Next Article in Journal
Antifungal Resistance in Cryptococcal Infections
Previous Article in Journal
The Past, Present, and Future in the Diagnosis of a Neglected Sexually Transmitted Infection: Trichomoniasis
Previous Article in Special Issue
Herpesviruses and SARS-CoV-2: Viral Association with Oral Inflammatory Diseases
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Influenza Virus Host Restriction Factors: The ISGs and Non-ISGs

Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
Pathogens 2024, 13(2), 127; https://doi.org/10.3390/pathogens13020127
Submission received: 19 December 2023 / Revised: 18 January 2024 / Accepted: 26 January 2024 / Published: 29 January 2024
(This article belongs to the Special Issue Host-Virus Interactions in Viral Infectious Diseases)

Abstract

:
Influenza virus has been one of the most prevalent and researched viruses globally. Consequently, there is ample information available about influenza virus lifecycle and pathogenesis. However, there is plenty yet to be known about the determinants of influenza virus pathogenesis and disease severity. Influenza virus exploits host factors to promote each step of its lifecycle. In turn, the host deploys antiviral or restriction factors that inhibit or restrict the influenza virus lifecycle at each of those steps. Two broad categories of host restriction factors can exist in virus-infected cells: (1) encoded by the interferon-stimulated genes (ISGs) and (2) encoded by the constitutively expressed genes that are not stimulated by interferons (non-ISGs). There are hundreds of ISGs known, and many, e.g., Mx, IFITMs, and TRIMs, have been characterized to restrict influenza virus infection at different stages of its lifecycle by (1) blocking viral entry or progeny release, (2) sequestering or degrading viral components and interfering with viral synthesis and assembly, or (3) bolstering host innate defenses. Also, many non-ISGs, e.g., cyclophilins, ncRNAs, and HDACs, have been identified and characterized to restrict influenza virus infection at different lifecycle stages by similar mechanisms. This review provides an overview of those ISGs and non-ISGs and how the influenza virus escapes the restriction imposed by them and aims to improve our understanding of the host restriction mechanisms of the influenza virus.

1. Introduction

The influenza virus is an obligate intracellular pathogen and infects various mammalian and avian species. In humans, the influenza virus causes an acute febrile respiratory disease, influenza, which is commonly known as the ‘flu’. Influenza virus exists in four types: A, B, C, and D. Influenza A virus is the most significant and researched among four types because it infects both mammalian and avian species and causes recurring seasonal epidemics, occasional pandemics, and zoonotic outbreaks. An influenza A virus particle possesses a lipid bilayer envelope, a matrix protein 1 (M1) skeleton underlying the envelope, and a core of eight viral ribonucleoprotein (vRNPs) complexes. The envelope harbors surface antigens, hemagglutinin (HA) and neuraminidase (NA), and an ion channel, matrix protein 2 (M2). The antigenicity of HA and NA glycoproteins continues to evolve due to genetic evolution; hence, influenza A viruses are further subtyped as, e.g., H1N1 and H5N1, based on their HA and/or NA properties. Each vRNP complex is composed of nucleoprotein (NP), three RNA polymerase subunits: polymerase acidic (PA), polymerase basic 1 (PB1), and polymerase basic 2 (PB2), and one of the eight single-stranded, negative-sense RNA genome segments: HA, M, NA, NP, NS, PA, PB1, or PB2 [1].
Influenza virus targets the epithelial cells of the respiratory tract (in mammals) or gastrointestinal tract (in waterfowl) to initiate the infection. For this, influenza virus particle attaches to the host cell by binding the receptor, α-2.6-linked sialic acids (in humans), or α-2.3-linked sialic acids (in avian sp.) through HA. Subsequently, the virus particle is internalized to the host cell, mainly by endocytosis. Through the combined action of low endosomal pH, viral ion channel M2, host proteases, and other factors, the viral envelope fuses with the endosomal membrane, and eight vRNPs are released from the endosomes into the cytoplasm [2,3]. The vRNPs are transported through the cytoplasm and imported into the nucleus, where the viral RNA segment in each vRNP is transcribed and replicated into viral mRNA and viral RNA, respectively. In addition to viral NPs and RNA polymerase subunits (PA, PB1, PB2), various host factors facilitate viral transcription and replication [3]. Then, mature viral mRNAs are exported to the cytoplasm for translation. The viral proteins, HA, M2, and NA, are trafficked to the plasma membrane, whereas the NP, M1, PA, PA-X, PB1, PB2, NS1 (non-structural 1), and nuclear export protein (NEP, formerly known as NS2) are transported to the nucleus. The vRNPs are formed in the nucleus and then exported off the nucleus and trafficked through the cytoplasm to the plasma membrane. The virus assembly occurs at the plasma membrane, and viral progeny is released by budding.
A variety of host factors facilitate and restrict the influenza virus lifecycle at each stage [3]. The host factors that restrict the infection are called host restriction factors or antiviral factors and, broadly, can be of two types: (1) encoded by the interferon-stimulated genes (ISGs) and (2) encoded by the genes that are constitutively expressed or are not stimulated by interferons (non-ISGs). Many host restriction factors in both categories have been identified, some through the latest genetic techniques, such as RNA interference and CRISPR-Cas9 (Supplementary Table S1), and characterized to restrict influenza virus infection. This review compiles those host restriction factors and summarizes their infection restriction mechanisms. Also, this review identifies any strategies the influenza virus employs to escape the restriction imposed by host restriction factors.

2. ISGs

The expression of ISGs, as the name suggests, is induced by interferons. Interferons are the first line of defense molecules produced by host cells after sensing the virus infection through pattern recognition receptors. The existence of ISGs was first detected in the later part of the 20th century [4,5]. Since then, several hundreds of ISGs have been identified [6] and characterized to inhibit the infection of many viruses [7]. Likewise, many ISGs, encoding both proteins and non-coding RNAs (ncRNAs), have been identified to express in response to the influenza virus infection and restrict its infection at different stages of the viral lifecycle. Table 1 summarizes the individual ISGs known to restrict influenza virus infection at different stages of the lifecycle with their antiviral targets.

2.1. Mx Proteins

The Mx (myxovirus) gene encoding an ~75 kDa protein was the first ISG to be discovered to confer resistance to influenza virus infection [8,9,10,11,12]. Except for chickens [13,14,15,16], Mx proteins in the majority of influenza virus hosts, e.g., humans [17], pigs [18,19], and horses [20], exhibit antiviral activity. Mx proteins are dynamin-like GTPases [21,22,23], which oligomerize into ring-like structures [24,25,26,27,28] and target influenza virus vRNPs to exert their antiviral function [29,30]. Human Mx protein interacts with viral NP and PB2 to sense and sequester the incoming vRNPs in the cytoplasm and inhibit their nuclear import and subsequent viral RNA transcription and replication [20,29,30,31,32,33]. Human Mx protein is a barrier to the zoonotic transmission of avian influenza viruses and recently discovered bat influenza viruses to humans [34,35,36,37,38,39]. To escape this barrier, avian influenza viruses acquire human-adaptive mutations in their NPs or increase their RNA polymerase activity or vRNP nuclear export [35,38,39,40,41,42,43]. Some influenza viruses can also escape this barrier in humans and animals carrying naturally occurring Mx allele variants, which either lack or exhibit reduced antiviral activity [18,44,45,46,47,48].

2.2. IFITM Proteins

The IFITM (interferon-inducible transmembrane) genes encoding 14–16 kDa proteins were identified as ISGs around the same time as the Mx gene [49,50,51,52]. However, the antiviral function of IFITM proteins 1, 2, and 3 during influenza virus infection was discovered much later in a genomic screen [53]. IFITM proteins are broad host restriction factors of the influenza virus, as IFITMs from multiple host tissues and species (including bacteria [54]) are capable of inhibiting influenza virus infection [55,56,57,58,59,60,61,62,63,64,65,66,67,68,69]. IFITMs 1, 2, and 3 are closely related proteins and share 70–90% homology, and all three inhibit influenza virus infection by inhibiting its entry to the host cells [53]. IFITM3 is a type II transmembrane protein and localizes to the endosomes and lysosomes, where it interacts with influenza virus HA and prevents the fusion of viral envelope with the endosomal membrane by interfering with lipid homeostasis, consequently preventing vRNP release into the cytoplasm [70,71,72,73,74,75,76,77,78,79,80,81].
The antiviral activity of IFITM3 is regulated by posttranslational modifications like palmitoylation, ubiquitination, and methylation [61,82,83,84,85,86,87,88]. Specifically, the palmitoylation of IFITM3 promotes its antiviral activity by enhancing its membrane affinity and endosomal localization [61,82,83,84,89]. In contrast, the ubiquitination of IFITM3 reduces its antiviral activity by decreasing its stability and localization to the endosomes [83,87]. Also, the methylation of IFITM3 reduces its antiviral activity and influenza disease severity [85,88]. The phosphorylation of IFITM3 reduces its ubiquitination and may indirectly promote its antiviral activity [86]. These findings indicate that the influenza virus potentially employs the ubiquitin ligases, e.g., NEDD4 [87], and methyltransferases, e.g., SET7 [88], to antagonize the antiviral function of IFITM3 and escape IFITM3 restriction. Furthermore, avian influenza A virus subtypes H5N1 and H7N9 may escape IFITM3 restriction in cells with inefficient endosomal acidification [90].
Influenza virus may also escape IFITM3 restriction and cause severe disease in humans carrying single nucleotide polymorphisms (SNPs) in the IFITM3 gene [56,91,92]. The IFITM3 allele carrying SNP rs12252-C encodes an N-terminally truncated IFITM3 variant, which is incapable of localizing to the endosomes and allows the influenza virus to escape IFITM3 restriction [56,73,93,94]. Consequently, rs12252-C has been associated with severe influenza disease [56]. However, the evidence of this association has been found in studies involving the cohorts mainly from Asian ethnicity [92,95,96,97,98,99,100,101,102] and not from other ethnicities [103,104,105,106,107,108,109]. Further, the SNPs in IFITM1 are not associated with influenza disease severity [110].

2.3. TRIM Proteins

TRIM (tripartite motif) proteins are a large family of proteins that comprise a conserved architecture known as RBCC (a RING finger domain, one to two B-box domains, a coiled coil domain, and a variable C-terminus) [111,112]. Among TRIMs, TRIM19, also known as promyelocytic leukemia (PML) protein, was the first to be identified as an ISG [113]. Soon after, it was discovered to inhibit influenza virus infection [114]. Now, over 80 TRIMs are known [112], of which at least 27 TRIMs have been identified as ISGs [115]. In addition to TRIM19, TRIMs 14, 21, 22, 25, 35, and 56 have been shown to inhibit influenza virus infection [116,117,118,119,120,121,122,123]. TRIMs are E3 ubiquitin ligases and are part of the ubiquitin–proteasome system, which degrades proteins. Hence, most TRIMs exert their antiviral function by targeting the viral proteins for degradation. Specifically, TRIM14 [119] and TRIM22 [116] target the NP, TRIM21 targets the M1 [124], and TRIM35 targets the PB2 [120] for ubiquitin ligase-dependent degradation. However, the NP of some influenza A virus H1N1 subtypes is resistant to TRIM22-mediated restriction [125]. TRIM25 [118,122] and TRIM56 [117] interfere with viral RNA synthesis or stability though in an E3 ligase-independent manner. Also, TRIM25 has been reported to inhibit influenza virus infection by facilitating its RIG-I-mediated host sensing in a ubiquitin ligase-dependent manner [126,127,128,129]. However, influenza virus antagonizes the latter function of TRIM25 via NS1 protein, which is the main influenza virus virulence factor that antagonizes host defenses. NS1 binds TRIM25 and interferes with its ubiquitin ligase activity [126,127,128,129,130].

2.4. OAS Proteins

OAS (2′,5′-oligoadenylate synthetase) proteins 1, 2, and 3, and OAS-like (OASL) protein were among the first ISGs to be discovered [131,132]. OAS 1, 2, and 3 are activated by sensing the viral RNA and then convert the ATP to 2′,5′-oligoadenylate [132], which, in turn, activates the ribonuclease (RNase) L [133]. Subsequently, RNase L restricts influenza virus infection by degrading the viral RNA [134,135,136]. However, OASL restricts influenza virus infection in an RNase L-independent manner [137]. In turn, influenza virus escapes the OAS-mediated restriction via NS1, which competes with OAS proteins for viral RNA binding [134]. Furthermore, the influenza virus may escape this restriction in humans carrying the SNP rs10774671 in OAS1 gene [138].

2.5. IFIT Proteins

The IFIT (interferon-induced proteins with tetratricopeptide repeats) family has four proteins, IFITs 1, 2, 3, and 5 (or ISGs 56, 54, 60, and 58, respectively), which have been characterized in humans [139]. IFIT1 is the prototypic member of the family and was the first to be identified as an ISG in the IFIT family [140,141], followed by the rest [139]. The indication of an antiviral function of human IFITs 1, 2, and 3 during influenza virus infection was first discovered in a proteomic screen [142]. Later, it was demonstrated that human IFITs 1, 2, and 3 and avian IFIT5 exhibit antiviral properties during influenza virus infection [143,144,145,146,147]. The human and chicken IFITs exert their antiviral function by sequestering the viral RNA by binding its 5′-triphosphate group, called PPP-RNA [142,145,148], whereas the duck IFIT sequesters viral NPs [144]. However, Pinto et al. found no antiviral activity of human IFIT1 during influenza virus function [149], while Tran et al. found influenza virus rather exploiting the RNA binding property of IFIT2 to promote viral mRNA translation [150].

2.6. hGBP Proteins

hGBPs (human guanylate-binding proteins), like Mx proteins, belong to the GTPase family [151,152], and hGBPs -1, -2, -3, and -5 have been shown to inhibit influenza virus infection [153,154,155,156]. hGBP-3 exerts its antiviral function by targeting the viral RNA polymerase activity [153], whereas hGBP-2 and hGBP-5 target the host furin protease, which primes the HA of the highly pathogenic influenza A viruses, like H5N1 subtype, for infection [155]. Nevertheless, influenza virus NS1 antagonizes hGBP-1 by inhibiting its GTPase activity [156].

2.7. Tetherin

Tetherin, also known as BST-2/CD317/HN1.24, is a GPI-anchored transmembrane protein [157] and restricts virus infection by tethering the viral progeny to the cell surface. The antiviral role of tetherin during influenza virus infection is inconclusive and has been controversial. However, tetherin expression is induced in influenza virus-infected cells in an interferon-dependent manner [158]. Human tetherin was observed to effectively tether the budding influenza virus-like particles to the plasma membrane [159,160,161,162]; however, the same was not observed with live influenza virus particles [158,159,163] or tetherin from other host species [164,165]. In other studies, tetherin was observed to inhibit the influenza virus release [161,162,166,167], but this restriction was either NA-dependent [161,167] or countered by M2 protein, which facilitated the downregulation of tetherin on the cell surface [162].

