Clostridioides difficile Infection: Diagnosis and Treatment Challenges
Abstract
:1. Introduction
2. Laboratory Tests to Diagnose CDI
2.1. Toxigenic Culture
2.2. Cell Cytotoxicity Neutralization Assay
2.3. Nucleic Acid Amplification Testing
2.4. Enzyme Immunoassays
2.5. Current Landscape of Clinical CDI Testing
3. Treatment of C. difficile Infection
3.1. Treatment of the Initial Episode of CDI
3.2. Treatment of Recurrent CDI
4. Antimicrobial Resistance in C. difficile and Its Mechanisms of Resistance
4.1. Metronidazole Resistance
4.2. Vancomycin Resistance
4.3. Fidaxomicin Resistance
4.4. Rifamycins Resistance
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Centers for Disease Control and Prevention. 2021 Annual Report for the Emerging Infections Program for Clostridioides difficile Infection; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2021.
- Smits, W.K.; Lyras, D.; Lacy, D.B.; Wilcox, M.H.; Kuijper, E.J. Clostridium difficile Infection. Nat. Rev. Dis. Primers 2016, 2, 16020. [Google Scholar] [CrossRef]
- Kesavelu, D.; Jog, P. Current Understanding of Antibiotic-Associated Dysbiosis and Approaches for Its Management. Ther. Adv. Infect. Dis. 2023, 10, 20499361231154443. [Google Scholar] [CrossRef] [PubMed]
- Donlan, A.N.; Simpson, M.E.; Petri, W.A.J. Type 2 Cytokines IL-4 and IL-5 Reduce Severe Outcomes from Clostridiodes difficile Infection. Anaerobe 2020, 66, 102275. [Google Scholar] [CrossRef] [PubMed]
- Hernández Del Pino, R.E.; Barbero, A.M.; Español, L.Á.; Morro, L.S.; Pasquinelli, V. The Adaptive Immune Response to Clostridioides difficile: A Tricky Balance between Immunoprotection and Immunopathogenesis. J. Leukoc. Biol. 2021, 109, 195–210. [Google Scholar] [CrossRef]
- Kelly, C.P.; Kyne, L. The Host Immune Response to Clostridium difficile. J. Med. Microbiol. 2011, 60, 1070–1079. [Google Scholar] [CrossRef]
- Nibbering, B.; Gerding, D.N.; Kuijper, E.J.; Zwittink, R.D.; Smits, W.K. Host Immune Responses to Clostridioides difficile: Toxins and Beyond. Front. Microbiol. 2021, 12, 804949. [Google Scholar] [CrossRef]
- Kelly, C.R.; Fischer, M.; Allegretti, J.R.; LaPlante, K.; Stewart, D.B.; Limketkai, B.N.; Stollman, N.H. ACG Clinical Guidelines: Prevention, Diagnosis, and Treatment of Clostridioides difficile Infections. Am. J. Gastroenterol. 2021, 116, 1124–1147. [Google Scholar] [CrossRef] [PubMed]
- McDonald, L.C.; Gerding, D.N.; Johnson, S.; Bakken, J.S.; Carroll, K.C.; Coffin, S.E.; Dubberke, E.R.; Garey, K.W.; Gould, C.V.; Kelly, C.; et al. Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin. Infect. Dis. 2018, 66, e1–e48. [Google Scholar] [CrossRef]
- van Prehn, J.; Reigadas, E.; Vogelzang, E.H.; Bouza, E.; Hristea, A.; Guery, B.; Krutova, M.; Norén, T.; Allerberger, F.; Coia, J.E.; et al. European Society of Clinical Microbiology and Infectious Diseases: 2021 Update on the Treatment Guidance Document for Clostridioides difficile Infection in Adults. Clin. Microbiol. Infect. 2021, 27 (Suppl. S2), S1–S21. [Google Scholar] [CrossRef]
- Orrell, K.E.; Melnyk, R.A. Large Clostridial Toxins: Mechanisms and Roles in Disease. Microbiol. Mol. Biol. Rev. 2021, 85, e0006421. [Google Scholar] [CrossRef]
- Aktories, K.; Schwan, C.; Jank, T. Clostridium difficile Toxin Biology. Annu. Rev. Microbiol. 2017, 71, 281–307. [Google Scholar] [CrossRef] [PubMed]
- Takemori-Sakai, Y.; Satou, K.; Senda, Y.; Nakamura, Y.; Otani, H.; Maekawa, A.; Oe, H.; Oshima, M.; Yoneda-Nakagawa, S.; Miyagawa, T.; et al. Rare Toxin A-Negative and Toxin B-Positive Strain of Clostridioides difficile from Japan Lacking a Complete tcdA Gene. J. Infect. Chemother. 2022, 28, 651–656. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, R.J.; Claas, E.C.J.; Oyib, D.H.; Klaassen, C.H.W.; Dijkshoorn, L.; Brazier, J.S.; Kuijper, E.J. Characterization of Toxin A-Negative, Toxin B-Positive Clostridium difficile Isolates from Outbreaks in Different Countries by Amplified Fragment Length Polymorphism and PCR Ribotyping. J. Clin. Microbiol. 2004, 42, 1035–1041. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Monaghan, T.; Yadegar, A.; Louie, T.; Kao, D. Insights into the Evolving Epidemiology of Clostridioides difficile Infection and Treatment: A Global Perspective. Antibiotics 2023, 12, 1141. [Google Scholar] [CrossRef]
