona-diagnostics.com/en/products/reagents-140/reagents/realstar-real-time-pcr-reagents/realstar-rvfv-rt-pcr-kit-ce.html (accessed on 2 July 2023).
- Altona Diagnostics. Available online: https://www.altona-diagnostics.com/files/public/Content%20Homepage/-%2002%20RealStar/MAN%20-%20CE%20-%20EN/RealStar%20RVFV%20RT-PCR%20Kit%201.0_WEB_CE_EN-S02.pdf (accessed on 12 June 2023).
- Park, S.L.; Huang, Y.-J.S.; Hsu, W.-W.; Hettenbach, S.M.; Higgs, S.; Vanlandingham, D.L. Virus-specific thermostability and heat inactivation profiles of alphaviruses. J. Virol. Methods 2016, 234, 152–155. [Google Scholar] [CrossRef]
- Elveborg, S.; Monteil, V.; Mirazimi, A. Methods of Inactivation of Highly Pathogenic Viruses for Molecular, Serology or Vaccine Development Purposes. Pathogens 2022, 11, 271. [Google Scholar] [CrossRef]
- Farrell, J.; Rose, A. Temperature Effects on Microorganisms. Annu. Rev. Microbiol. 1967, 21, 101–120. [Google Scholar] [CrossRef]
- Odendaal, L.; Davis, A.S.; Venter, E.H. Insights into the Pathogenesis of Viral Haemorrhagic Fever Based on Virus Tropism and Tissue Lesions of Natural Rift Valley Fever. Viruses 2021, 13, 709. [Google Scholar] [CrossRef]
- Hillung, J.; Lázaro, J.T.; Muñoz-Sánchez, J.-C.; Olmo-Uceda, M.-J.; Sardanyés, J.; Elena, S.F. Decay of HCoV-OC43 infectivity is lower in cell debris-containing media than in fresh culture media. microPubl. Biol. 2024, 2024. [Google Scholar] [CrossRef]
- Wigginton, K.R.; Pecson, B.M.; Sigstam, T.; Bosshard, F.; Kohn, T. Virus Inactivation Mechanisms: Impact of Disinfectants on Virus Function and Structural Integrity. Environ. Sci. Technol. 2012, 46, 12069–12078. [Google Scholar]
- Loveday, E.K.; Hain, K.S.; Kochetkova, I.; Hedges, J.F.; Robison, A.; Snyder, D.T.; Brumfield, S.K.; Young, M.J.; Jutila, M.A.; Chang, C.B. Effect of Inactivation Methods on SARS-CoV-2 Virion Protein and Structure. Viruses 2021, 13, 562. [Google Scholar] [CrossRef]
- Hume, A.J.; Olejnik, J.; White, M.R.; Huang, J.; Turcinovic, J.; Heiden, B.; Bawa, P.S.; Williams, C.J.; Gorham, N.G.; Alekseyev, Y.O. Heat Inactivation of Nipah Virus for Downstream Single-Cell RNA Sequencing Does Not Interfere with Sample Quality. Pathogens 2024, 13, 62. [Google Scholar] [CrossRef]
Temperature [Celsius] | Time [min] | HTR8 | IE (%) | JEG-3 | IE (%) | HEP-2 | IE (%) | A549 | IE (%) | HUH-7 | IE (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
70 ° | 0 | 7.27 | 7.14 | 7.12 | 7.73 | 7.04 | |||||
1 | 7.23 | 0.6% | 6.73 | 5.7% | 6.56 | 7.9% | 7.05 | 8.8% | 5.83 | 17.2% | |
5 | 1.72 | 76.2% | 2.94 | 58.8% | 3.66 | 48.6% | 3.65 | 52.8% | 1.83 | 74.0% | |
10 | 1.25 | 82.8% | 2.41 | 66.2% | 2.17 | 69.5% | 2.91 | 62.4% | 0.73 | 89.6% | |
15 | 0 | 100.0% | 1.21 | 83.1% | 0 | 100.0% | 1.00 | 87.1% | 0 | 100.0% | |
80 ° | 0 | 7.27 | 7.14 | 7.12 | 7.73 | 7.04 | |||||
1 | 6.40 | 12.0% | 6.21 | 13.0% | 5.93 | 16.7% | 6.61 | 14.5% | 6.06 | 13.9% | |
5 | 0.67 | 90.8% | 0.95 | 86.7% | 0 | 100.0% | 2.87 | 62.9% | 0.70 | 90.1% | |
10 | 0 | 100.0% | 0 | 100.0% | 0 | 100.0% | 0 | 100.0% | |||
15 | |||||||||||
95 ° | 0 | 7.27 | 7.14 | 7.12 | 7.73 | 7.04 | |||||
1 | 1.29 | 82.3% | 1.99 | 72.1% | 2.23 | 68.7% | 2.30 | 70.2% | 0.75 | 89.3% | |
5 | 0 | 100.0% | 0 | 100.0% | 0 | 100.0% | 0 | 100.0% | 0 | 100.0% | |
10 | |||||||||||
15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romeo, M.A.; Specchiarello, E.; Mija, C.; Zulian, V.; Francalancia, M.; Maggi, F.; Garbuglia, A.R.; Lapa, D. Heat Treatment as a Safe-Handling Procedure for Rift Valley Fever Virus. Pathogens 2024, 13, 1089. https://doi.org/10.3390/pathogens13121089
Romeo MA, Specchiarello E, Mija C, Zulian V, Francalancia M, Maggi F, Garbuglia AR, Lapa D. Heat Treatment as a Safe-Handling Procedure for Rift Valley Fever Virus. Pathogens. 2024; 13(12):1089. https://doi.org/10.3390/pathogens13121089
Chicago/Turabian StyleRomeo, Maria Anele, Eliana Specchiarello, Cosmina Mija, Verdiana Zulian, Massimo Francalancia, Fabrizio Maggi, Anna Rosa Garbuglia, and Daniele Lapa. 2024. "Heat Treatment as a Safe-Handling Procedure for Rift Valley Fever Virus" Pathogens 13, no. 12: 1089. https://doi.org/10.3390/pathogens13121089
APA StyleRomeo, M. A., Specchiarello, E., Mija, C., Zulian, V., Francalancia, M., Maggi, F., Garbuglia, A. R., & Lapa, D. (2024). Heat Treatment as a Safe-Handling Procedure for Rift Valley Fever Virus. Pathogens, 13(12), 1089. https://doi.org/10.3390/pathogens13121089