2.8. ISG15

The ISG15 gene [168] encodes a 15-kDa protein [169], which inhibits influenza virus infection [170] by targeting critical viral [171,172] and host [173] proteins. ISG15 is a ubiquitin-like protein [169] and is conjugated to target proteins by sequential action of several conjugation enzymes, some of which are also ISGs [174,175,176,177,178,179]. This process is also called ‘ISGylation’. ISG15 ISGylates influenza virus NS1 protein and cripples its ability to perform various antagonistic functions [171,172]. Further, the ISGylation of host protein Tsg101 inhibits the trafficking of viral HA to the plasma membrane, the site of influenza virus assembly [173].

2.9. PKR

PKR (protein kinase R) is a dsRNA-activated serine/threonine protein kinase and phosphorylates the eukaryotic translation initiation factor 2 (eIF-2α); this leads to the inhibition of the initiation of global protein synthesis [180]. This leads to the inhibition of viral protein synthesis too, and consequently, the influenza virus infection [181,182]. Influenza virus counteracts this restriction through NS1, which binds to dsRNA and blocks PKR activation [182,183,184]. Influenza virus NP also can block PKR activation by activating the cellular PKR inhibitor, P58 [185].

2.10. Other Proteins

CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1) expression was first shown to be induced by interferon-gamma [186]. CEACAM1 inhibits influenza virus infection by suppressing the mTOR (mammalian target of rapamycin) activity, consequently inhibiting the global protein synthesis in infected cells [187].
IFI16 (interferon γ-inducible 16) is a ~80-kDa nucleic acid-binding protein [188,189]. It is a PYHIN (pyrin and hematopoietic interferon-inducible nuclear (HIN) domain) family protein and was initially identified as an intracellular DNA sensor [190]. Recently, IFI16 has been discovered to inhibit influenza virus infection by sensing the viral RNA and promoting the RIG-I-mediated innate antiviral response [191,192].
ISG20 (interferon-stimulated gene 20), as the name suggests, is a 20-kDa protein with 3′ to 5′ exonuclease activity that is specific for single-stranded RNA [193,194]. ISG20 inhibits influenza virus infection by interfering with viral RNA transcription and replication [195,196].
MOV10 (Moloney leukemia virus 10) is a member of the RNA helicase superfamily [197], and its expression can be stimulated by interferons [7]. MOV10 inhibits influenza virus infection by binding to NP and sequestering the incoming vRNPs in the cytoplasm, consequently inhibiting their nuclear import [198,199,200]. However, the antiviral function of MOV10 is independent of its RNA helicase activity [199,200].
MUC1 (mucin 1) is a member of mucins, a family of highly glycosylated proteins that are expressed on the surface of respiratory epithelial cells, which are the target of influenza virus infection. MUC1 potentially acts as a receptor decoy and inhibits influenza virus infection by binding to virus particles and blocking their attachment to target cells [201,202,203].
NCOA7 (nuclear receptor coactivator 7) expression is induced by the interferon-beta [204]. NCOA7 inhibits influenza virus infection by inhibiting the fusion of the viral envelope with the endosomal membrane during entry [205].
p21 is a cyclin-dependent kinase inhibitor and inhibits influenza virus infection by interfering with viral RNA polymerase activity [206].
Serpin 1 or plasminogen activator inhibitor 1 (PAI-1) inhibits influenza virus infection by neutralizing host proteases, like trypsin, and preventing the cleavage of HA, which is required for influenza virus entry [207]. However, influenza virus may escape this restriction in humans carrying the naturally occurring SNP rs6092 in serpin 1 gene [207].
SERTAD3 (SERTA domain containing 3), also called RBT1 (replication protein A binding transactivator 1), is one of the SERTA family transcription factors, and its expression is induced by interferons [208]. SERTAD3 inhibits influenza virus infection by disrupting the formation of the viral RNA polymerase complex [208].
SLFN11 and SLFN14 are Schlafen family proteins and possess an RNA helicase domain [209]. SLFN11 and SLFN14 expression is induced by interferons, and both inhibit influenza virus infection by contributing to host innate defenses [210,211].
SPOCK2 (SPARC/osteonectin CWCV and Kazal-like domains 2) or testican 2 is a secreted proteoglycan, and it inhibits influenza virus infection by blocking the attachment of virus particles to the cell surface [212].
RABGAP1L (RAB GTPase-activating protein 1-like) or TBC1D18 (Tre2/Bub2/Cdc16 (TBC)-domain-containing 18) protein restricts influenza virus infection by disrupting the endosome function hence virus entry [213].
Viperin (virus inhibitory protein, endoplasmic reticulum-associated, interferon-inducible) protein [214], also called RSAD2, inhibits influenza virus infection by disrupting the lipid rafts on the plasma membrane and inhibiting the viral progeny release [215,216].
ZAP (zinc finger antiviral) or ZC3HAV1 (Zinc finger CCCH-type antiviral 1) protein exists in two forms, short (ZAPS) and long (ZAPL), and both forms exhibit anti-influenza virus properties [217,218,219]. The ZAPS exerts its antiviral function by promoting the degradation of viral mRNA but is antagonized by the NS1, which competes with ZAPS for viral mRNA binding [218]. Whereas ZAPL promotes the degradation of viral PA and PB2 and is antagonized by viral PB1, which binds ZAPL and displaces PA and PB2 [217].

2.11. ncRNAs

Much of the human genome is transcribed into non-coding RNAs (ncRNAs), which do not translate into a protein. Based on their length, these ncRNAs are called microRNAs or miRNAs (~22 nucleotides), small-interfering RNAs or siRNAs (21–25 nucleotides), piwi-related RNAs or piRNAs (24–33 nucleotides), vault RNAs or vtRNAs (80–150 nucleotides), or long non-coding RNAs or lncRNAs (>200 nucleotides). Further, some lncRNAs exist as covalently closed circular RNAs or circRNAs. Many ncRNAs are upregulated in response to influenza virus infection and inhibit infection by targeting the viral proteins and critical host proteins [220].
lncRNAs are the prominent form of ncRNAs that have been identified to be upregulated in response to influenza virus infection or interferon treatment [221,222,223,224,225,226,227,228]. These lncRNAs inhibit influenza virus infection primarily by strengthening the antiviral state in infected cells through various mechanisms, e.g., stabilization of the RIG-I–TRIM25 complex for host sensing of the influenza virus [222], epigenetic modifications of the regulatory regions of innate response genes [225,227], and manipulation of the regulators (including miRNAs) of interferon signaling [221,223,226,228].
Also, circRNAs, circVAMP3, and AIVRs are upregulated in response to influenza virus infection and restrict the infection by different mechanisms [229,230]. The circVAMP3 acts as a decoy to viral NP and NS1 and interferes with their function [230], while the AIVR sequesters a microRNA, which degrades an enhancer of the interferon production [229].
In addition, the miRNAs, miR-101, miR-485, ssc-miR-221-3p, and ssc-miR-222, have been identified to be upregulated in response to influenza virus infection and inhibit infection by distinct mechanisms [231,232,233]. The miR-101, like ISG CEACAM1 [187], inhibits influenza virus infection by targeting the mTOR pathway [232], whereas miR-485 targets host RIG-I and viral PB1 and reduces their mRNA levels [231]. Further, swine ssc-miR-221-3p and ssc-miR-222 may restrict the interspecies transmission of avian influenza viruses to pigs by targeting their viral RNA [233].

3. Non-ISGs

Host proteins encoded by the constitutively expressed genes (called non-ISGs) also restrict influenza virus infection. The majority of these non-ISGs have been identified either through co-immunoprecipitation followed by mass spectrometry analyses or yeast-two hybrid, RNA interference, and CRISPR-Cas genetic screens. The non-ISGs known to restrict influenza virus infection at different stages of the lifecycle and their antiviral targets are summarized in Table 2.

3.1. Cyclophilins

Cyclophilins are ubiquitously present peptidyl-prolyl cis-trans isomerases, which chaperon the folding of proteins [234]. Multiple cyclophilins are known, and cyclophilins A, D, and E have been discovered to inhibit influenza virus infection [235,236,237,238,239]. Cyclophilin A exerts its antiviral function by targeting and degrading the M1 protein [235,236,237,240]. Also, cyclophilin A promotes the RIG-I-mediated sensing of the influenza virus [241]. Cyclophilin E interacts with NP and interferes with the formation of the vRNP complex [242], whereas cyclophilin D helps increase influenza disease tolerance [239].

3.2. TRIM Proteins

Some TRIMs, e.g., TRIM16, 32, and 41, are also non-ISGs, but, like the ISG TRIMs, they inhibit influenza virus infection in a ubiquitin ligase-dependent manner [243,244,245]. TRIM32 and TRIM41 restrict influenza virus infection by ubiquitinating and degrading the PB1 [243] and NP [244], respectively, whereas TRIM16 ubiquitinates nuclear factor erythroid 2-related factor 2 (NRF2) and reduces the oxidative stress in infected cells [245].

3.3. DEAD-Box RNA Helicases

DDX3, DDX21, and DDX30 belong to the DEAD-box RNA helicase family and inhibit influenza virus infection by three different mechanisms [246,247,248,249]. DDX3 promotes stress granule formation and activates the NLRP3 inflammasome [247,249]. DDX21 binds PB1 and interferes with the RNA polymerase activity, whereas DDX30 binds NS1. In turn, influenza virus counteracts the DDX3- and DDX21-mediated restriction via NS1, which inhibits the stress granule formation [247,249], binds to DDX21, and displaces PB1 [248].

3.4. MARCH Proteins

MARCH (membrane-associated RING-CH-type) proteins are RING (really interesting novel gene) finger E3 ligases and are known to downregulate the expression of cellular proteins on the cell surface. MARCH1 and MARCH8 inhibit influenza virus infection though it is unclear if, like in case of other enveloped viruses, they downregulate the expression of influenza virus membrane proteins on the cell surface [250,251,252]. However, MARCH8 has been identified to block the furin-mediated cleavage of HA of avian influenza A virus H5N1 subtype [250].

3.5. Translation Factors

The eukaryotic translation initiation factor 4B (eIF4B) inhibits influenza virus infection indirectly by promoting the translation of ISGs, like ISG15 and IFITM3 [253]. But, influenza virus overcomes this restriction by promoting the lysosome-mediated degradation of eIF4B [253]. The eukaryotic translation elongation factor 1 delta (eEF1D) inhibits influenza virus infection by a different mechanism; it impedes the nuclear import of vRNPs by impairing the interaction of the NP and PB1 with their nuclear receptors [254].

3.6. HDACs

HDACs (histone deacetylases), also known as lysine deacetylases (KDACs), are the erasers of acetylation from proteins and have been discovered to inhibit influenza virus infection. So far, eighteen mammalian HDACs are known and divided into four classes. HDACs 1, 2, 3, and 8 belong to class I, HDACs 4, 5, 6, 7, 9, and 10 belong to class II, and HDAC11 belongs to class IV. Class III HDACs contain seven members, which are called sirtuins (SIRT 1–7). Multiple HDACs from each class inhibit influenza virus infection by various mechanisms [255,256,257,258,259,260,261,262,263,264]. Most HDACs exert their antiviral function by promoting the expression of interferons and ISGs, like IFITM3, ISG15, ISG20, and Viperin, by deacetylating various innate immune factors and effectors [255,256,257,260,262,265,266,267]. In addition, HDAC6 deacetylates viral PA and promotes its degradation [268]. Further, SIRT2 deacetylates G6PD (glucose-6-phosphate dehydrogenase), which reduces the oxidative stress in infected cells; notably, oxidative stress is beneficial for the influenza virus growth [269].
Influenza virus overcomes the antiviral function of HDACs by downregulating their expression at both mRNA and protein levels [255,256,257,260,261,269,270], as well as their enzymatic activity [255,258,271]. Specifically, influenza virus downregulates the expression of HDAC4 and HDAC6 mRNA via PA [260,270] and HDAC8 mRNA via miR-21-3p [261]. Further, influenza virus exploits the host proteasome and caspases to promote the degradation of HDAC1 and HDAC2 [255,256] and HDAC4 and HDAC6 [260,270], respectively.

3.7. Other Proteins

Annexin 6, a calcium-dependent membrane-binding protein involved in membrane organization, inhibits influenza virus infection by interacting with M2 and interfering with the budding of viral progeny [272,273].
APOE (apolipoprotein E) restricts influenza virus infection by interfering with membrane cholesterol homeostasis and inhibiting the virion attachment to the cell surface [274].
B3GAT1 (beta-1,3-glucuronyltransferase 1) and B4GALNT2 (beta-1,4-N-acetyl-galactosaminyltransferase 2) restrict influenza virus infection by targeting the sialic acid receptor. B3GAT1 reduces the expression of sialic acid [275], whereas B4GALNT2 modifies the sialic acid [276,277,278]. Both events preclude the attachment of influenza virus particles to the cell surface.
BTN3A3 (butyrophilin subfamily 3 member A3) inhibits the infection of, specifically, avian influenza viruses by interfering with the replication of viral RNA [279]. Hence, BTN3A3 is a barrier to the transmission of avian influenza viruses to humans. However, like Mx proteins, zoonotic avian influenza viruses escape this barrier by acquiring escape mutations in their NPs [279].
β-TrCP (β-transducin repeat-containing protein), an E3 ligase, inhibits influenza virus infection, but viral NS1 overcomes the β-TrCP restriction by inducing its degradation in infected cells [280].
Cyclin D3, a key cell cycle regulator, like annexin 6, interacts with M2 and inhibits its interaction with M1, consequently inhibiting the formation of influenza virus progeny [281].
Galectin-1 is an S-type lectin and is secreted extracellularly in the lungs. It binds influenza virus particles and inhibits their attachment to the cell surface [282], consequently inhibiting the infection and reducing disease severity [282,283,284]. Further, galectin-1 gene variants, SNPs rs4820294 and rs13057866, express galectin-1 at a higher level and protect the humans carrying those SNPs from severe influenza virus infection [283].
HAX-1 (HCLS1-associated X1), an anti-apoptotic protein, inhibits influenza virus infection by binding to PA and blocking its nuclear import [285]. However, mostly zoonotic avian influenza viruses are sensitive to the HAX-1-mediated restriction [286]. Nevertheless, zoonotic avian influenza viruses can overcome this restriction via viral PB1-F2, which also binds to HAX-1 and competes with PA for this binding [286,287].
hnRNPAB (heterogeneous nuclear ribonucleoprotein A/B) restricts influenza virus infection by promoting the nuclear retention of viral mRNA [288,289].
Hsp70 (heat shock protein 70) has been described to inhibit influenza virus infection by interacting with PB1 and PB2 and interfering with vRNP integrity, which results in the interference of viral RNA replication [290]. But, another study claimed that HsP70-PB1-PB2 interaction promotes viral RNA replication [291].
JADE3 (Jade family PHD zinc finger 3), also called PHF16 (PHD zinc finger 16), restricts influenza virus infection and by activating the NF-kB signaling [292].
MMP3 (matrix metalloproteinase 3) restricts influenza virus infection by translocating to the nucleus and promoting the expression of antiviral cytokines and chemokines [293].
NF90 (nuclear factor 90) has been described to inhibit influenza virus infection by three mechanisms: (1) interacting with the NP and interfering with viral RNA transcription and replication [294], (2) negatively regulating the phosphorylation of ISG PKR [295], and (3) antagonizing the NS1 [296].
PGRMC1 (progesterone receptor membrane component 1) restricts influenza virus infection by antagonizing the ubiquitination-mediated activation of RIG-I. Potentially, it determines the neurotropism of influenza viruses too [297].
PKP2 (plakophilin 2) protein, mainly known for the formation of desmosomes and stabilization of cell junctions, binds to PB1. It restricts influenza virus infection by competing with PB2 for binding to PB1 and impeding RNA polymerase activity [298].
PIAS1 (protein inhibitor of activated STAT1), a SUMO E3 ligase, inhibits influenza virus infection by SUMOylation-mediated degradation of PB2 [299].
Pirh2 (p53-induced RING-H2), an E3 ubiquitin ligase, inhibits the infection of human but not avian influenza viruses. Pirh2 ubiquitinates the NP, which interrupts the NP-PB2 interaction and, consequently, the formation of a vRNP complex [300].
PSMB4 (proteasome subunit beta type 4) restricts influenza virus infection by targeting NS1 and facilitating its degradation in infected cells [301].
RTF2 (replication termination factor 2) is a nucleus-localized protein and restricts influenza virus infection by inhibiting the viral transcription and promoting the interferon response [302].
RSK2 (ribosomal protein S6 kinase alpha 2), a mitogen-activated protein kinase, inhibits influenza virus infection by promoting the innate antiviral response [303].
SERINC5, one of the five SERINC (serine incorporator) family membrane proteins, inhibits influenza virus infection by interfering with the fusion of the viral envelope and endosomal membrane during entry [304,305].
TBC1D5 (TBC1 domain family member 5), an autophagy regulator, restricts influenza virus infection by promoting the lysosome-mediated degradation of M2 [306].
TET2 (ten-eleven translocation 2), a methylcytosine dioxygenase, inhibits influenza virus infection by enhancing the expression of STAT1 and consequently the expression of various ISGs via DNA demethylation [307]. However, influenza virus counters the TET2-mediated restriction by downregulating the TET2 expression through its host shutoff protein PA-X [307].
TRA2A (transformer 2 alpha homolog), an mRNA splicing regulator, restricts the infection of avian influenza viruses but not the human influenza viruses in humans. Human TRA2A binds to the ISS (intronic splicing silencer) motif of avian influenza virus M mRNA and inhibits its splicing into M1 mRNA and M2 mRNA [308]. Some avian influenza viruses may have escaped the TRA2A restriction and adapted to humans by mutating the ISS motif in their M genes [308].
TUFM (Tu elongation factor, mitochondrial) protein acts as a barrier to interspecies transmission of avian influenza viruses to humans. TUMF binds to avian influenza virus PB2 in mitochondria and induces autophagy, which, in turn, restricts avian influenza virus growth in human cells [309]. However, the E627K mutation in PB2 of avian influenza viruses impedes the binding of TUMF to PB2 and allows avian influenza viruses to escape this restriction and multiply in human cells [309].
ZMPSTE24 (zinc metallopeptidase STE24) is an effector of IFITMs and inhibits influenza virus infection by facilitating the antiviral function of IFITMs in endosomes [310,311]. However, the antiviral function of ZMPSTE24 is independent of its protease activity [310,311].