- Jeon, C.-H.; Kim, S.-H.; Wi, Y.M. Prevalence of Non-Toxigenic Clostridioides difficile in Diarrhoea Patients and Their Clinical Characteristics. Antibiotics 2023, 12, 1360. [Google Scholar] [CrossRef]
- Aktories, K.; Papatheodorou, P.; Schwan, C. Binary Clostridium difficile Toxin (CDT)—A Virulence Factor Disturbing the Cytoskeleton. Anaerobe 2018, 53, 21–29. [Google Scholar] [CrossRef]
- Martínez-Meléndez, A.; Cruz-López, F.; Morfin-Otero, R.; Maldonado-Garza, H.J.; Garza-González, E. An Update on Clostridioides difficile Binary Toxin. Toxins 2022, 14, 305. [Google Scholar] [CrossRef]
- Clements, A.C.A.; Magalhães, R.J.S.; Tatem, A.J.; Paterson, D.L.; Riley, T.V. Clostridium difficile PCR Ribotype 027: Assessing the Risks of Further Worldwide Spread. Lancet Infect. Dis. 2010, 10, 395–404. [Google Scholar] [CrossRef]
- Valiente, E.; Cairns, M.D.; Wren, B.W. The Clostridium difficile PCR Ribotype 027 Lineage: A Pathogen on the Move. Clin. Microbiol. Infect. 2014, 20, 396–404. [Google Scholar] [CrossRef]
- Akerlund, T.; Persson, I.; Unemo, M.; Norén, T.; Svenungsson, B.; Wullt, M.; Burman, L.G. Increased Sporulation Rate of Epidemic Clostridium difficile Type 027/NAP1. J. Clin. Microbiol. 2008, 46, 1530–1533. [Google Scholar] [CrossRef] [PubMed]
- Razavi, B.; Apisarnthanarak, A.; Mundy, L.M. Clostridium difficile: Emergence of Hypervirulence and Fluoroquinolone Resistance. Infection 2007, 35, 300–307. [Google Scholar] [CrossRef]
- He, M.; Miyajima, F.; Roberts, P.; Ellison, L.; Pickard, D.J.; Martin, M.J.; Connor, T.R.; Harris, S.R.; Fairley, D.; Bamford, K.B.; et al. Emergence and Global Spread of Epidemic Healthcare-Associated Clostridium difficile. Nat. Genet. 2013, 45, 109–113. [Google Scholar] [CrossRef]
- Collins, D.A.; Sohn, K.M.; Wu, Y.; Ouchi, K.; Ishii, Y.; Elliott, B.; Riley, T.V.; Tateda, K. Clostridioides difficile Infection in the Asia-Pacific Region. Emerg. Microbes Infect. 2020, 9, 42–52. [Google Scholar] [CrossRef]
- Luk, S.; To, W.K.; Ng, T.K.; Hui, W.T.; Lee, W.K.; Lau, F.; Ching, A.M.W. A Cost-Effective Approach for Detection of Toxigenic Clostridium Difficile: Toxigenic Culture Using ChromID Clostridium difficile Agar. J. Clin. Microbiol. 2014, 52, 671–673. [Google Scholar] [CrossRef]
- Marler, L.M.; Siders, J.A.; Wolters, L.C.; Pettigrew, Y.; Skitt, B.L.; Allen, S.D. Comparison of Five Cultural Procedures for Isolation of Clostridium difficile from Stools. J. Clin. Microbiol. 1992, 30, 514–516. [Google Scholar] [CrossRef]
- Reller, M.E.; Lema, C.A.; Perl, T.M.; Cai, M.; Ross, T.L.; Speck, K.A.; Carroll, K.C. Yield of Stool Culture with Isolate Toxin Testing versus a Two-Step Algorithm Including Stool Toxin Testing for Detection of Toxigenic Clostridium difficile. J. Clin. Microbiol. 2007, 45, 3601–3605. [Google Scholar] [CrossRef]
- Leber, A.L.; Burnham, C.-A.D. Clinical Microbiology Procedures Handbook, 5th ed.; ASM: Washington, DC, USA, 2023; ISBN 978-1-68367-398-9. [Google Scholar]
- Aldeen, W.E.; Bingham, M.; Aiderzada, A.; Kucera, J.; Jense, S.; Carroll, K.C. Comparison of the TOX A/B Test to a Cell Culture Cytotoxicity Assay for the Detection of Clostridium difficile in Stools. Diagn. Microbiol. Infect. Dis. 2000, 36, 211–213. [Google Scholar] [CrossRef] [PubMed]
- Halabi-Cabezon, I.; Huelsenbeck, J.; May, M.; Ladwein, M.; Rottner, K.; Just, I.; Genth, H. Prevention of the Cytopathic Effect Induced by Clostridium difficile Toxin B by Active Rac1. FEBS Lett. 2008, 582, 3751–3756. [Google Scholar] [CrossRef] [PubMed]
- Camargo, T.S.; Junior, M.S.; Camargo, L.F.A.; Biotto, V.P.; Doi, A.M.; Koga, P.C.M.; França, C.N.; Martino, M.D.V. Clostridioides difficile Laboratory Diagnostic Techniques: A Comparative Approach of Rapid and Molecular Methods. Arch. Microbiol. 2021, 203, 1683–1690. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, A.; Pasupuleti, V.; Thota, P.; Pant, C.; Rolston, D.D.K.; Hernandez, A.V.; Benites-Zapata, V.A.; Fraser, T.G.; Donskey, C.J.; Deshpande, A. Accuracy of Loop-Mediated Isothermal Amplification for the Diagnosis of Clostridium difficile Infection: A Systematic Review. Diagn. Microbiol. Infect. Dis. 2015, 82, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Hetem, D.J.; Bos-Sanders, I.; Nijhuis, R.H.T.; Tamminga, S.; Berlinger, L.; Kuijper, E.J.; Sickler, J.J.; Claas, E.C.J. Evaluation of the Liat Cdiff Assay for Direct Detection of Clostridioides difficile Toxin Genes within 20 Minutes. J. Clin. Microbiol. 2019, 57, e00416-19. [Google Scholar] [CrossRef]