3.8. ncRNAs

In the non-ISG category, mostly miRNAs have been identified to inhibit influenza virus infection. miR-323, miR-491, miR-654 [312], and miR-324-5p [313] inhibit influenza virus infection by targeting and degrading the PB1 RNA and miRNA let-7c [314] by targeting and degrading the M RNA. Whereas hsa-mir-127-3p, hsa-mir-486-5p, hsa-mir-593-5p, and mmu-mir-487b-5p target multiple viral RNAs [315].
miR-206 [316], miRNA-30 [317], and miR-221 [318] inhibit influenza virus infection by promoting the antiviral state in host cells by various mechanisms. miRNA-30 [317] and miR-221 [318] suppress the expression of SOCS1 and SOCS3 genes, which restrict type I interferon signaling, while miR-206 suppresses the expression of tankyrase, a poly (ADP-ribose) polymerase [316]. miR-29a inhibits influenza virus infection by targeting the frizzled 5 protein in the Wnt signaling pathway [319].

4. Summary

A plethora of host restriction factors, ISGs and non-ISGs, have been identified, which restrict influenza virus infection by inhibiting the viral attachment, entry, synthesis, assembly, and release, and strengthening the host innate antiviral response (Table 1 and Table 2). However, the influenza virus seems to have the upper hand and effectively antagonizes the restrictions imposed by these factors. Basically, there are three strategies that influenza virus employs to perform this: (1) the acquisition of escape mutations in viral proteins, like NP, targeted by the restriction factors, (2) the downregulation of the expression of restriction factors at both mRNA and protein levels via viral endonucleases, PA and PA-X, or host factors, ncRNAs, proteasome, lysosome, and caspases, and (3) the sequestration or interference of the restriction factors by viral proteins, like NS1 (Table 3). Furthermore, the genetic diversity of some restriction factors (galectin-1, IFITM3, Mx, OAS-1, Serpin-1) in various hosts and human populations also helps the influenza virus to escape the host restriction. Nevertheless, an exhaustive list of the influenza virus host restriction factors with their restriction mechanisms is yet to be compiled. A comprehensive knowledge of host restriction factors and influenza virus interplay is critical for designing targeted antiviral interventions to overcome the existing and newly emerging influenza virus variants.

Supplementary Materials

The following supporting information can be downloaded at https://www.mdpi.com/article/10.3390/pathogens13020127/s1, Table S1. Influenza virus restriction factors identified by RNA interference or CRISPR-Cas9 screenings/techniques.

Funding

The author’s research in recent times has been supported by the J C and H S Anderson Charitable Trust, New Zealand (2020), Maurice & Paykel Charitable Trust, New Zealand (2020, 2022), Maurice Wilkins Centre, New Zealand (2023), and the School of Biomedical Sciences (2022).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The author thanks the Guest Editor for invitation to publish the manuscript in this Special Issue.

Conflicts of Interest

The author declares no conflicts of interest. The funders had no role in the writing of the manuscript.

References

  1. Chou, Y.Y.; Vafabakhsh, R.; Doganay, S.; Gao, Q.; Ha, T.; Palese, P. One influenza virus particle packages eight unique viral RNAs as shown by FISH analysis. Proc. Natl. Acad. Sci. USA 2012, 109, 9101–9106. [Google Scholar] [CrossRef] [PubMed]
  2. Sempere Borau, M.; Stertz, S. Entry of influenza A virus into host cells—Recent progress and remaining challenges. Curr. Opin. Virol. 2021, 48, 23–29. [Google Scholar] [CrossRef]
  3. Husain, M. Host factors involved in influenza virus infection. Emerg. Top. Life Sci. 2020, 4, 389–398. [Google Scholar] [CrossRef]
  4. Knight, E., Jr.; Korant, B.D. Fibroblast interferon induces synthesis of four proteins in human fibroblast cells. Proc. Natl. Acad. Sci. USA 1979, 76, 1824–1827. [Google Scholar] [CrossRef]
  5. Larner, A.C.; Jonak, G.; Cheng, Y.S.; Korant, B.; Knight, E.; Darnell, J.E., Jr. Transcriptional induction of two genes in human cells by beta interferon. Proc. Natl. Acad. Sci. USA 1984, 81, 6733–6737. [Google Scholar] [CrossRef]
  6. de Veer, M.J.; Holko, M.; Frevel, M.; Walker, E.; Der, S.; Paranjape, J.M.; Silverman, R.H.; Williams, B.R. Functional classification of interferon-stimulated genes identified using microarrays. J. Leukoc. Biol. 2001, 69, 912–920. [Google Scholar] [CrossRef]
  7. Schoggins, J.W.; Wilson, S.J.; Panis, M.; Murphy, M.Y.; Jones, C.T.; Bieniasz, P.; Rice, C.M. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 2011, 472, 481–485. [Google Scholar] [CrossRef]
  8. Haller, O.; Arnheiter, H.; Gresser, I.; Lindenmann, J. Virus-specific interferon action. Protection of newborn Mx carriers against lethal infection with influenza virus. J. Exp. Med. 1981, 154, 199–203. [Google Scholar] [CrossRef]
  9. Haller, O.; Arnheiter, H.; Lindenmann, J.; Gresser, I. Host gene influences sensitivity to interferon action selectively for influenza virus. Nature 1980, 283, 660–662. [Google Scholar] [CrossRef]
  10. Horisberger, M.A.; Staeheli, P.; Haller, O. Interferon induces a unique protein in mouse cells bearing a gene for resistance to influenza virus. Proc. Natl. Acad. Sci. USA 1983, 80, 1910–1914. [Google Scholar] [CrossRef] [PubMed]
  11. von Wussow, P.; Jakschies, D.; Hochkeppel, H.K.; Fibich, C.; Penner, L.; Deicher, H. The human intracellular Mx-homologous protein is specifically induced by type I interferons. Eur. J. Immunol. 1990, 20, 2015–2019. [Google Scholar] [CrossRef] [PubMed]
  12. Chang, K.C.; Hansen, E.; Foroni, L.; Lida, J.; Goldspink, G. Molecular and functional analysis of the virus- and interferon-inducible human MxA promoter. Arch. Virol. 1991, 117, 1–15. [Google Scholar] [CrossRef]
  13. Bernasconi, D.; Schultz, U.; Staeheli, P. The interferon-induced Mx protein of chickens lacks antiviral activity. J. Interf. Cytokine Res. 1995, 15, 47–53. [Google Scholar] [CrossRef]
  14. Schusser, B.; Reuter, A.; von der Malsburg, A.; Penski, N.; Weigend, S.; Kaspers, B.; Staeheli, P.; Hartle, S. Mx is dispensable for interferon-mediated resistance of chicken cells against influenza A virus. J. Virol. 2011, 85, 8307–8315. [Google Scholar] [CrossRef] [PubMed]
  15. Daviet, S.; Van Borm, S.; Habyarimana, A.; Ahanda, M.L.; Morin, V.; Oudin, A.; Van Den Berg, T.; Zoorob, R. Induction of Mx and PKR failed to protect chickens from H5N1 infection. Viral. Immunol. 2009, 22, 467–472. [Google Scholar] [CrossRef]
  16. Benfield, C.T.; Lyall, J.W.; Tiley, L.S. The cytoplasmic location of chicken mx is not the determining factor for its lack of antiviral activity. PLoS ONE 2010, 5, e12151. [Google Scholar] [CrossRef]
  17. Pavlovic, J.; Zurcher, T.; Haller, O.; Staeheli, P. Resistance to influenza virus and vesicular stomatitis virus conferred by expression of human MxA protein. J. Virol. 1990, 64, 3370–3375. [Google Scholar] [CrossRef]
  18. Nakajima, E.; Morozumi, T.; Tsukamoto, K.; Watanabe, T.; Plastow, G.; Mitsuhashi, T. A naturally occurring variant of porcine Mx1 associated with increased susceptibility to influenza virus in vitro. Biochem. Genet. 2007, 45, 11–24. [Google Scholar] [CrossRef]
  19. Palm, M.; Garigliany, M.M.; Cornet, F.; Desmecht, D. Interferon-induced Sus scrofa Mx1 blocks endocytic traffic of incoming influenza A virus particles. Vet. Res. 2010, 41, 29. [Google Scholar] [CrossRef]
  20. Fatima, U.; Zhang, Z.; Zhang, H.; Wang, X.F.; Xu, L.; Chu, X.; Ji, S.; Wang, X. Equine Mx1 Restricts Influenza A Virus Replication by Targeting at Distinct Site of its Nucleoprotein. Viruses 2019, 11, 1114. [Google Scholar] [CrossRef]
  21. Nakayama, M.; Nagata, K.; Kato, A.; Ishihama, A. Interferon-Inducible Mouse Mx1 Protein That Confers Resistance to Influenza-Virus Is Gtpase. J. Biol. Chem. 1991, 266, 21404–21408. [Google Scholar] [CrossRef] [PubMed]
  22. Staeheli, P.; Pitossi, F.; Pavlovic, J. Mx proteins: GTPases with antiviral activity. Trends Cell Biol. 1993, 3, 268–272. [Google Scholar] [CrossRef] [PubMed]
  23. Pitossi, F.; Blank, A.; Schroder, A.; Schwarz, A.; Hussi, P.; Schwemmle, M.; Pavlovic, J.; Staeheli, P. A functional GTP-binding motif is necessary for antiviral activity of Mx proteins. J. Virol. 1993, 67, 6726–6732. [Google Scholar] [CrossRef]
  24. Kochs, G.; Haener, M.; Aebi, U.; Haller, O. Self-assembly of human MxA GTPase into highly ordered dynamin-like oligomers. J. Biol. Chem. 2002, 277, 14172–14176. [Google Scholar] [CrossRef] [PubMed]
  25. Gao, S.; von der Malsburg, A.; Paeschke, S.; Behlke, J.; Haller, O.; Kochs, G.; Daumke, O. Structural basis of oligomerization in the stalk region of dynamin-like MxA. Nature 2010, 465, 502–506. [Google Scholar] [CrossRef]
  26. Gao, S.; von der Malsburg, A.; Dick, A.; Faelber, K.; Schroder, G.F.; Haller, O.; Kochs, G.; Daumke, O. Structure of myxovirus resistance protein a reveals intra- and intermolecular domain interactions required for the antiviral function. Immunity 2011, 35, 514–525. [Google Scholar] [CrossRef]
  27. Melen, K.; Ronni, T.; Broni, B.; Krug, R.M.; von Bonsdorff, C.H.; Julkunen, I. Interferon-induced Mx proteins form oligomers and contain a putative leucine zipper. J. Biol. Chem. 1992, 267, 25898–25907. [Google Scholar] [CrossRef]
  28. Nigg, P.E.; Pavlovic, J. Oligomerization and GTP-binding Requirements of MxA for Viral Target Recognition and Antiviral Activity against Influenza A Virus. J. Biol. Chem. 2015, 290, 29893–29906. [Google Scholar] [CrossRef]
  29. Verhelst, J.; Parthoens, E.; Schepens, B.; Fiers, W.; Saelens, X. Interferon-inducible protein Mx1 inhibits influenza virus by interfering with functional viral ribonucleoprotein complex assembly. J. Virol. 2012, 86, 13445–13455. [Google Scholar] [CrossRef]
  30. Xiao, H.; Killip, M.J.; Staeheli, P.; Randall, R.E.; Jackson, D. The human interferon-induced MxA protein inhibits early stages of influenza A virus infection by retaining the incoming viral genome in the cytoplasm. J. Virol. 2013, 87, 13053–13058. [Google Scholar] [CrossRef]
  31. Lee, S.; Ishitsuka, A.; Noguchi, M.; Hirohama, M.; Fujiyasu, Y.; Petric, P.P.; Schwemmle, M.; Staeheli, P.; Nagata, K.; Kawaguchi, A. Influenza restriction factor MxA functions as inflammasome sensor in the respiratory epithelium. Sci. Immunol. 2019, 4, eaau4643. [Google Scholar] [CrossRef] [PubMed]
  32. Ashenberg, O.; Padmakumar, J.; Doud, M.B.; Bloom, J.D. Deep mutational scanning identifies sites in influenza nucleoprotein that affect viral inhibition by MxA. PLoS Pathog. 2017, 13, e1006288. [Google Scholar] [CrossRef]
  33. Pavlovic, J.; Haller, O.; Staeheli, P. Human and mouse Mx proteins inhibit different steps of the influenza virus multiplication cycle. J. Virol. 1992, 66, 2564–2569. [Google Scholar] [CrossRef] [PubMed]
  34. Dittmann, J.; Stertz, S.; Grimm, D.; Steel, J.; Garcia-Sastre, A.; Haller, O.; Kochs, G. Influenza A virus strains differ in sensitivity to the antiviral action of Mx-GTPase. J. Virol. 2008, 82, 3624–3631. [Google Scholar] [CrossRef]
  35. Zimmermann, P.; Manz, B.; Haller, O.; Schwemmle, M.; Kochs, G. The viral nucleoprotein determines Mx sensitivity of influenza A viruses. J. Virol. 2011, 85, 8133–8140. [Google Scholar] [CrossRef]
  36. Ciminski, K.; Pulvermuller, J.; Adam, J.; Schwemmle, M. Human MxA is a potent interspecies barrier for the novel bat-derived influenza A-like virus H18N11. Emerg. Microbes Infect. 2019, 8, 556–563. [Google Scholar] [CrossRef] [PubMed]
  37. Haller, O.; Kochs, G. Mx genes: Host determinants controlling influenza virus infection and trans-species transmission. Hum. Genet. 2020, 139, 695–705. [Google Scholar] [CrossRef]
  38. Petric, P.P.; King, J.; Graf, L.; Pohlmann, A.; Beer, M.; Schwemmle, M. Increased Polymerase Activity of Zoonotic H7N9 Allows Partial Escape from MxA. Viruses 2022, 14, 2331. [Google Scholar] [CrossRef]
  39. Gotz, V.; Magar, L.; Dornfeld, D.; Giese, S.; Pohlmann, A.; Hoper, D.; Kong, B.W.; Jans, D.A.; Beer, M.; Haller, O.; et al. Influenza A viruses escape from MxA restriction at the expense of efficient nuclear vRNP import. Sci. Rep. 2016, 6, 23138. [Google Scholar] [CrossRef]
  40. Mänz, B.; Dornfeld, D.; Götz, V.; Zell, R.; Zimmermann, P.; Haller, O.; Kochs, G.; Schwemmle, M. Pandemic influenza A viruses escape from restriction by human MxA through adaptive mutations in the nucleoprotein. PLoS Pathog. 2013, 9, e1003279. [Google Scholar] [CrossRef]
  41. Riegger, D.; Hai, R.; Dornfeld, D.; Manz, B.; Leyva-Grado, V.; Sanchez-Aparicio, M.T.; Albrecht, R.A.; Palese, P.; Haller, O.; Schwemmle, M.; et al. The nucleoprotein of newly emerged H7N9 influenza A virus harbors a unique motif conferring resistance to antiviral human MxA. J. Virol. 2015, 89, 2241–2252. [Google Scholar] [CrossRef] [PubMed]
  42. Deeg, C.M.; Hassan, E.; Mutz, P.; Rheinemann, L.; Gotz, V.; Magar, L.; Schilling, M.; Kallfass, C.; Nurnberger, C.; Soubies, S.; et al. In vivo evasion of MxA by avian influenza viruses requires human signature in the viral nucleoprotein. J. Exp. Med. 2017, 214, 1239–1248. [Google Scholar] [CrossRef] [PubMed]
  43. Dornfeld, D.; Petric, P.P.; Hassan, E.; Zell, R.; Schwemmle, M. Eurasian Avian-Like Swine Influenza A Viruses Escape Human MxA Restriction through Distinct Mutations in Their Nucleoprotein. J. Virol. 2019, 93, 00997-18. [Google Scholar] [CrossRef] [PubMed]
  44. Shin, D.L.; Hatesuer, B.; Bergmann, S.; Nedelko, T.; Schughart, K. Protection from Severe Influenza Virus Infections in Mice Carrying the Mx1 Influenza Virus Resistance Gene Strongly Depends on Genetic Background. J. Virol. 2015, 89, 9998–10009. [Google Scholar] [CrossRef] [PubMed]
  45. Nurnberger, C.; Zimmermann, V.; Gerhardt, M.; Staeheli, P. Influenza Virus Susceptibility of Wild-Derived CAST/EiJ Mice Results from Two Amino Acid Changes in the MX1 Restriction Factor. J. Virol. 2016, 90, 10682–10692. [Google Scholar] [CrossRef] [PubMed]
  46. Chen, Y.; Graf, L.; Chen, T.; Liao, Q.; Bai, T.; Petric, P.P.; Zhu, W.; Yang, L.; Dong, J.; Lu, J.; et al. Rare variant MX1 alleles increase human susceptibility to zoonotic H7N9 influenza virus. Science 2021, 373, 918–922. [Google Scholar] [CrossRef]
  47. Graf, L.; Dick, A.; Sendker, F.; Barth, E.; Marz, M.; Daumke, O.; Kochs, G. Effects of allelic variations in the human myxovirus resistance protein A on its antiviral activity. J. Biol. Chem. 2018, 293, 3056–3072. [Google Scholar] [CrossRef]
  48. Mitchell, P.S.; Patzina, C.; Emerman, M.; Haller, O.; Malik, H.S.; Kochs, G. Evolution-guided identification of antiviral specificity determinants in the broadly acting interferon-induced innate immunity factor MxA. Cell Host Microbe 2012, 12, 598–604. [Google Scholar] [CrossRef]
  49. Friedman, R.L.; Manly, S.P.; McMahon, M.; Kerr, I.M.; Stark, G.R. Transcriptional and posttranscriptional regulation of interferon-induced gene expression in human cells. Cell 1984, 38, 745–755. [Google Scholar] [CrossRef]
  50. Chen, Y.X.; Welte, K.; Gebhard, D.H.; Evans, R.L. Induction of T cell aggregation by antibody to a 16kd human leukocyte surface antigen. J. Immunol. 1984, 133, 2496–2501. [Google Scholar] [CrossRef]
  51. Jaffe, E.A.; Armellino, D.; Lam, G.; Cordon-Cardo, C.; Murray, H.W.; Evans, R.L. IFN-gamma and IFN-alpha induce the expression and synthesis of Leu 13 antigen by cultured human endothelial cells. J. Immunol. 1989, 143, 3961–3966. [Google Scholar] [CrossRef]
  52. Lewin, A.R.; Reid, L.E.; McMahon, M.; Stark, G.R.; Kerr, I.M. Molecular analysis of a human interferon-inducible gene family. Eur. J. Biochem. 1991, 199, 417–423. [Google Scholar] [CrossRef]
  53. Brass, A.L.; Huang, I.C.; Benita, Y.; John, S.P.; Krishnan, M.N.; Feeley, E.M.; Ryan, B.J.; Weyer, J.L.; van der Weyden, L.; Fikrig, E.; et al. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell 2009, 139, 1243–1254. [Google Scholar] [CrossRef] [PubMed]