- Shin, B.-M.; Yoo, S.M.; Shin, W.C. Evaluation of Xpert C. Difficile, BD MAX Cdiff, IMDx C. difficile for Abbott M2000, and Illumigene C. difficile Assays for Direct Detection of Toxigenic Clostridium difficile in Stool Specimens. Ann. Lab. Med. 2016, 36, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Krouss, M.; Israilov, S.; Alaiev, D.; Tsega, S.; Talledo, J.; Chandra, K.; Zaurova, M.; Manchego, P.A.; Cho, H.J. SEE the DIFFerence: Reducing Unnecessary C. difficile Orders through Clinical Decision Support in a Large, Urban Safety-Net System. Am. J. Infect. Control 2023, 51, 786–791. [Google Scholar] [CrossRef]
- Schäffler, H.; Breitrück, A. Clostridium difficile—From Colonization to Infection. Front. Microbiol. 2018, 9, 646. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S. The Rise and Fall and Rise Again of Toxin Testing for the Diagnosis of Clostridioides difficile Infection. Clin. Infect. Dis. 2019, 69, 1675–1677. [Google Scholar] [CrossRef]
- Kohl, T.O.; Ascoli, C.A. Immunoassays. Cold Spring Harb. Protoc. 2017, 2017, pdb.top093690. [Google Scholar] [CrossRef]
- Planche, T.; Wilcox, M.H. Diagnostic Pitfalls in Clostridium difficile Infection. Infect. Dis. Clin. N. Am. 2015, 29, 63–82. [Google Scholar] [CrossRef]
- Guh, A.Y.; Hatfield, K.M.; Winston, L.G.; Martin, B.; Johnston, H.; Brousseau, G.; Farley, M.M.; Wilson, L.; Perlmutter, R.; Phipps, E.C.; et al. Toxin Enzyme Immunoassays Detect Clostridioides difficile Infection With Greater Severity and Higher Recurrence Rates. Clin. Infect. Dis. 2019, 69, 1667–1674. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, M.R.; Donskey, C.J. Multistep Testing Algorithms for Clostridioides difficile Infection. JAMA 2023, 330, 966–967. [Google Scholar] [CrossRef] [PubMed]
- Erb, S.; Frei, R.; Strandén, A.M.; Dangel, M.; Tschudin-Sutter, S.; Widmer, A.F. Low Sensitivity of Fecal Toxin A/B Enzyme Immunoassay for Diagnosis of Clostridium difficile Infection in Immunocompromised Patients. Clin. Microbiol. Infect. 2015, 21, 998.e9–998.e15. [Google Scholar] [CrossRef] [PubMed]
- Senoh, M.; Kato, H.; Honda, H.; Fukuda, T.; Tagashira, Y.; Horiuchi, H.; Chiba, H.; Suzuki, D.; Hosokawa, N.; Kitazono, H.; et al. Performance of Laboratory Tests for Detection for Clostridioides difficile: A Multicenter Prospective Study in Japan. Anaerobe 2019, 60, 102107. [Google Scholar] [CrossRef]
- Shetty, N.; Wren, M.W.D.; Coen, P.G. The Role of Glutamate Dehydrogenase for the Detection of Clostridium difficile in Faecal Samples: A Meta-Analysis. J. Hosp. Infect. 2011, 77, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Xie, Y.; Xiao, Y. Laboratory Diagnostic Tools for Syphilis: Current Status and Future Prospects. Front. Cell Infect. Microbiol. 2020, 10, 574806. [Google Scholar] [CrossRef] [PubMed]
- Rao, K.; Malani, P.N. Diagnosis and Treatment of Clostridioides difficile Infection in Adults in 2020. JAMA 2020, 323, 1403–1404. [Google Scholar] [CrossRef] [PubMed]
- Dbeibo, L.; Lucky, C.W.; Fadel, W.F.; Sadowski, J.; Beeler, C.; Kelley, K.; Williams, J.; Webb, D.; Kara, A. Two-Step Algorithm-Based Clostridioides difficile Testing as a Tool for Antibiotic Stewardship. Clin. Microbiol. Infect. 2023, 29, 798.e1–798.e4. [Google Scholar] [CrossRef] [PubMed]
- Khuvis, J.; Alsoubani, M.; Mae Rodday, A.; Doron, S. The Impact of Diagnostic Stewardship Interventions on Clostridiodes difficile Test Ordering Practices and Results. Clin. Biochem. 2023, 117, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Gu, T.; Li, W.; Yang, L.-L.; Yang, S.-M.; He, Q.; He, H.-Y.; Sun, D.-L. Systematic Review of Guidelines for the Diagnosis and Treatment of Clostridioides difficile Infection. Front. Cell Infect. Microbiol. 2022, 12, 926482. [Google Scholar] [CrossRef]