  54. Melvin, W.J.; McMichael, T.M.; Chesarino, N.M.; Hach, J.C.; Yount, J.S. IFITMs from Mycobacteria Confer Resistance to Influenza Virus When Expressed in Human Cells. Viruses 2015, 7, 3035–3052. [Google Scholar] [CrossRef] [PubMed]
  55. Bailey, C.C.; Huang, I.C.; Kam, C.; Farzan, M. Ifitm3 limits the severity of acute influenza in mice. PLoS Pathog. 2012, 8, e1002909. [Google Scholar] [CrossRef] [PubMed]
  56. Everitt, A.R.; Clare, S.; Pertel, T.; John, S.P.; Wash, R.S.; Smith, S.E.; Chin, C.R.; Feeley, E.M.; Sims, J.S.; Adams, D.J.; et al. IFITM3 restricts the morbidity and mortality associated with influenza. Nature 2012, 484, 519–523. [Google Scholar] [CrossRef] [PubMed]
  57. Sun, X.; Zeng, H.; Kumar, A.; Belser, J.A.; Maines, T.R.; Tumpey, T.M. Constitutively Expressed IFITM3 Protein in Human Endothelial Cells Poses an Early Infection Block to Human Influenza Viruses. J. Virol. 2016, 90, 11157–11167. [Google Scholar] [CrossRef] [PubMed]
  58. Kenney, A.D.; McMichael, T.M.; Imas, A.; Chesarino, N.M.; Zhang, L.; Dorn, L.E.; Wu, Q.; Alfaour, O.; Amari, F.; Chen, M.; et al. IFITM3 protects the heart during influenza virus infection. Proc. Natl. Acad. Sci. USA 2019, 116, 18607–18612. [Google Scholar] [CrossRef] [PubMed]
  59. Smith, S.E.; Gibson, M.S.; Wash, R.S.; Ferrara, F.; Wright, E.; Temperton, N.; Kellam, P.; Fife, M. Chicken interferon-inducible transmembrane protein 3 restricts influenza viruses and lyssaviruses in vitro. J. Virol. 2013, 87, 12957–12966. [Google Scholar] [CrossRef] [PubMed]
  60. Lanz, C.; Yángüez, E.; Andenmatten, D.; Stertz, S. Swine interferon-inducible transmembrane proteins potently inhibit influenza A virus replication. J. Virol. 2015, 89, 863–869. [Google Scholar] [CrossRef]
  61. Benfield, C.T.; MacKenzie, F.; Ritzefeld, M.; Mazzon, M.; Weston, S.; Tate, E.W.; Teo, B.H.; Smith, S.E.; Kellam, P.; Holmes, E.C.; et al. Bat IFITM3 restriction depends on S-palmitoylation and a polymorphic site within the CD225 domain. Life Sci. Alliance 2020, 3, e201900542. [Google Scholar] [CrossRef]
  62. Horman, W.S.J.; Kedzierska, K.; Rootes, C.L.; Bean, A.G.D.; Nguyen, T.H.O.; Layton, D.S. Ferret Interferon (IFN)-Inducible Transmembrane Proteins Are Upregulated by both IFN-alpha and Influenza Virus Infection. J. Virol. 2021, 95, e0011121. [Google Scholar] [CrossRef]
  63. Lu, G.; Ou, J.; Cai, S.; Lai, Z.; Zhong, L.; Yin, X.; Li, S. Canine Interferon-Inducible Transmembrane Protein Is a Host Restriction Factor That Potently Inhibits Replication of Emerging Canine Influenza Virus. Front. Immunol. 2021, 12, 710705. [Google Scholar] [CrossRef]
  64. Rohaim, M.A.; Al-Natour, M.Q.; Abdelsabour, M.A.; El Naggar, R.F.; Madbouly, Y.M.; Ahmed, K.A.; Munir, M. Transgenic Chicks Expressing Interferon-Inducible Transmembrane Protein 1 (IFITM1) Restrict Highly Pathogenic H5N1 Influenza Viruses. Int. J. Mol. Sci. 2021, 22, 8456. [Google Scholar] [CrossRef]
  65. Benfield, C.T.O.; Smith, S.E.; Wright, E.; Wash, R.S.; Ferrara, F.; Temperton, N.J.; Kellam, P. Bat and pig IFN-induced transmembrane protein 3 restrict cell entry by influenza virus and lyssaviruses. J. Gen. Virol. 2015, 96, 991–1005. [Google Scholar] [CrossRef]
  66. Blyth, G.A.; Chan, W.F.; Webster, R.G.; Magor, K.E. Duck Interferon-Inducible Transmembrane Protein 3 Mediates Restriction of Influenza Viruses. J. Virol. 2016, 90, 103–116. [Google Scholar] [CrossRef]
  67. Infusini, G.; Smith, J.M.; Yuan, H.; Pizzolla, A.; Ng, W.C.; Londrigan, S.L.; Haque, A.; Reading, P.C.; Villadangos, J.A.; Wakim, L.M. Respiratory DC Use IFITM3 to Avoid Direct Viral Infection and Safeguard Virus-Specific CD8+ T Cell Priming. PLoS ONE 2015, 10, e0143539. [Google Scholar] [CrossRef]
  68. Wakim, L.M.; Gupta, N.; Mintern, J.D.; Villadangos, J.A. Enhanced survival of lung tissue-resident memory CD8(+) T cells during infection with influenza virus due to selective expression of IFITM3. Nat. Immunol. 2013, 14, 238–245. [Google Scholar] [CrossRef]
  69. Smith, J.; Smith, N.; Yu, L.; Paton, I.R.; Gutowska, M.W.; Forrest, H.L.; Danner, A.F.; Seiler, J.P.; Digard, P.; Webster, R.G.; et al. A comparative analysis of host responses to avian influenza infection in ducks and chickens highlights a role for the interferon-induced transmembrane proteins in viral resistance. BMC Genom. 2015, 16, 574. [Google Scholar] [CrossRef]
  70. Feeley, E.M.; Sims, J.S.; John, S.P.; Chin, C.R.; Pertel, T.; Chen, L.M.; Gaiha, G.D.; Ryan, B.J.; Donis, R.O.; Elledge, S.J.; et al. IFITM3 inhibits influenza A virus infection by preventing cytosolic entry. PLoS Pathog. 2011, 7, e1002337. [Google Scholar] [CrossRef] [PubMed]
  71. Amini-Bavil-Olyaee, S.; Choi, Y.J.; Lee, J.H.; Shi, M.; Huang, I.C.; Farzan, M.; Jung, J.U. The antiviral effector IFITM3 disrupts intracellular cholesterol homeostasis to block viral entry. Cell Host Microbe 2013, 13, 452–464. [Google Scholar] [CrossRef]
  72. Desai, T.M.; Marin, M.; Chin, C.R.; Savidis, G.; Brass, A.L.; Melikyan, G.B. IFITM3 restricts influenza A virus entry by blocking the formation of fusion pores following virus-endosome hemifusion. PLoS Pathog. 2014, 10, e1004048. [Google Scholar] [CrossRef] [PubMed]
  73. Jia, R.; Xu, F.; Qian, J.; Yao, Y.; Miao, C.; Zheng, Y.M.; Liu, S.L.; Guo, F.; Geng, Y.; Qiao, W.; et al. Identification of an endocytic signal essential for the antiviral action of IFITM3. Cell Microbiol. 2014, 16, 1080–1093. [Google Scholar] [CrossRef] [PubMed]
  74. Chesarino, N.M.; Compton, A.A.; McMichael, T.M.; Kenney, A.D.; Zhang, L.; Soewarna, V.; Davis, M.; Schwartz, O.; Yount, J.S. IFITM 3 requires an amphipathic helix for antiviral activity. EMBO Rep. 2017, 18, 1740–1751. [Google Scholar] [CrossRef]
  75. Kummer, S.; Avinoam, O.; Krausslich, H.G. IFITM3 Clusters on Virus Containing Endosomes and Lysosomes Early in the Influenza A Infection of Human Airway Epithelial Cells. Viruses 2019, 11, 548. [Google Scholar] [CrossRef]
  76. Rahman, K.; Datta, S.A.K.; Beaven, A.H.; Jolley, A.A.; Sodt, A.J.; Compton, A.A. Cholesterol Binds the Amphipathic Helix of IFITM3 and Regulates Antiviral Activity. J. Mol. Biol. 2022, 434, 167759. [Google Scholar] [CrossRef]
  77. Klein, S.; Golani, G.; Lolicato, F.; Lahr, C.; Beyer, D.; Herrmann, A.; Wachsmuth-Melm, M.; Reddmann, N.; Brecht, R.; Hosseinzadeh, M.; et al. IFITM3 blocks influenza virus entry by sorting lipids and stabilizing hemifusion. Cell Host Microbe 2023, 31, 616–633.e20. [Google Scholar] [CrossRef]
  78. Xu, W.; Wang, Y.; Li, L.; Qu, X.; Liu, Q.; Li, T.; Wu, S.; Liao, M.; Jin, N.; Du, S.; et al. Transmembrane domain of IFITM3 is responsible for its interaction with influenza virus HA(2) subunit. Virol. Sin. 2022, 37, 664–675. [Google Scholar] [CrossRef]
  79. Bailey, C.C.; Kondur, H.R.; Huang, I.C.; Farzan, M. Interferon-induced transmembrane protein 3 is a type II transmembrane protein. J. Biol. Chem. 2013, 288, 32184–32193. [Google Scholar] [CrossRef]
  80. Spence, J.S.; He, R.; Hoffmann, H.H.; Das, T.; Thinon, E.; Rice, C.M.; Peng, T.; Chandran, K.; Hang, H.C. IFITM3 directly engages and shuttles incoming virus particles to lysosomes. Nat. Chem. Biol. 2019, 15, 259–268. [Google Scholar] [CrossRef]
  81. Li, K.; Markosyan, R.M.; Zheng, Y.M.; Golfetto, O.; Bungart, B.; Li, M.; Ding, S.; He, Y.; Liang, C.; Lee, J.C.; et al. IFITM proteins restrict viral membrane hemifusion. PLoS Pathog. 2013, 9, e1003124. [Google Scholar] [CrossRef] [PubMed]
  82. Yount, J.S.; Moltedo, B.; Yang, Y.Y.; Charron, G.; Moran, T.M.; Lopez, C.B.; Hang, H.C. Palmitoylome profiling reveals S-palmitoylation-dependent antiviral activity of IFITM3. Nat. Chem. Biol. 2010, 6, 610–614. [Google Scholar] [CrossRef] [PubMed]
  83. Yount, J.S.; Karssemeijer, R.A.; Hang, H.C. S-palmitoylation and ubiquitination differentially regulate interferon-induced transmembrane protein 3 (IFITM3)-mediated resistance to influenza virus. J. Biol. Chem. 2012, 287, 19631–19641. [Google Scholar] [CrossRef] [PubMed]
  84. Hach, J.C.; McMichael, T.; Chesarino, N.M.; Yount, J.S. Palmitoylation on conserved and nonconserved cysteines of murine IFITM1 regulates its stability and anti-influenza A virus activity. J. Virol. 2013, 87, 9923–9927. [Google Scholar] [CrossRef]
  85. Shan, Z.; Han, Q.; Nie, J.; Cao, X.; Chen, Z.; Yin, S.; Gao, Y.; Lin, F.; Zhou, X.; Xu, K.; et al. Negative regulation of interferon-induced transmembrane protein 3 by SET7-mediated lysine monomethylation. J. Biol. Chem. 2013, 288, 35093–35103. [Google Scholar] [CrossRef] [PubMed]
  86. Chesarino, N.M.; McMichael, T.M.; Hach, J.C.; Yount, J.S. Phosphorylation of the antiviral protein interferon-inducible transmembrane protein 3 (IFITM3) dually regulates its endocytosis and ubiquitination. J. Biol. Chem. 2014, 289, 11986–11992. [Google Scholar] [CrossRef] [PubMed]
  87. Chesarino, N.M.; McMichael, T.M.; Yount, J.S. E3 Ubiquitin Ligase NEDD4 Promotes Influenza Virus Infection by Decreasing Levels of the Antiviral Protein IFITM3. PLoS Pathog. 2015, 11, e1005095. [Google Scholar] [CrossRef]
  88. Shan, J.; Zhao, B.; Shan, Z.; Nie, J.; Deng, R.; Xiong, R.; Tsun, A.; Pan, W.; Zhao, H.; Chen, L.; et al. Histone demethylase LSD1 restricts influenza A virus infection by erasing IFITM3-K88 monomethylation. PLoS Pathog. 2017, 13, e1006773. [Google Scholar] [CrossRef] [PubMed]
  89. McMichael, T.M.; Zhang, L.; Chemudupati, M.; Hach, J.C.; Kenney, A.D.; Hang, H.C.; Yount, J.S. The palmitoyltransferase ZDHHC20 enhances interferon-induced transmembrane protein 3 (IFITM3) palmitoylation and antiviral activity. J. Biol. Chem. 2017, 292, 21517–21526. [Google Scholar] [CrossRef]
  90. Hensen, L.; Matrosovich, T.; Roth, K.; Klenk, H.D.; Matrosovich, M. HA-Dependent Tropism of H5N1 and H7N9 Influenza Viruses to Human Endothelial Cells Is Determined by Reduced Stability of the HA, Which Allows the Virus To Cope with Inefficient Endosomal Acidification and Constitutively Expressed IFITM3. J. Virol. 2019, 94, e01223-19. [Google Scholar] [CrossRef]
  91. Allen, E.K.; Randolph, A.G.; Bhangale, T.; Dogra, P.; Ohlson, M.; Oshansky, C.M.; Zamora, A.E.; Shannon, J.P.; Finkelstein, D.; Dressen, A.; et al. SNP-mediated disruption of CTCF binding at the IFITM3 promoter is associated with risk of severe influenza in humans. Nat. Med. 2017, 23, 975–983. [Google Scholar] [CrossRef] [PubMed]
  92. Kim, Y.C.; Jeong, M.J.; Jeong, B.H. Strong association of regulatory single nucleotide polymorphisms (SNPs) of the IFITM3 gene with influenza H1N1 2009 pandemic virus infection. Cell Mol. Immunol. 2020, 17, 662–664. [Google Scholar] [CrossRef] [PubMed]
  93. Jia, R.; Pan, Q.; Ding, S.; Rong, L.; Liu, S.L.; Geng, Y.; Qiao, W.; Liang, C. The N-terminal region of IFITM3 modulates its antiviral activity by regulating IFITM3 cellular localization. J. Virol. 2012, 86, 13697–13707. [Google Scholar] [CrossRef]
  94. John, S.P.; Chin, C.R.; Perreira, J.M.; Feeley, E.M.; Aker, A.M.; Savidis, G.; Smith, S.E.; Elia, A.E.; Everitt, A.R.; Vora, M.; et al. The CD225 domain of IFITM3 is required for both IFITM protein association and inhibition of influenza A virus and dengue virus replication. J. Virol. 2013, 87, 7837–7852. [Google Scholar] [CrossRef] [PubMed]
  95. Zhang, Y.H.; Zhao, Y.; Li, N.; Peng, Y.C.; Giannoulatou, E.; Jin, R.H.; Yan, H.P.; Wu, H.; Liu, J.H.; Liu, N.; et al. Interferon-induced transmembrane protein-3 genetic variant rs12252-C is associated with severe influenza in Chinese individuals. Nat. Commun. 2013, 4, 1418. [Google Scholar] [CrossRef] [PubMed]
  96. Pan, Y.; Yang, P.; Dong, T.; Zhang, Y.; Shi, W.; Peng, X.; Cui, S.; Zhang, D.; Lu, G.; Liu, Y.; et al. IFITM3 Rs12252-C Variant Increases Potential Risk for Severe Influenza Virus Infection in Chinese Population. Front. Cell Infect. Microbiol. 2017, 7, 294. [Google Scholar] [CrossRef]
  97. Wang, Z.; Zhang, A.; Wan, Y.; Liu, X.; Qiu, C.; Xi, X.; Ren, Y.; Wang, J.; Dong, Y.; Bao, M.; et al. Early hypercytokinemia is associated with interferon-induced transmembrane protein-3 dysfunction and predictive of fatal H7N9 infection. Proc. Natl. Acad. Sci. USA 2014, 111, 769–774. [Google Scholar] [CrossRef]
  98. Xuan, Y.; Wang, L.N.; Li, W.; Zi, H.R.; Guo, Y.; Yan, W.J.; Chen, X.B.; Wei, P.M. IFITM3 rs12252 T>C polymorphism is associated with the risk of severe influenza: A meta-analysis. Epidemiol. Infect. 2015, 143, 2975–2984. [Google Scholar] [CrossRef]
  99. Lee, N.; Cao, B.; Ke, C.; Lu, H.; Hu, Y.; Tam, C.H.T.; Ma, R.C.W.; Guan, D.; Zhu, Z.; Li, H.; et al. IFITM3, TLR3, and CD55 Gene SNPs and Cumulative Genetic Risks for Severe Outcomes in Chinese Patients With H7N9/H1N1pdm09 Influenza. J. Infect. Dis. 2017, 216, 97–104. [Google Scholar] [CrossRef]
  100. Kim, Y.C.; Jeong, B.H. Ethnic variation in risk genotypes based on single nucleotide polymorphisms (SNPs) of the interferon-inducible transmembrane 3 (IFITM3) gene, a susceptibility factor for pandemic 2009 H1N1 influenza A virus. Immunogenetics 2020, 72, 447–453. [Google Scholar] [CrossRef]
  101. Yang, X.; Tan, B.; Zhou, X.; Xue, J.; Zhang, X.; Wang, P.; Shao, C.; Li, Y.; Li, C.; Xia, H.; et al. Interferon-Inducible Transmembrane Protein 3 Genetic Variant rs12252 and Influenza Susceptibility and Severity: A Meta-Analysis. PLoS ONE 2015, 10, e0124985. [Google Scholar] [CrossRef]
  102. Mehrbod, P.; Eybpoosh, S.; Fotouhi, F.; Shokouhi Targhi, H.; Mazaheri, V.; Farahmand, B. Association of IFITM3 rs12252 polymorphisms, BMI, diabetes, and hypercholesterolemia with mild flu in an Iranian population. Virol. J. 2017, 14, 218. [Google Scholar] [CrossRef]
  103. Mills, T.C.; Rautanen, A.; Elliott, K.S.; Parks, T.; Naranbhai, V.; Ieven, M.M.; Butler, C.C.; Little, P.; Verheij, T.; Garrard, C.S.; et al. IFITM3 and susceptibility to respiratory viral infections in the community. J. Infect. Dis. 2014, 209, 1028–1031. [Google Scholar] [CrossRef]
  104. Gaio, V.; Nunes, B.; Pechirra, P.; Conde, P.; Guiomar, R.; Dias, C.M.; Barreto, M. Hospitalization Risk Due to Respiratory Illness Associated with Genetic Variation at IFITM3 in Patients with Influenza A(H1N1)pdm09 Infection: A Case-Control Study. PLoS ONE 2016, 11, e0158181. [Google Scholar] [CrossRef]
  105. Lopez-Rodriguez, M.; Herrera-Ramos, E.; Sole-Violan, J.; Ruiz-Hernandez, J.J.; Borderias, L.; Horcajada, J.P.; Lerma-Chippirraz, E.; Rajas, O.; Briones, M.; Perez-Gonzalez, M.C.; et al. IFITM3 and severe influenza virus infection. No evidence of genetic association. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 1811–1817. [Google Scholar] [CrossRef]
  106. Randolph, A.G.; Yip, W.K.; Allen, E.K.; Rosenberger, C.M.; Agan, A.A.; Ash, S.A.; Zhang, Y.; Bhangale, T.R.; Finkelstein, D.; Cvijanovich, N.Z.; et al. Evaluation of IFITM3 rs12252 Association With Severe Pediatric Influenza Infection. J. Infect. Dis. 2017, 216, 14–21. [Google Scholar] [CrossRef]
  107. Martins, J.S.C.; Oliveira, M.L.A.; Garcia, C.C.; Siqueira, M.M.; Matos, A.R. Investigation of Human IFITM3 Polymorphisms rs34481144A and rs12252C and Risk for Influenza A(H1N1)pdm09 Severity in a Brazilian Cohort. Front. Cell Infect. Microbiol. 2020, 10, 352. [Google Scholar] [CrossRef] [PubMed]
  108. David, S.; Correia, V.; Antunes, L.; Faria, R.; Ferrao, J.; Faustino, P.; Nunes, B.; Maltez, F.; Lavinha, J.; Rebelo de Andrade, H. Population genetics of IFITM3 in Portugal and Central Africa reveals a potential modifier of influenza severity. Immunogenetics 2018, 70, 169–177. [Google Scholar] [CrossRef] [PubMed]
  109. Makvandi-Nejad, S.; Laurenson-Schafer, H.; Wang, L.; Wellington, D.; Zhao, Y.; Jin, B.; Qin, L.; Kite, K.; Moghadam, H.K.; Song, C.; et al. Lack of Truncated IFITM3 Transcripts in Cells Homozygous for the rs12252-C Variant That is Associated With Severe Influenza Infection. J. Infect. Dis. 2018, 217, 257–262. [Google Scholar] [CrossRef] [PubMed]
  110. Kim, Y.C.; Won, S.Y.; Jeong, B.H. The first association study of single-nucleotide polymorphisms (SNPs) of the IFITM1 gene with influenza H1N1 2009 pandemic virus infection. Mol. Cell Toxicol. 2021, 17, 179–186. [Google Scholar] [CrossRef]
  111. Reddy, B.A.; Etkin, L.D.; Freemont, P.S. A novel zinc finger coiled-coil domain in a family of nuclear proteins. Trends Biochem. Sci. 1992, 17, 344–345. [Google Scholar] [CrossRef] [PubMed]
  112. Reymond, A.; Meroni, G.; Fantozzi, A.; Merla, G.; Cairo, S.; Luzi, L.; Riganelli, D.; Zanaria, E.; Messali, S.; Cainarca, S.; et al. The tripartite motif family identifies cell compartments. EMBO J. 2001, 20, 2140–2151. [Google Scholar] [CrossRef]
  113. Lavau, C.; Marchio, A.; Fagioli, M.; Jansen, J.; Falini, B.; Lebon, P.; Grosveld, F.; Pandolfi, P.P.; Pelicci, P.G.; Dejean, A. The acute promyelocytic leukaemia-associated PML gene is induced by interferon. Oncogene 1995, 11, 871–876. [Google Scholar] [PubMed]
  114. Chelbi-Alix, M.K.; Quignon, F.; Pelicano, L.; Koken, M.H.; de The, H. Resistance to virus infection conferred by the interferon-induced promyelocytic leukemia protein. J. Virol. 1998, 72, 1043–1051. [Google Scholar] [CrossRef] [PubMed]
  115. Carthagena, L.; Bergamaschi, A.; Luna, J.M.; David, A.; Uchil, P.D.; Margottin-Goguet, F.; Mothes, W.; Hazan, U.; Transy, C.; Pancino, G.; et al. Human TRIM gene expression in response to interferons. PLoS ONE 2009, 4, e4894. [Google Scholar] [CrossRef]
  116. Di Pietro, A.; Kajaste-Rudnitski, A.; Oteiza, A.; Nicora, L.; Towers, G.J.; Mechti, N.; Vicenzi, E. TRIM22 inhibits influenza A virus infection by targeting the viral nucleoprotein for degradation. J. Virol. 2013, 87, 4523–4533. [Google Scholar] [CrossRef]
  117. Liu, B.; Li, N.L.; Shen, Y.; Bao, X.; Fabrizio, T.; Elbahesh, H.; Webby, R.J.; Li, K. The C-Terminal Tail of TRIM56 Dictates Antiviral Restriction of Influenza A and B Viruses by Impeding Viral RNA Synthesis. J. Virol. 2016, 90, 4369–4382. [Google Scholar] [CrossRef]
  118. Meyerson, N.R.; Zhou, L.; Guo, Y.R.; Zhao, C.; Tao, Y.J.; Krug, R.M.; Sawyer, S.L. Nuclear TRIM25 Specifically Targets Influenza Virus Ribonucleoproteins to Block the Onset of RNA Chain Elongation. Cell Host Microbe 2017, 22, 627–638 e627. [Google Scholar] [CrossRef]
  119. Wu, X.; Wang, J.; Wang, S.; Wu, F.; Chen, Z.; Li, C.; Cheng, G.; Qin, F.X. Inhibition of Influenza A Virus Replication by TRIM14 via Its Multifaceted Protein-Protein Interaction With NP. Front. Microbiol. 2019, 10, 344. [Google Scholar] [CrossRef]
  120. Sun, N.; Jiang, L.; Ye, M.; Wang, Y.; Wang, G.; Wan, X.; Zhao, Y.; Wen, X.; Liang, L.; Ma, S.; et al. TRIM35 mediates protection against influenza infection by activating TRAF3 and degrading viral PB2. Protein Cell 2020, 11, 894–914. [Google Scholar] [CrossRef]
  121. Charman, M.; McFarlane, S.; Wojtus, J.K.; Sloan, E.; Dewar, R.; Leeming, G.; Al-Saadi, M.; Hunter, L.; Carroll, M.W.; Stewart, J.P.; et al. Constitutive TRIM22 Expression in the Respiratory Tract Confers a Pre-Existing Defence Against Influenza A Virus Infection. Front. Cell Infect. Microbiol. 2021, 11, 689707. [Google Scholar] [CrossRef]
  122. Choudhury, N.R.; Trus, I.; Heikel, G.; Wolczyk, M.; Szymanski, J.; Bolembach, A.; Dos Santos Pinto, R.M.; Smith, N.; Trubitsyna, M.; Gaunt, E.; et al. TRIM25 inhibits influenza A virus infection, destabilizes viral mRNA, but is redundant for activating the RIG-I pathway. Nucleic Acids Res. 2022, 50, 7097–7114. [Google Scholar] [CrossRef]
  123. Wang, X.; Xiong, J.; Zhou, D.; Zhang, S.; Wang, L.; Tian, Q.; Li, C.; Liu, J.; Wu, Y.; Li, J.; et al. TRIM34 modulates influenza virus-activated programmed cell death by targeting Z-DNA-binding protein 1 for K63-linked polyubiquitination. J. Biol. Chem. 2022, 298, 101611. [Google Scholar] [CrossRef]
  124. Lin, L.; Wang, X.; Chen, Z.; Deng, T.; Yan, Y.; Dong, W.; Huang, Y.; Zhou, J. TRIM21 restricts influenza A virus replication by ubiquitination-dependent degradation of M1. PLoS Pathog. 2023, 19, e1011472. [Google Scholar] [CrossRef]
  125. Pagani, I.; Di Pietro, A.; Oteiza, A.; Ghitti, M.; Mechti, N.; Naffakh, N.; Vicenzi, E. Mutations Conferring Increased Sensitivity to Tripartite Motif 22 Restriction Accumulated Progressively in the Nucleoprotein of Seasonal Influenza A (H1N1) Viruses between 1918 and 2009. mSphere 2018, 3, 00110–00118. [Google Scholar] [CrossRef]
  126. Gack, M.U.; Albrecht, R.A.; Urano, T.; Inn, K.S.; Huang, I.C.; Carnero, E.; Farzan, M.; Inoue, S.; Jung, J.U.; Garcia-Sastre, A. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe 2009, 5, 439–449. [Google Scholar] [CrossRef] [PubMed]
  127. Rajsbaum, R.; Albrecht, R.A.; Wang, M.K.; Maharaj, N.P.; Versteeg, G.A.; Nistal-Villan, E.; Garcia-Sastre, A.; Gack, M.U. Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein. PLoS Pathog. 2012, 8, e1003059. [Google Scholar] [CrossRef] [PubMed]
  128. Koliopoulos, M.G.; Lethier, M.; van der Veen, A.G.; Haubrich, K.; Hennig, J.; Kowalinski, E.; Stevens, R.V.; Martin, S.R.; Reis e Sousa, C.; Cusack, S.; et al. Molecular mechanism of influenza A NS1-mediated TRIM25 recognition and inhibition. Nat. Commun. 2018, 9, 1820. [Google Scholar] [CrossRef] [PubMed]
  129. Evseev, D.; Miranzo-Navarro, D.; Fleming-Canepa, X.; Webster, R.G.; Magor, K.E. Avian Influenza NS1 Proteins Inhibit Human, but Not Duck, RIG-I Ubiquitination and Interferon Signaling. J. Virol. 2022, 96, e0077622. [Google Scholar] [CrossRef]
  130. Zhu, Q.; Yang, H.; Chen, W.; Cao, W.; Zhong, G.; Jiao, P.; Deng, G.; Yu, K.; Yang, C.; Bu, Z.; et al. A naturally occurring deletion in its NS gene contributes to the attenuation of an H5N1 swine influenza virus in chickens. J. Virol. 2008, 82, 220–228. [Google Scholar] [CrossRef]
  131. Knight, M.; Cayley, P.J.; Silverman, R.H.; Wreschner, D.H.; Gilbert, C.S.; Brown, R.E.; Kerr, I.M. Radioimmune, radiobinding and HPLC analysis of 2-5A and related oligonucleotides from intact cells. Nature 1980, 288, 189–192. [Google Scholar] [CrossRef]
  132. Kerr, I.M.; Brown, R.E. pppA2′p5′A2′p5′A: An inhibitor of protein synthesis synthesized with an enzyme fraction from interferon-treated cells. Proc. Natl. Acad. Sci. USA 1978, 75, 256–260. [Google Scholar] [CrossRef]
  133. Floyd-Smith, G.; Slattery, E.; Lengyel, P. Interferon action: RNA cleavage pattern of a (2’-5’)oligoadenylate--dependent endonuclease. Science 1981, 212, 1030–1032. [Google Scholar] [CrossRef]
  134. Min, J.Y.; Krug, R.M. The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: Inhibiting the 2’-5’ oligo (A) synthetase/RNase L pathway. Proc. Natl. Acad. Sci. USA 2006, 103, 7100–7105. [Google Scholar] [CrossRef]
  135. Cooper, D.A.; Banerjee, S.; Chakrabarti, A.; Garcia-Sastre, A.; Hesselberth, J.R.; Silverman, R.H.; Barton, D.J. RNase L targets distinct sites in influenza A virus RNAs. J. Virol. 2015, 89, 2764–2776. [Google Scholar] [CrossRef] [PubMed]
  136. Li, Y.; Banerjee, S.; Wang, Y.; Goldstein, S.A.; Dong, B.; Gaughan, C.; Silverman, R.H.; Weiss, S.R. Activation of RNase L is dependent on OAS3 expression during infection with diverse human viruses. Proc. Natl. Acad. Sci. USA 2016, 113, 2241–2246. [Google Scholar] [CrossRef] [PubMed]
  137. Zhao, Z.; Li, J.; Feng, Y.; Kang, X.; Li, Y.; Chen, Y.; Li, W.; Yang, W.; Zhao, L.; Huang, S.; et al. Host DNA Demethylation Induced by DNMT1 Inhibition Up-Regulates Antiviral OASL Protein during Influenza a Virus Infection. Viruses 2023, 15, 1646. [Google Scholar] [CrossRef] [PubMed]
  138. Sanchez-Gonzalez, M.T.; Cienfuegos-Jimenez, O.; Alvarez-Cuevas, S.; Perez-Maya, A.A.; Borrego-Soto, G.; Marino-Martinez, I.A. Prevalence of the SNP rs10774671 of the OAS1 gene in Mexico as a possible predisposing factor for RNA virus disease. Int. J. Mol. Epidemiol. Genet. 2021, 12, 52–60. [Google Scholar] [PubMed]
  139. Fensterl, V.; Sen, G.C. The ISG56/IFIT1 gene family. J. Interf. Cytokine Res. 2011, 31, 71–78. [Google Scholar] [CrossRef] [PubMed]
  140. Chebath, J.; Merlin, G.; Metz, R.; Benech, P.; Revel, M. Interferon-induced 56,000 Mr protein and its mRNA in human cells: Molecular cloning and partial sequence of the cDNA. Nucleic Acids Res. 1983, 11, 1213–1226. [Google Scholar] [CrossRef]
  141. Kusari, J.; Sen, G.C. Transcriptional analyses of interferon-inducible mRNAs. Mol. Cell Biol. 1987, 7, 528–531. [Google Scholar] [CrossRef] [PubMed]
  142. Pichlmair, A.; Lassnig, C.; Eberle, C.A.; Gorna, M.W.; Baumann, C.L.; Burkard, T.R.; Burckstummer, T.; Stefanovic, A.; Krieger, S.; Bennett, K.L.; et al. IFIT1 is an antiviral protein that recognizes 5’-triphosphate RNA. Nat. Immunol. 2011, 12, 624–630. [Google Scholar] [CrossRef] [PubMed]
  143. Rohaim, M.A.; Santhakumar, D.; Naggar, R.F.E.; Iqbal, M.; Hussein, H.A.; Munir, M. Chickens Expressing IFIT5 Ameliorate Clinical Outcome and Pathology of Highly Pathogenic Avian Influenza and Velogenic Newcastle Disease Viruses. Front. Immunol. 2018, 9, 2025. [Google Scholar] [CrossRef] [PubMed]
  144. Rong, E.; Hu, J.; Yang, C.; Chen, H.; Wang, Z.; Liu, X.; Liu, W.; Lu, C.; He, P.; Wang, X.; et al. Broad-spectrum antiviral functions of duck interferon-induced protein with tetratricopeptide repeats (AvIFIT). Dev. Comp. Immunol. 2018, 84, 71–81. [Google Scholar] [CrossRef]
  145. Santhakumar, D.; Rohaim, M.; Hussein, H.A.; Hawes, P.; Ferreira, H.L.; Behboudi, S.; Iqbal, M.; Nair, V.; Arns, C.W.; Munir, M. Chicken Interferon-induced Protein with Tetratricopeptide Repeats 5 Antagonizes Replication of RNA Viruses. Sci. Rep. 2018, 8, 6794. [Google Scholar] [CrossRef]
  146. Zhu, Z.; Yang, X.; Huang, C.; Liu, L. The Interferon-Induced Protein with Tetratricopeptide Repeats Repress Influenza Virus Infection by Inhibiting Viral RNA Synthesis. Viruses 2023, 15, 1412. [Google Scholar] [CrossRef]