- Polage, C.R.; Gyorke, C.E.; Kennedy, M.A.; Leslie, J.L.; Chin, D.L.; Wang, S.; Nguyen, H.H.; Huang, B.; Tang, Y.-W.; Lee, L.W.; et al. Overdiagnosis of Clostridium difficile Infection in the Molecular Test Era. JAMA Intern. Med. 2015, 175, 1792–1801. [Google Scholar] [CrossRef]
- Lutgring, J.D.; McKay, S.L.; Gargis, A.S.; Halpin, A.L.; McDonald, L.C. Are Vancomycin Non-Susceptible Clostridioides difficile Strains Emerging? Clin. Infect. Dis. 2022, 75, 1677–1678. [Google Scholar] [CrossRef]
- Cheknis, A.; Johnson, S.; Chesnel, L.; Petrella, L.; Sambol, S.; Dale, S.E.; Nary, J.; Sears, P.; Citron, D.M.; Goldstein, E.J.C.; et al. Molecular Epidemiology of Clostridioides difficile Strains Recovered from Clinical Trials in the US, Canada and Europe from 2006-2009 to 2012-2015. Anaerobe 2018, 53, 38–42. [Google Scholar] [CrossRef]
- O’Grady, K.; Knight, D.R.; Riley, T.V. Antimicrobial Resistance in Clostridioides difficile. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2459–2478. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.; Lavergne, V.; Skinner, A.M.; Gonzales-Luna, A.J.; Garey, K.W.; Kelly, C.P.; Wilcox, M.H. Clinical Practice Guideline by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA): 2021 Focused Update Guidelines on Management of Clostridioides difficile Infection in Adults. Clin. Infect. Dis. 2021, 73, 755–757. [Google Scholar] [CrossRef]
- Dingsdag, S.A.; Hunter, N. Metronidazole: An Update on Metabolism, Structure-Cytotoxicity and Resistance Mechanisms. J. Antimicrob. Chemother. 2018, 73, 265–279. [Google Scholar] [CrossRef] [PubMed]
- Stogios, P.J.; Savchenko, A. Molecular Mechanisms of Vancomycin Resistance. Protein Sci. 2020, 29, 654–669. [Google Scholar] [CrossRef] [PubMed]
- Matzke, G.R.; Zhanel, G.G.; Guay, D.R. Clinical Pharmacokinetics of Vancomycin. Clin. Pharmacokinet. 1986, 11, 257–282. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Walkty, A.J.; Karlowsky, J.A. Fidaxomicin: A Novel Agent for the Treatment of Clostridium difficile Infection. Can. J. Infect. Dis. Med. Microbiol. 2015, 26, 305–312. [Google Scholar] [CrossRef]
- Cao, X.; Boyaci, H.; Chen, J.; Bao, Y.; Landick, R.; Campbell, E.A. Basis of Narrow-Spectrum Activity of Fidaxomicin on Clostridioides difficile. Nature 2022, 604, 541–545. [Google Scholar] [CrossRef]
- Wolf, J.; Kalocsai, K.; Fortuny, C.; Lazar, S.; Bosis, S.; Korczowski, B.; Petit, A.; Bradford, D.; Croos-Dabrera, R.; Incera, E.; et al. Safety and Efficacy of Fidaxomicin and Vancomycin in Children and Adolescents with Clostridioides difficile Infection: A Phase 3, Multicenter, Randomized, Single-Blind Clinical Trial (SUNSHINE). Clin. Infect. Dis. 2020, 71, 2581–2588. [Google Scholar] [CrossRef]
- Louie, T.J.; Miller, M.A.; Mullane, K.M.; Weiss, K.; Lentnek, A.; Golan, Y.; Gorbach, S.; Sears, P.; Shue, Y.-K. Fidaxomicin versus Vancomycin for Clostridium difficile Infection. N. Engl. J. Med. 2011, 364, 422–431. [Google Scholar] [CrossRef]
- Cornely, O.A.; Crook, D.W.; Esposito, R.; Poirier, A.; Somero, M.S.; Weiss, K.; Sears, P.; Gorbach, S. Fidaxomicin versus Vancomycin for Infection with Clostridium difficile in Europe, Canada, and the USA: A Double-Blind, Non-Inferiority, Randomised Controlled Trial. Lancet Infect. Dis. 2012, 12, 281–289. [Google Scholar] [CrossRef]
- Baunwall, S.M.D.; Lee, M.M.; Eriksen, M.K.; Mullish, B.H.; Marchesi, J.R.; Dahlerup, J.F.; Hvas, C.L. Faecal Microbiota Transplantation for Recurrent Clostridioides difficile Infection: An Updated Systematic Review and Meta-Analysis. EClinicalMedicine 2020, 29–30, 100642. [Google Scholar] [CrossRef]
- Lowy, I.; Molrine, D.C.; Leav, B.A.; Blair, B.M.; Baxter, R.; Gerding, D.N.; Nichol, G.; Thomas, W.D.J.; Leney, M.; Sloan, S.; et al. Treatment with Monoclonal Antibodies against Clostridium difficile Toxins. N. Engl. J. Med. 2010, 362, 197–205. [Google Scholar] [CrossRef]
- Kelly, C.R.; Khoruts, A.; Staley, C.; Sadowsky, M.J.; Abd, M.; Alani, M.; Bakow, B.; Curran, P.; McKenney, J.; Tisch, A.; et al. Effect of Fecal Microbiota Transplantation on Recurrence in Multiply Recurrent Clostridium difficile Infection: A Randomized Trial. Ann. Intern. Med. 2016, 165, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Osman, M.; Budree, S.; Kelly, C.R.; Panchal, P.; Allegretti, J.R.; Kassam, Z. Effectiveness and Safety of Fecal Microbiota Transplantation for Clostridioides difficile Infection: Results From a 5344-Patient Cohort Study. Gastroenterology 2022, 163, 319–322. [Google Scholar] [CrossRef] [PubMed]
- Minkoff, N.Z.; Aslam, S.; Medina, M.; Tanner-Smith, E.E.; Zackular, J.P.; Acra, S.; Nicholson, M.R.; Imdad, A. Fecal Microbiota Transplantation for the Treatment of Recurrent Clostridioides difficile (Clostridium difficile). Cochrane Database Syst. Rev. 2023, 4, CD013871. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.R.; Ihunnah, C.; Fischer, M.; Khoruts, A.; Surawicz, C.; Afzali, A.; Aroniadis, O.; Barto, A.; Borody, T.; Giovanelli, A.; et al. Fecal Microbiota Transplant for Treatment of Clostridium difficile Infection in Immunocompromised Patients. Am. J. Gastroenterol. 2014, 109, 1065–1071. [Google Scholar] [CrossRef]
- Kao, D.; Roach, B.; Silva, M.; Beck, P.; Rioux, K.; Kaplan, G.G.; Chang, H.-J.; Coward, S.; Goodman, K.J.; Xu, H.; et al. Effect of Oral Capsule- vs Colonoscopy-Delivered Fecal Microbiota Transplantation on Recurrent Clostridium difficile Infection: A Randomized Clinical Trial. JAMA 2017, 318, 1985–1993. [Google Scholar] [CrossRef]
- Song, Y.N.; Yang, D.Y.; van Zanten, S.V.; Wong, K.; McArthur, E.; Song, C.Z.; Ianiro, G.; Cammarota, G.; Kelly, C.; Fischer, M.; et al. Fecal Microbiota Transplantation for Severe or Fulminant Clostridioides difficile Infection: Systematic Review and Meta-analysis. J. Can. Assoc. Gastroenterol. 2022, 5, e1–e11. [Google Scholar] [CrossRef]
- The Medical Letter. Live Fecal Microbiota (Rebyota) for Prevention of CDI Recurrence. Med. Lett. Drugs Ther. 2023, 65, 35–36. [Google Scholar] [CrossRef]
- Garey, K.W.; Dubberke, E.R.; Guo, A.; Harvey, A.; Yang, M.; García-Horton, V.; Fillbrunn, M.; Wang, H.; Tillotson, G.S.; Bancke, L.L.; et al. Effect of Fecal Microbiota, Live-Jslm (REBYOTA [RBL]) on Health-Related Quality of Life in Patients With Recurrent Clostridioides difficile Infection: Results From the PUNCH CD3 Clinical Trial. Open Forum Infect. Dis. 2023, 10, ofad383. [Google Scholar] [CrossRef]
- Lee, C.; Louie, T.; Bancke, L.; Guthmueller, B.; Harvey, A.; Feuerstadt, P.; Khanna, S.; Orenstein, R.; Dubberke, E.R. Safety of Fecal Microbiota, Live-Jslm (REBYOTA(TM)) in Individuals with Recurrent Clostridioides difficile Infection: Data from Five Prospective Clinical Trials. Therap Adv. Gastroenterol. 2023, 16, 17562848231174277. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.; Umar, T.P.; Fahner, A.-F.; Gibietis, V. Advancing Therapeutics for Recurrent Clostridioides difficile Infections: An Overview of Vowst’s FDA Approval and Implications. Gut Microbes 2023, 15, 2232137. [Google Scholar] [CrossRef] [PubMed]
- Zellmer, C.; Sater, M.R.A.; Huntley, M.H.; Osman, M.; Olesen, S.W.; Ramakrishna, B. Shiga Toxin-Producing Escherichia coli Transmission via Fecal Microbiota Transplant. Clin. Infect. Dis. 2021, 72, e876–e880. [Google Scholar] [CrossRef] [PubMed]
- Khanna, S.; Kraft, C.S. Fecal Microbiota Transplantation: Tales of Caution. Clin. Infect. Dis. 2021, 72, e881–e882. [Google Scholar] [CrossRef] [PubMed]
- Carlson, P.E.J. Regulatory Considerations for Fecal Microbiota Transplantation Products. Cell Host Microbe 2020, 27, 173–175. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, L.D.; Racine, F.; Xiao, L.; DiNunzio, E.; Hairston, N.; Sheth, P.R.; Murgolo, N.J.; Therien, A.G. Broad Coverage of Genetically Diverse Strains of Clostridium difficile by Actoxumab and Bezlotoxumab Predicted by in Vitro Neutralization and Epitope Modeling. Antimicrob. Agents Chemother. 2015, 59, 1052–1060. [Google Scholar] [CrossRef]
- Gerding, D.N.; Kelly, C.P.; Rahav, G.; Lee, C.; Dubberke, E.R.; Kumar, P.N.; Yacyshyn, B.; Kao, D.; Eves, K.; Ellison, M.C.; et al. Bezlotoxumab for Prevention of Recurrent Clostridium difficile Infection in Patients at Increased Risk for Recurrence. Clin. Infect. Dis. 2018, 67, 649–656. [Google Scholar] [CrossRef]
- Wilcox, M.H.; Gerding, D.N.; Poxton, I.R.; Kelly, C.; Nathan, R.; Birch, T.; Cornely, O.A.; Rahav, G.; Bouza, E.; Lee, C.; et al. Bezlotoxumab for Prevention of Recurrent Clostridium difficile Infection. N. Engl. J. Med. 2017, 376, 305–317. [Google Scholar] [CrossRef]