  147. Hou, L.; Li, J.; Qu, H.; Yang, L.; Chen, Y.; Du, Q.; Liu, W. Inhibition of replication and transcription of WSN influenza A virus by IFIT family genes. Sheng Wu Gong Cheng Xue Bao 2015, 31, 123–134. [Google Scholar]
  148. Abbas, Y.M.; Pichlmair, A.; Gorna, M.W.; Superti-Furga, G.; Nagar, B. Structural basis for viral 5’-PPP-RNA recognition by human IFIT proteins. Nature 2013, 494, 60–64. [Google Scholar] [CrossRef]
  149. Pinto, A.K.; Williams, G.D.; Szretter, K.J.; White, J.P.; Proenca-Modena, J.L.; Liu, G.; Olejnik, J.; Brien, J.D.; Ebihara, H.; Muhlberger, E.; et al. Human and Murine IFIT1 Proteins Do Not Restrict Infection of Negative-Sense RNA Viruses of the Orthomyxoviridae, Bunyaviridae, and Filoviridae Families. J. Virol. 2015, 89, 9465–9476. [Google Scholar] [CrossRef]
  150. Tran, V.; Ledwith, M.P.; Thamamongood, T.; Higgins, C.A.; Tripathi, S.; Chang, M.W.; Benner, C.; Garcia-Sastre, A.; Schwemmle, M.; Boon, A.C.M.; et al. Influenza virus repurposes the antiviral protein IFIT2 to promote translation of viral mRNAs. Nat. Microbiol. 2020, 5, 1490–1503. [Google Scholar] [CrossRef]
  151. Cheng, Y.S.; Colonno, R.J.; Yin, F.H. Interferon induction of fibroblast proteins with guanylate binding activity. J. Biol. Chem. 1983, 258, 7746–7750. [Google Scholar] [CrossRef]
  152. Schwemmle, M.; Staeheli, P. The Interferon-Induced 67-Kda Guanylate-Binding Protein (Hgbp1) Is a Gtpase That Converts Gtp to Gmp. J. Biol. Chem. 1994, 269, 11299–11305. [Google Scholar] [CrossRef]
  153. Nordmann, A.; Wixler, L.; Boergeling, Y.; Wixler, V.; Ludwig, S. A new splice variant of the human guanylate-binding protein 3 mediates anti-influenza activity through inhibition of viral transcription and replication. FASEB J. 2012, 26, 1290–1300. [Google Scholar] [CrossRef]
  154. Feng, J.; Cao, Z.; Wang, L.; Wan, Y.; Peng, N.; Wang, Q.; Chen, X.; Zhou, Y.; Zhu, Y. Inducible GBP5 Mediates the Antiviral Response via Interferon-Related Pathways during Influenza A Virus Infection. J. Innate Immun. 2017, 9, 419–435. [Google Scholar] [CrossRef]
  155. Braun, E.; Hotter, D.; Koepke, L.; Zech, F.; Gross, R.; Sparrer, K.M.J.; Muller, J.A.; Pfaller, C.K.; Heusinger, E.; Wombacher, R.; et al. Guanylate-Binding Proteins 2 and 5 Exert Broad Antiviral Activity by Inhibiting Furin-Mediated Processing of Viral Envelope Proteins. Cell Rep. 2019, 27, 2092–2104 e2010. [Google Scholar] [CrossRef]
  156. Zhu, Z.; Shi, Z.; Yan, W.; Wei, J.; Shao, D.; Deng, X.; Wang, S.; Li, B.; Tong, G.; Ma, Z. Nonstructural protein 1 of influenza A virus interacts with human guanylate-binding protein 1 to antagonize antiviral activity. PLoS ONE 2013, 8, e55920. [Google Scholar] [CrossRef]
  157. Kupzig, S.; Korolchuk, V.; Rollason, R.; Sugden, A.; Wilde, A.; Banting, G. Bst-2/HM1.24 is a raft-associated apical membrane protein with an unusual topology. Traffic 2003, 4, 694–709. [Google Scholar] [CrossRef]
  158. Winkler, M.; Bertram, S.; Gnirss, K.; Nehlmeier, I.; Gawanbacht, A.; Kirchhoff, F.; Ehrhardt, C.; Ludwig, S.; Kiene, M.; Moldenhauer, A.S.; et al. Influenza A virus does not encode a tetherin antagonist with Vpu-like activity and induces IFN-dependent tetherin expression in infected cells. PLoS ONE 2012, 7, e43337. [Google Scholar] [CrossRef]
  159. Watanabe, R.; Leser, G.P.; Lamb, R.A. Influenza virus is not restricted by tetherin whereas influenza VLP production is restricted by tetherin. Virology 2011, 417, 50–56. [Google Scholar] [CrossRef] [PubMed]
  160. Yondola, M.A.; Fernandes, F.; Belicha-Villanueva, A.; Uccelini, M.; Gao, Q.; Carter, C.; Palese, P. Budding capability of the influenza virus neuraminidase can be modulated by tetherin. J. Virol. 2011, 85, 2480–2491. [Google Scholar] [CrossRef] [PubMed]
  161. Gnirss, K.; Zmora, P.; Blazejewska, P.; Winkler, M.; Lins, A.; Nehlmeier, I.; Gartner, S.; Moldenhauer, A.S.; Hofmann-Winkler, H.; Wolff, T.; et al. Tetherin Sensitivity of Influenza A Viruses Is Strain Specific: Role of Hemagglutinin and Neuraminidase. J. Virol. 2015, 89, 9178–9188. [Google Scholar] [CrossRef] [PubMed]
  162. Hu, S.; Yin, L.; Mei, S.; Li, J.; Xu, F.; Sun, H.; Liu, X.; Cen, S.; Liang, C.; Li, A.; et al. BST-2 restricts IAV release and is countered by the viral M2 protein. Biochem. J. 2017, 474, 715–730. [Google Scholar] [CrossRef] [PubMed]
  163. Bruce, E.A.; Abbink, T.E.; Wise, H.M.; Rollason, R.; Galao, R.P.; Banting, G.; Neil, S.J.; Digard, P. Release of filamentous and spherical influenza A virus is not restricted by tetherin. J. Gen. Virol. 2012, 93, 963–969. [Google Scholar] [CrossRef] [PubMed]
  164. Londrigan, S.L.; Tate, M.D.; Job, E.R.; Moffat, J.M.; Wakim, L.M.; Gonelli, C.A.; Purcell, D.F.; Brooks, A.G.; Villadangos, J.A.; Reading, P.C. Endogenous murine BST-2/tetherin is not a major restriction factor of influenza A virus infection. PLoS ONE 2015, 10, e0142925. [Google Scholar] [CrossRef] [PubMed]
  165. Zheng, Y.; Hao, X.; Zheng, Q.; Lin, X.; Zhang, X.; Zeng, W.; Ding, S.; Zhou, P.; Li, S. Canine Influenza Virus is Mildly Restricted by Canine Tetherin Protein. Viruses 2018, 10, 565. [Google Scholar] [CrossRef] [PubMed]
  166. Mangeat, B.; Cavagliotti, L.; Lehmann, M.; Gers-Huber, G.; Kaur, I.; Thomas, Y.; Kaiser, L.; Piguet, V. Influenza virus partially counteracts restriction imposed by tetherin/BST-2. J. Biol. Chem. 2012, 287, 22015–22029. [Google Scholar] [CrossRef] [PubMed]
  167. Leyva-Grado, V.H.; Hai, R.; Fernandes, F.; Belicha-Villanueva, A.; Carter, C.; Yondola, M.A. Modulation of an ectodomain motif in the influenza A virus neuraminidase alters tetherin sensitivity and results in virus attenuation in vivo. J. Mol. Biol. 2014, 426, 1308–1321. [Google Scholar] [CrossRef]
  168. Farrell, P.J.; Broeze, R.J.; Lengyel, P. Accumulation of an mRNA and protein in interferon-treated Ehrlich ascites tumour cells. Nature 1979, 279, 523–525. [Google Scholar] [CrossRef]
  169. Haas, A.L.; Ahrens, P.; Bright, P.M.; Ankel, H. Interferon induces a 15-kilodalton protein exhibiting marked homology to ubiquitin. J. Biol. Chem. 1987, 262, 11315–11323. [Google Scholar] [CrossRef]
  170. Lenschow, D.J.; Lai, C.; Frias-Staheli, N.; Giannakopoulos, N.V.; Lutz, A.; Wolff, T.; Osiak, A.; Levine, B.; Schmidt, R.E.; Garcia-Sastre, A.; et al. IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. Proc. Natl. Acad. Sci. USA 2007, 104, 1371–1376. [Google Scholar] [CrossRef]
  171. Tang, Y.; Zhong, G.; Zhu, L.; Liu, X.; Shan, Y.; Feng, H.; Bu, Z.; Chen, H.; Wang, C. Herc5 attenuates influenza A virus by catalyzing ISGylation of viral NS1 protein. J. Immunol. 2010, 184, 5777–5790. [Google Scholar] [CrossRef]
  172. Zhao, C.; Hsiang, T.Y.; Kuo, R.L.; Krug, R.M. ISG15 conjugation system targets the viral NS1 protein in influenza A virus-infected cells. Proc. Natl. Acad. Sci. USA 2010, 107, 2253–2258. [Google Scholar] [CrossRef]
  173. Sanyal, S.; Ashour, J.; Maruyama, T.; Altenburg, A.F.; Cragnolini, J.J.; Bilate, A.; Avalos, A.M.; Kundrat, L.; Garcia-Sastre, A.; Ploegh, H.L. Type I interferon imposes a TSG101/ISG15 checkpoint at the Golgi for glycoprotein trafficking during influenza virus infection. Cell Host Microbe 2013, 14, 510–521. [Google Scholar] [CrossRef]
  174. Kim, K.I.; Giannakopoulos, N.V.; Virgin, H.W.; Zhang, D.E. Interferon-inducible ubiquitin E2, Ubc8, is a conjugating enzyme for protein ISGylation. Mol. Cell Biol. 2004, 24, 9592–9600. [Google Scholar] [CrossRef]
  175. Zhao, C.; Beaudenon, S.L.; Kelley, M.L.; Waddell, M.B.; Yuan, W.; Schulman, B.A.; Huibregtse, J.M.; Krug, R.M. The UbcH8 ubiquitin E2 enzyme is also the E2 enzyme for ISG15, an IFN-alpha/beta-induced ubiquitin-like protein. Proc. Natl. Acad. Sci. USA 2004, 101, 7578–7582. [Google Scholar] [CrossRef]
  176. Dastur, A.; Beaudenon, S.; Kelley, M.; Krug, R.M.; Huibregtse, J.M. Herc5, an interferon-induced HECT E3 enzyme, is required for conjugation of ISG15 in human cells. J. Biol. Chem. 2006, 281, 4334–4338. [Google Scholar] [CrossRef]
  177. Wong, J.J.; Pung, Y.F.; Sze, N.S.; Chin, K.C. HERC5 is an IFN-induced HECT-type E3 protein ligase that mediates type I IFN-induced ISGylation of protein targets. Proc. Natl. Acad. Sci. USA 2006, 103, 10735–10740. [Google Scholar] [CrossRef]
  178. Zou, W.; Zhang, D.E. The interferon-inducible ubiquitin-protein isopeptide ligase (E3) EFP also functions as an ISG15 E3 ligase. J. Biol. Chem. 2006, 281, 3989–3994. [Google Scholar] [CrossRef]
  179. Yuan, W.; Krug, R.M. Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. EMBO J. 2001, 20, 362–371. [Google Scholar] [CrossRef] [PubMed]
  180. Meurs, E.; Chong, K.; Galabru, J.; Thomas, N.S.; Kerr, I.M.; Williams, B.R.; Hovanessian, A.G. Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell 1990, 62, 379–390. [Google Scholar] [CrossRef] [PubMed]
  181. Balachandran, S.; Roberts, P.C.; Brown, L.E.; Truong, H.; Pattnaik, A.K.; Archer, D.R.; Barber, G.N. Essential role for the dsRNA-dependent protein kinase PKR in innate immunity to viral infection. Immunity 2000, 13, 129–141. [Google Scholar] [CrossRef]
  182. Bergmann, M.; Garcia-Sastre, A.; Carnero, E.; Pehamberger, H.; Wolff, K.; Palese, P.; Muster, T. Influenza virus NS1 protein counteracts PKR-mediated inhibition of replication. J. Virol. 2000, 74, 6203–6206. [Google Scholar] [CrossRef]
  183. Katze, M.G.; Tomita, J.; Black, T.; Krug, R.M.; Safer, B.; Hovanessian, A. Influenza virus regulates protein synthesis during infection by repressing autophosphorylation and activity of the cellular 68,000-Mr protein kinase. J. Virol. 1988, 62, 3710–3717. [Google Scholar] [CrossRef]
  184. Lu, Y.; Wambach, M.; Katze, M.G.; Krug, R.M. Binding of the influenza virus NS1 protein to double-stranded RNA inhibits the activation of the protein kinase that phosphorylates the elF-2 translation initiation factor. Virology 1995, 214, 222–228. [Google Scholar] [CrossRef] [PubMed]
  185. Sharma, K.; Tripathi, S.; Ranjan, P.; Kumar, P.; Garten, R.; Deyde, V.; Katz, J.M.; Cox, N.J.; Lal, R.B.; Sambhara, S.; et al. Influenza A virus nucleoprotein exploits Hsp40 to inhibit PKR activation. PLoS ONE 2011, 6, e20215. [Google Scholar] [CrossRef] [PubMed]
  186. Chen, C.J.; Lin, T.T.; Shively, J.E. Role of interferon regulatory factor-1 in the induction of biliary glycoprotein (cell CAM-1) by interferon-gamma. J. Biol. Chem. 1996, 271, 28181–28188. [Google Scholar] [CrossRef] [PubMed]
  187. Vitenshtein, A.; Weisblum, Y.; Hauka, S.; Halenius, A.; Oiknine-Djian, E.; Tsukerman, P.; Bauman, Y.; Bar-On, Y.; Stern-Ginossar, N.; Enk, J.; et al. CEACAM1-Mediated Inhibition of Virus Production. Cell Rep. 2016, 15, 2331–2339. [Google Scholar] [CrossRef] [PubMed]
  188. Dawson, M.J.; Trapani, J.A. The interferon-inducible autoantigen, IFI 16: Localization to the nucleolus and identification of a DNA-binding domain. Biochem. Biophys Res. Commun. 1995, 214, 152–162. [Google Scholar] [CrossRef] [PubMed]
  189. Trapani, J.A.; Browne, K.A.; Dawson, M.J.; Ramsay, R.G.; Eddy, R.L.; Show, T.B.; White, P.C.; Dupont, B. A novel gene constitutively expressed in human lymphoid cells is inducible with interferon-gamma in myeloid cells. Immunogenetics 1992, 36, 369–376. [Google Scholar] [CrossRef]
  190. Unterholzner, L.; Keating, S.E.; Baran, M.; Horan, K.A.; Jensen, S.B.; Sharma, S.; Sirois, C.M.; Jin, T.; Latz, E.; Xiao, T.S.; et al. IFI16 is an innate immune sensor for intracellular DNA. Nat. Immunol. 2010, 11, 997–1004. [Google Scholar] [CrossRef] [PubMed]
  191. Jiang, Z.; Wei, F.; Zhang, Y.; Wang, T.; Gao, W.; Yu, S.; Sun, H.; Pu, J.; Sun, Y.; Wang, M.; et al. IFI16 directly senses viral RNA and enhances RIG-I transcription and activation to restrict influenza virus infection. Nat. Microbiol. 2021, 6, 932–945. [Google Scholar] [CrossRef]
  192. Mishra, S.; Raj, A.S.; Kumar, A.; Rajeevan, A.; Kumari, P.; Kumar, H. Innate immune sensing of influenza A viral RNA through IFI16 promotes pyroptotic cell death. iScience 2022, 25, 103714. [Google Scholar] [CrossRef]
  193. Gongora, C.; David, G.; Pintard, L.; Tissot, C.; Hua, T.D.; Dejean, A.; Mechti, N. Molecular cloning of a new interferon-induced PML nuclear body-associated protein. J. Biol. Chem. 1997, 272, 19457–19463. [Google Scholar] [CrossRef]
  194. Nguyen, L.H.; Espert, L.; Mechti, N.; Wilson, D.M., 3rd. The human interferon- and estrogen-regulated ISG20/HEM45 gene product degrades single-stranded RNA and DNA in vitro. Biochemistry 2001, 40, 7174–7179. [Google Scholar] [CrossRef]
  195. Espert, L.; Degols, G.; Gongora, C.; Blondel, D.; Williams, B.R.; Silverman, R.H.; Mechti, N. ISG20, a new interferon-induced RNase specific for single-stranded RNA, defines an alternative antiviral pathway against RNA genomic viruses. J. Biol. Chem. 2003, 278, 16151–16158. [Google Scholar] [CrossRef]
  196. Qu, H.; Li, J.; Yang, L.; Sun, L.; Liu, W.; He, H. Influenza A Virus-induced expression of ISG20 inhibits viral replication by interacting with nucleoprotein. Virus Genes 2016, 52, 759–767. [Google Scholar] [CrossRef]