- Dureja, C.; Olaitan, A.O.; Hurdle, J.G. Mechanisms and Impact of Antimicrobial Resistance in Clostridioides difficile. Curr. Opin. Microbiol. 2022, 66, 63–72. [Google Scholar] [CrossRef]
- Sholeh, M.; Krutova, M.; Forouzesh, M.; Mironov, S.; Sadeghifard, N.; Molaeipour, L.; Maleki, A.; Kouhsari, E. Antimicrobial Resistance in Clostridioides difficile Derived from Humans: A Systematic Review and Meta-Analysis. Antimicrob. Resist. Infect. Control 2020, 9, 158. [Google Scholar] [CrossRef]
- Wickramage, I.; Spigaglia, P.; Sun, X. Mechanisms of Antibiotic Resistance of Clostridioides difficile. J. Antimicrob. Chemother. 2021, 76, 3077–3090. [Google Scholar] [CrossRef] [PubMed]
- Rea, M.C.; Dobson, A.; O’Sullivan, O.; Crispie, F.; Fouhy, F.; Cotter, P.D.; Shanahan, F.; Kiely, B.; Hill, C.; Ross, R.P. Effect of Broad- and Narrow-Spectrum Antimicrobials on Clostridium difficile and Microbial Diversity in a Model of the Distal Colon. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. S1), 4639–4644. [Google Scholar] [CrossRef]
- Freeman, J.; Wilcox, M.H. Antibiotics and Clostridium difficile. Microbes Infect. 1999, 1, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Rafey, A.; Jahan, S.; Farooq, U.; Akhtar, F.; Irshad, M.; Nizamuddin, S.; Parveen, A. Antibiotics Associated With Clostridium difficile Infection. Cureus 2023, 15, e39029. [Google Scholar] [CrossRef] [PubMed]
- McDonald, L.C.; Killgore, G.E.; Thompson, A.; Owens, R.C.J.; Kazakova, S.V.; Sambol, S.P.; Johnson, S.; Gerding, D.N. An Epidemic, Toxin Gene-Variant Strain of Clostridium difficile. N. Engl. J. Med. 2005, 353, 2433–2441. [Google Scholar] [CrossRef] [PubMed]
- Rasko, D.A. Clostridium difficile Healthcare-Associated Epidemics. Nat. Genet. 2013, 45, 6–7. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.P. Can We Identify Patients at High Risk of Recurrent Clostridium difficile Infection? Clin. Microbiol. Infect. 2012, 18 (Suppl. S6), 21–27. [Google Scholar] [CrossRef] [PubMed]
- Madoff, S.E.; Urquiaga, M.; Alonso, C.D.; Kelly, C.P. Prevention of Recurrent Clostridioides difficile Infection: A Systematic Review of Randomized Controlled Trials. Anaerobe 2020, 61, 102098. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Jin, D.; Kim, H.B.; Stratton, C.W.; Wu, B.; Tang, Y.-W.; Sun, X. Update on Antimicrobial Resistance in Clostridium difficile: Resistance Mechanisms and Antimicrobial Susceptibility Testing. J. Clin. Microbiol. 2017, 55, 1998–2008. [Google Scholar] [CrossRef]
- Leeds, J.A.; Sachdeva, M.; Mullin, S.; Barnes, S.W.; Ruzin, A. In Vitro Selection, via Serial Passage, of Clostridium difficile Mutants with Reduced Susceptibility to Fidaxomicin or Vancomycin. J. Antimicrob. Chemother. 2014, 69, 41–44. [Google Scholar] [CrossRef]
- Müller, M. Mode of Action of Metronidazole on Anaerobic Bacteria and Protozoa. Surgery 1983, 93, 165–171. [Google Scholar] [PubMed]
- Dai, Y.-Y.; Qin, C.; Huang, G.-R.; Qin, Y.-C.; Huang, Y.-Y.; Huang, Y.-Q.; Zhao, L.-J. Linolenic Acid-Metronidazole: A Compound Relieving Drug Resistance and Inhibiting Helicobacter pylori. Antimicrob. Agents Chemother. 2022, 66, e0007322. [Google Scholar] [CrossRef]
- Sigeti, J.S.; Guiney, D.G.J.; Davis, C.E. Mechanism of Action of Metronidazole on Bacteroides fragilis. J. Infect. Dis. 1983, 148, 1083–1089. [Google Scholar] [CrossRef]
- Zar, F.A.; Bakkanagari, S.R.; Moorthi, K.M.L.S.T.; Davis, M.B. A Comparison of Vancomycin and Metronidazole for the Treatment of Clostridium difficile-Associated Diarrhea, Stratified by Disease Severity. Clin. Infect. Dis. 2007, 45, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.; Louie, T.J.; Gerding, D.N.; Cornely, O.A.; Chasan-Taber, S.; Fitts, D.; Gelone, S.P.; Broom, C.; Davidson, D.M. Vancomycin, Metronidazole, or Tolevamer for Clostridium difficile Infection: Results from Two Multinational, Randomized, Controlled Trials. Clin. Infect. Dis. 2014, 59, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Alauzet, C.; Lozniewski, A.; Marchandin, H. Metronidazole Resistance and Nim Genes in Anaerobes: A Review. Anaerobe 2019, 55, 40–53. [Google Scholar] [CrossRef] [PubMed]
- Boekhoud, I.M.; Hornung, B.V.H.; Sevilla, E.; Harmanus, C.; Bos-Sanders, I.M.J.G.; Terveer, E.M.; Bolea, R.; Corver, J.; Kuijper, E.J.; Smits, W.K. Plasmid-Mediated Metronidazole Resistance in Clostridioides difficile. Nat. Commun. 2020, 11, 598. [Google Scholar] [CrossRef] [PubMed]
- Cherian, P.T.; Wu, X.; Yang, L.; Scarborough, J.S.; Singh, A.P.; Alam, Z.A.; Lee, R.E.; Hurdle, J.G. Gastrointestinal Localization of Metronidazole by a Lactobacilli-Inspired Tetramic Acid Motif Improves Treatment Outcomes in the Hamster Model of Clostridium difficile Infection. J. Antimicrob. Chemother. 2015, 70, 3061–3069. [Google Scholar] [CrossRef]
- Appaneal, H.J.; Caffrey, A.R.; LaPlante, K.L. What Is the Role for Metronidazole in the Treatment of Clostridium difficile Infection? Results From a National Cohort Study of Veterans With Initial Mild Disease. Clin. Infect. Dis. 2019, 69, 1288–1295. [Google Scholar] [CrossRef]
- Deshpande, A.; Wu, X.; Huo, W.; Palmer, K.L.; Hurdle, J.G. Chromosomal Resistance to Metronidazole in Clostridioides difficile Can Be Mediated by Epistasis between Iron Homeostasis and Oxidoreductases. Antimicrob. Agents Chemother. 2020, 64, e00415-20. [Google Scholar] [CrossRef]
- Chong, P.M.; Lynch, T.; McCorrister, S.; Kibsey, P.; Miller, M.; Gravel, D.; Westmacott, G.R.; Mulvey, M.R. Proteomic Analysis of a NAP1 Clostridium difficile Clinical Isolate Resistant to Metronidazole. PLoS ONE 2014, 9, e82622. [Google Scholar] [CrossRef]
- Troxell, B.; Hassan, H.M. Transcriptional Regulation by Ferric Uptake Regulator (Fur) in Pathogenic Bacteria. Front. Cell Infect. Microbiol. 2013, 3, 59. [Google Scholar] [CrossRef] [PubMed]
- Lynch, T.; Chong, P.; Zhang, J.; Hizon, R.; Du, T.; Graham, M.R.; Beniac, D.R.; Booth, T.F.; Kibsey, P.; Miller, M.; et al. Characterization of a Stable, Metronidazole-Resistant Clostridium difficile Clinical Isolate. PLoS ONE 2013, 8, e53757. [Google Scholar] [CrossRef]
- Dione, N.; Khelaifia, S.; Lagier, J.-C.; Raoult, D. The Aerobic Activity of Metronidazole against Anaerobic Bacteria. Int. J. Antimicrob. Agents 2015, 45, 537–540. [Google Scholar] [CrossRef] [PubMed]
- Boekhoud, I.M.; Sidorov, I.; Nooij, S.; Harmanus, C.; Bos-Sanders, I.M.J.G.; Viprey, V.; Spittal, W.; Clark, E.; Davies, K.; Freeman, J.; et al. Haem Is Crucial for Medium-Dependent Metronidazole Resistance in Clinical Isolates of Clostridioides difficile. J. Antimicrob. Chemother. 2021, 76, 1731–1740. [Google Scholar] [CrossRef]
- Olaitan, A.O.; Dureja, C.; Youngblom, M.A.; Topf, M.A.; Shen, W.-J.; Gonzales-Luna, A.J.; Deshpande, A.; Hevener, K.E.; Freeman, J.; Wilcox, M.H.; et al. Decoding a Cryptic Mechanism of Metronidazole Resistance among Globally Disseminated Fluoroquinolone-Resistant Clostridioides difficile. Nat. Commun. 2023, 14, 4130. [Google Scholar] [CrossRef]
- Shen, W.-J.; Deshpande, A.; Hevener, K.E.; Endres, B.T.; Garey, K.W.; Palmer, K.L.; Hurdle, J.G. Constitutive Expression of the Cryptic vanGCd Operon Promotes Vancomycin Resistance in Clostridioides difficile Clinical Isolates. J. Antimicrob. Chemother. 2020, 75, 859–867. [Google Scholar] [CrossRef] [PubMed]
- Snydman, D.R.; McDermott, L.A.; Jacobus, N.V.; Thorpe, C.; Stone, S.; Jenkins, S.G.; Goldstein, E.J.C.; Patel, R.; Forbes, B.A.; Mirrett, S.; et al. U.S.-Based National Sentinel Surveillance Study for the Epidemiology of Clostridium difficile-Associated Diarrheal Isolates and Their Susceptibility to Fidaxomicin. Antimicrob. Agents Chemother. 2015, 59, 6437–6443. [Google Scholar] [CrossRef]
- Ammam, F.; Meziane-Cherif, D.; Mengin-Lecreulx, D.; Blanot, D.; Patin, D.; Boneca, I.G.; Courvalin, P.; Lambert, T.; Candela, T. The Functional vanGCd Cluster of Clostridium difficile Does Not Confer Vancomycin Resistance. Mol. Microbiol. 2013, 89, 612–625. [Google Scholar] [CrossRef]
- Courvalin, P. Vancomycin Resistance in Gram-Positive Cocci. Clin. Infect. Dis. 2006, 42 (Suppl. S1), S25–S34. [Google Scholar] [CrossRef]
- Gardete, S.; Tomasz, A. Mechanisms of Vancomycin Resistance in Staphylococcus aureus. J. Clin. Investig. 2014, 124, 2836–2840. [Google Scholar] [CrossRef]
- Watanakunakorn, C. Mode of Action and In-Vitro Activity of Vancomycin. J. Antimicrob. Chemother. 1984, 14, 7–18. [Google Scholar] [CrossRef]
- Pu, M.; Cho, J.M.; Cunningham, S.A.; Behera, G.K.; Becker, S.; Amjad, T.; Greenwood-Quaintance, K.E.; Mendes-Soares, H.; Jones-Hall, Y.; Jeraldo, P.R.; et al. Plasmid Acquisition Alters Vancomycin Susceptibility in Clostridioides difficile. Gastroenterology 2021, 160, 941–945.e8. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, J.W.; Matthews, S.J. Fidaxomicin: The Newest Addition to the Armamentarium against Clostridium difficile Infections. Clin. Ther. 2012, 34, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Högenauer, C.; Mahida, Y.; Stallmach, A.; Marteau, P.; Rydzewska, G.; Ivashkin, V.; Gargalianos-Kakolyris, P.; Michon, I.; Adomakoh, N.; Georgopali, A.; et al. Pharmacokinetics and Safety of Fidaxomicin in Patients with Inflammatory Bowel Disease and Clostridium difficile Infection: An Open-Label Phase IIIb/IV Study (PROFILE). J. Antimicrob. Chemother. 2018, 73, 3430–3441. [Google Scholar] [CrossRef] [PubMed]
- Venugopal, A.A.; Johnson, S. Fidaxomicin: A Novel Macrocyclic Antibiotic Approved for Treatment of Clostridium difficile Infection. Clin. Infect. Dis. 2012, 54, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, E.J.C.; Citron, D.M.; Sears, P.; Babakhani, F.; Sambol, S.P.; Gerding, D.N. Comparative Susceptibilities to Fidaxomicin (OPT-80) of Isolates Collected at Baseline, Recurrence, and Failure from Patients in Two Phase III Trials of Fidaxomicin against Clostridium difficile Infection. Antimicrob. Agents Chemother. 2011, 55, 5194–5199. [Google Scholar] [CrossRef]
- Dang, U.T.; Zamora, I.; Hevener, K.E.; Adhikari, S.; Wu, X.; Hurdle, J.G. Rifamycin Resistance in Clostridium difficile Is Generally Associated with a Low Fitness Burden. Antimicrob. Agents Chemother. 2016, 60, 5604–5607. [Google Scholar] [CrossRef]
- Floss, H.G.; Yu, T.-W. Rifamycin-Mode of Action, Resistance, and Biosynthesis. Chem. Rev. 2005, 105, 621–632. [Google Scholar] [CrossRef]
- O’Connor, J.R.; Galang, M.A.; Sambol, S.P.; Hecht, D.W.; Vedantam, G.; Gerding, D.N.; Johnson, S. Rifampin and Rifaximin Resistance in Clinical Isolates of Clostridium difficile. Antimicrob. Agents Chemother. 2008, 52, 2813–2817. [Google Scholar] [CrossRef] [PubMed]
- Carman, R.J.; Boone, J.H.; Grover, H.; Wickham, K.N.; Chen, L. In Vivo Selection of Rifamycin-Resistant Clostridium difficile during Rifaximin Therapy. Antimicrob. Agents Chemother. 2012, 56, 6019–6020. [Google Scholar] [CrossRef] [PubMed]
- Curry, S.R.; Marsh, J.W.; Shutt, K.A.; Muto, C.A.; O’Leary, M.M.; Saul, M.I.; Pasculle, A.W.; Harrison, L.H. High Frequency of Rifampin Resistance Identified in an Epidemic Clostridium difficile Clone from a Large Teaching Hospital. Clin. Infect. Dis. 2009, 48, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Christensen, S.; Bouguermouh, S.; Ilangovan, K.; Pride, M.W.; Webber, C.; Lockhart, S.P.; Shah, R.; Kitchin, N.; Lamberth, E.; Zhang, H.; et al. A Phase 3 Study Evaluating the Lot Consistency, Immunogenicity, Safety, and Tolerability of a Clostridioides difficile Vaccine in Healthy Adults 65 to 85 Years of Age. Vaccine 2023, 41, 7548–7559. [Google Scholar] [CrossRef] [PubMed]
- Heuler, J.; Chandra, H.; Sun, X. Mucosal Vaccination Strategies against Clostridioides difficile Infection. Vaccines 2023, 11, 887. [Google Scholar] [CrossRef]
- Razim, A.; Górska, S.; Gamian, A. Non-Toxin-Based Clostridioides difficile Vaccination Approaches. Pathogens 2023, 12, 235. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markantonis, J.E.; Fallon, J.T.; Madan, R.; Alam, M.Z. Clostridioides difficile Infection: Diagnosis and Treatment Challenges. Pathogens 2024, 13, 118. https://doi.org/10.3390/pathogens13020118
Markantonis JE, Fallon JT, Madan R, Alam MZ. Clostridioides difficile Infection: Diagnosis and Treatment Challenges. Pathogens. 2024; 13(2):118. https://doi.org/10.3390/pathogens13020118
Chicago/Turabian StyleMarkantonis, John E., John T. Fallon, Rajat Madan, and Md Zahidul Alam. 2024. "Clostridioides difficile Infection: Diagnosis and Treatment Challenges" Pathogens 13, no. 2: 118. https://doi.org/10.3390/pathogens13020118
APA StyleMarkantonis, J. E., Fallon, J. T., Madan, R., & Alam, M. Z. (2024). Clostridioides difficile Infection: Diagnosis and Treatment Challenges. Pathogens, 13(2), 118. https://doi.org/10.3390/pathogens13020118