  197. Gregersen, L.H.; Schueler, M.; Munschauer, M.; Mastrobuoni, G.; Chen, W.; Kempa, S.; Dieterich, C.; Landthaler, M. MOV10 Is a 5’ to 3’ RNA helicase contributing to UPF1 mRNA target degradation by translocation along 3′ UTRs. Mol. Cell 2014, 54, 573–585. [Google Scholar] [CrossRef]
  198. Sun, N.; Sun, W.; Li, S.; Yang, J.; Yang, L.; Quan, G.; Gao, X.; Wang, Z.; Cheng, X.; Li, Z.; et al. Proteomics Analysis of Cellular Proteins Co-Immunoprecipitated with Nucleoprotein of Influenza A Virus (H7N9). Int. J. Mol. Sci. 2015, 16, 25982–25998. [Google Scholar] [CrossRef]
  199. Zhang, J.; Huang, F.; Tan, L.; Bai, C.; Chen, B.; Liu, J.; Liang, J.; Liu, C.; Zhang, S.; Lu, G.; et al. Host Protein Moloney Leukemia Virus 10 (MOV10) Acts as a Restriction Factor of Influenza A Virus by Inhibiting the Nuclear Import of the Viral Nucleoprotein. J. Virol. 2016, 90, 3966–3980. [Google Scholar] [CrossRef]
  200. Li, J.; Hu, S.; Xu, F.; Mei, S.; Liu, X.; Yin, L.; Zhao, F.; Zhao, X.; Sun, H.; Xiong, Z.; et al. MOV10 sequesters the RNP of influenza A virus in the cytoplasm and is antagonized by viral NS1 protein. Biochem. J. 2019, 476, 467–481. [Google Scholar] [CrossRef]
  201. McAuley, J.L.; Corcilius, L.; Tan, H.X.; Payne, R.J.; McGuckin, M.A.; Brown, L.E. The cell surface mucin MUC1 limits the severity of influenza A virus infection. Mucosal. Immunol. 2017, 10, 1581–1593. [Google Scholar] [CrossRef] [PubMed]
  202. Dabbagh, D.; He, S.; Hetrick, B.; Chilin, L.; Andalibi, A.; Wu, Y. Identification of the SHREK Family of Proteins as Broad-Spectrum Host Antiviral Factors. Viruses 2021, 13, 832. [Google Scholar] [CrossRef] [PubMed]
  203. Iverson, E.; Griswold, K.; Song, D.; Gagliardi, T.B.; Hamidzadeh, K.; Kesimer, M.; Sinha, S.; Perry, M.; Duncan, G.A.; Scull, M.A. Membrane-Tethered Mucin 1 Is Stimulated by Interferon and Virus Infection in Multiple Cell Types and Inhibits Influenza A Virus Infection in Human Airway Epithelium. mBio 2022, 13, e0105522. [Google Scholar] [CrossRef] [PubMed]
  204. Yu, L.; Croze, E.; Yamaguchi, K.D.; Tran, T.; Reder, A.T.; Litvak, V.; Volkert, M.R. Induction of a unique isoform of the NCOA7 oxidation resistance gene by interferon beta-1b. J. Interferon Cytokine Res. 2015, 35, 186–199. [Google Scholar] [CrossRef] [PubMed]
  205. Doyle, T.; Moncorge, O.; Bonaventure, B.; Pollpeter, D.; Lussignol, M.; Tauziet, M.; Apolonia, L.; Catanese, M.T.; Goujon, C.; Malim, M.H. The interferon-inducible isoform of NCOA7 inhibits endosome-mediated viral entry. Nat. Microbiol. 2018, 3, 1369–1376. [Google Scholar] [CrossRef] [PubMed]
  206. Ma, C.; Li, Y.; Zong, Y.; Velkov, T.; Wang, C.; Yang, X.; Zhang, M.; Jiang, Z.; Sun, H.; Tong, Q.; et al. p21 restricts influenza A virus by perturbing the viral polymerase complex and upregulating type I interferon signaling. PLoS Pathog. 2022, 18, e1010295. [Google Scholar] [CrossRef] [PubMed]
  207. Dittmann, M.; Hoffmann, H.H.; Scull, M.A.; Gilmore, R.H.; Bell, K.L.; Ciancanelli, M.; Wilson, S.J.; Crotta, S.; Yu, Y.; Flatley, B.; et al. A serpin shapes the extracellular environment to prevent influenza A virus maturation. Cell 2015, 160, 631–643. [Google Scholar] [CrossRef]
  208. Sun, N.; Li, C.; Li, X.F.; Deng, Y.Q.; Jiang, T.; Zhang, N.N.; Zu, S.; Zhang, R.R.; Li, L.; Chen, X.; et al. Type-IInterferon-Inducible SERTAD3 Inhibits Influenza A Virus Replication by Blocking the Assembly of Viral RNA Polymerase Complex. Cell Rep. 2020, 33, 108342. [Google Scholar] [CrossRef]
  209. De la Casa-Esperon, E. From mammals to viruses: The Schlafen genes in developmental, proliferative and immune processes. Biomol. Concepts 2011, 2, 159–169. [Google Scholar] [CrossRef]
  210. Seong, R.K.; Seo, S.W.; Kim, J.A.; Fletcher, S.J.; Morgan, N.V.; Kumar, M.; Choi, Y.K.; Shin, O.S. Schlafen 14 (SLFN14) is a novel antiviral factor involved in the control of viral replication. Immunobiology 2017, 222, 979–988. [Google Scholar] [CrossRef]
  211. Jitobaom, K.; Sirihongthong, T.; Boonarkart, C.; Phakaratsakul, S.; Suptawiwat, O.; Auewarakul, P. Human Schlafen 11 inhibits influenza A virus production. Virus Res. 2023, 334, 199162. [Google Scholar] [CrossRef] [PubMed]
  212. Ahn, N.; Kim, W.J.; Kim, N.; Park, H.W.; Lee, S.W.; Yoo, J.Y. The Interferon-Inducible Proteoglycan Testican-2/SPOCK2 Functions as a Protective Barrier against Virus Infection of Lung Epithelial Cells. J. Virol. 2019, 93, e00662-19. [Google Scholar] [CrossRef]
  213. Fernbach, S.; Spieler, E.E.; Busnadiego, I.; Karakus, U.; Lkharrazi, A.; Stertz, S.; Hale, B.G. Restriction factor screening identifies RABGAP1L-mediated disruption of endocytosis as a host antiviral defense. Cell Rep. 2022, 38, 110549. [Google Scholar] [CrossRef] [PubMed]
  214. Chin, K.C.; Cresswell, P. Viperin (cig5), an IFN-inducible antiviral protein directly induced by human cytomegalovirus. Proc. Natl. Acad. Sci. USA 2001, 98, 15125–15130. [Google Scholar] [CrossRef] [PubMed]
  215. Wang, X.; Hinson, E.R.; Cresswell, P. The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts. Cell Host Microbe 2007, 2, 96–105. [Google Scholar] [CrossRef] [PubMed]
  216. Tan, K.S.; Olfat, F.; Phoon, M.C.; Hsu, J.P.; Howe, J.L.C.; Seet, J.E.; Chin, K.C.; Chow, V.T.K. In vivo and in vitro studies on the antiviral activities of viperin against influenza H1N1 virus infection. J. Gen. Virol. 2012, 93, 1269–1277. [Google Scholar] [CrossRef]
  217. Liu, C.H.; Zhou, L.; Chen, G.; Krug, R.M. Battle between influenza A virus and a newly identified antiviral activity of the PARP-containing ZAPL protein. Proc. Natl. Acad. Sci. USA 2015, 112, 14048–14053. [Google Scholar] [CrossRef]
  218. Tang, Q.; Wang, X.; Gao, G. The Short Form of the Zinc Finger Antiviral Protein Inhibits Influenza A Virus Protein Expression and Is Antagonized by the Virus-Encoded NS1. J. Virol. 2017, 91, 01909–01916. [Google Scholar] [CrossRef]
  219. Zhang, B.; Goraya, M.U.; Chen, N.; Xu, L.; Hong, Y.; Zhu, M.; Chen, J.L. Zinc Finger CCCH-Type Antiviral Protein 1 Restricts the Viral Replication by Positively Regulating Type I Interferon Response. Front. Microbiol. 2020, 11, 1912. [Google Scholar] [CrossRef]
  220. Ma, Y.; Ouyang, J.; Wei, J.; Maarouf, M.; Chen, J.L. Involvement of Host Non-Coding RNAs in the Pathogenesis of the Influenza Virus. Int. J. Mol. Sci. 2016, 18, 39. [Google Scholar] [CrossRef]
  221. Chai, W.; Li, J.; Shangguan, Q.; Liu, Q.; Li, X.; Qi, D.; Tong, X.; Liu, W.; Ye, X. Lnc-ISG20 Inhibits Influenza A Virus Replication by Enhancing ISG20 Expression. J. Virol. 2018, 92, e00539-18. [Google Scholar] [CrossRef]
  222. Lin, H.; Jiang, M.; Liu, L.; Yang, Z.; Ma, Z.; Liu, S.; Ma, Y.; Zhang, L.; Cao, X. The long noncoding RNA Lnczc3h7a promotes a TRIM25-mediated RIG-I antiviral innate immune response. Nat. Immunol. 2019, 20, 812–823. [Google Scholar] [CrossRef]
  223. Maarouf, M.; Chen, B.; Chen, Y.; Wang, X.; Rai, K.R.; Zhao, Z.; Liu, S.; Li, Y.; Xiao, M.; Chen, J.L. Identification of lncRNA-155 encoded by MIR155HG as a novel regulator of innate immunity against influenza A virus infection. Cell Microbiol. 2019, 21, e13036. [Google Scholar] [CrossRef]
  224. Pan, Q.; Zhao, Z.; Liao, Y.; Chiu, S.H.; Wang, S.; Chen, B.; Chen, N.; Chen, Y.; Chen, J.L. Identification of an Interferon-Stimulated Long Noncoding RNA (LncRNA ISR) Involved in Regulation of Influenza A Virus Replication. Int. J. Mol. Sci. 2019, 20, 5118. [Google Scholar] [CrossRef]
  225. Zhao, L.; Xia, M.; Wang, K.; Lai, C.; Fan, H.; Gu, H.; Yang, P.; Wang, X. A Long Non-coding RNA IVRPIE Promotes Host Antiviral Immune Responses Through Regulating Interferon beta1 and ISG Expression. Front. Microbiol. 2020, 11, 260. [Google Scholar] [CrossRef]
  226. Liu, Q.; Yang, H.; Zhao, L.; Huang, N.; Ping, J. A Novel lncRNA SAAL Suppresses IAV Replication by Promoting Innate Responses. Microorganisms 2022, 10, 2336. [Google Scholar] [CrossRef]
  227. van Solingen, C.; Cyr, Y.; Scacalossi, K.R.; de Vries, M.; Barrett, T.J.; de Jong, A.; Gourvest, M.; Zhang, T.; Peled, D.; Kher, R.; et al. Long noncoding RNA CHROMR regulates antiviral immunity in humans. Proc. Natl. Acad. Sci. USA 2022, 119, e2210321119. [Google Scholar] [CrossRef]
  228. Zhang, Y.; Chi, X.; Hu, J.; Wang, S.; Zhao, S.; Mao, Y.; Peng, B.; Chen, J.; Wang, S. LncRNA LINC02574 Inhibits Influenza A Virus Replication by Positively Regulating the Innate Immune Response. Int. J. Mol. Sci. 2023, 24, 7248. [Google Scholar] [CrossRef]
  229. Qu, Z.; Meng, F.; Shi, J.; Deng, G.; Zeng, X.; Ge, J.; Li, Y.; Liu, L.; Chen, P.; Jiang, Y.; et al. A Novel Intronic Circular RNA Antagonizes Influenza Virus by Absorbing a microRNA That Degrades CREBBP and Accelerating IFN-beta Production. mBio 2021, 12, e0101721. [Google Scholar] [CrossRef]
  230. Min, J.; Li, Y.; Li, X.; Wang, M.; Li, H.; Bi, Y.; Xu, P.; Liu, W.; Ye, X.; Li, J. The circRNA circVAMP3 restricts influenza A virus replication by interfering with NP and NS1 proteins. PLoS Pathog. 2023, 19, e1011577. [Google Scholar] [CrossRef]
  231. Ingle, H.; Kumar, S.; Raut, A.A.; Mishra, A.; Kulkarni, D.D.; Kameyama, T.; Takaoka, A.; Akira, S.; Kumar, H. The microRNA miR-485 targets host and influenza virus transcripts to regulate antiviral immunity and restrict viral replication. Sci. Signal 2015, 8, ra126. [Google Scholar] [CrossRef]
  232. Sharma, S.; Chatterjee, A.; Kumar, P.; Lal, S.; Kondabagil, K. Upregulation of miR-101 during Influenza A Virus Infection Abrogates Viral Life Cycle by Targeting mTOR Pathway. Viruses 2020, 12, 444. [Google Scholar] [CrossRef]
  233. Song, J.; Sun, H.; Sun, H.; Jiang, Z.; Zhu, J.; Wang, C.; Gao, W.; Wang, T.; Pu, J.; Sun, Y.; et al. Swine MicroRNAs ssc-miR-221-3p and ssc-miR-222 Restrict the Cross-Species Infection of Avian Influenza Virus. J. Virol. 2020, 94, e01700-20. [Google Scholar] [CrossRef]
  234. Gothel, S.F.; Marahiel, M.A. Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell Mol. Life Sci. 1999, 55, 423–436. [Google Scholar] [CrossRef] [PubMed]
  235. Liu, X.; Sun, L.; Yu, M.; Wang, Z.; Xu, C.; Xue, Q.; Zhang, K.; Ye, X.; Kitamura, Y.; Liu, W. Cyclophilin A interacts with influenza A virus M1 protein and impairs the early stage of the viral replication. Cell Microbiol. 2009, 11, 730–741. [Google Scholar] [CrossRef]
  236. Xu, C.; Meng, S.; Liu, X.; Sun, L.; Liu, W. Chicken cyclophilin A is an inhibitory factor to influenza virus replication. Virol. J. 2010, 7, 372. [Google Scholar] [CrossRef]
  237. Liu, X.; Zhao, Z.; Xu, C.; Sun, L.; Chen, J.; Zhang, L.; Liu, W. Cyclophilin A restricts influenza A virus replication through degradation of the M1 protein. PLoS ONE 2012, 7, e31063. [Google Scholar] [CrossRef]
  238. Li, J.; Chen, C.; Wong, G.; Dong, W.; Zheng, W.; Li, Y.; Sun, L.; Zhang, L.; Gao, G.F.; Bi, Y.; et al. Cyclophilin A protects mice against infection by influenza A virus. Sci. Rep. 2016, 6, 28978. [Google Scholar] [CrossRef]
  239. Downey, J.; Randolph, H.E.; Pernet, E.; Tran, K.A.; Khader, S.A.; King, I.L.; Barreiro, L.B.; Divangahi, M. Mitochondrial cyclophilin D promotes disease tolerance by licensing NK cell development and IL-22 production against influenza virus. Cell Rep. 2022, 39, 110974. [Google Scholar] [CrossRef]
  240. Mahesutihan, M.; Zheng, W.; Cui, L.; Li, Y.; Jiao, P.; Yang, W.; Liu, W.; Li, J.; Fan, W.; Yang, L.; et al. CypA Regulates AIP4-Mediated M1 Ubiquitination of Influenza A Virus. Virol. Sin. 2018, 33, 440–448. [Google Scholar] [CrossRef]
  241. Liu, W.; Li, J.; Zheng, W.; Shang, Y.; Zhao, Z.; Wang, S.; Bi, Y.; Zhang, S.; Xu, C.; Duan, Z.; et al. Cyclophilin A-regulated ubiquitination is critical for RIG-I-mediated antiviral immune responses. Elife 2017, 6, e24425. [Google Scholar] [CrossRef] [PubMed]
  242. Wang, Z.; Liu, X.; Zhao, Z.; Xu, C.; Zhang, K.; Chen, C.; Sun, L.; Gao, G.F.; Ye, X.; Liu, W. Cyclophilin E functions as a negative regulator to influenza virus replication by impairing the formation of the viral ribonucleoprotein complex. PLoS ONE 2011, 6, e22625. [Google Scholar] [CrossRef]
  243. Fu, B.; Wang, L.; Ding, H.; Schwamborn, J.C.; Li, S.; Dorf, M.E. TRIM32 Senses and Restricts Influenza A Virus by Ubiquitination of PB1 Polymerase. PLoS Pathog. 2015, 11, e1004960. [Google Scholar] [CrossRef] [PubMed]
  244. Patil, G.; Zhao, M.; Song, K.; Hao, W.; Bouchereau, D.; Wang, L.; Li, S. TRIM41-Mediated Ubiquitination of Nucleoprotein Limits Influenza A Virus Infection. J. Virol. 2018, 92, 00905–00918. [Google Scholar] [CrossRef] [PubMed]
  245. Liu, Y.; Wei, Y.; Zhou, Z.; Gu, Y.; Pang, Z.; Liao, M.; Sun, H. Overexpression of TRIM16 Reduces the Titer of H5N1 Highly Pathogenic Avian Influenza Virus and Promotes the Expression of Antioxidant Genes through Regulating the SQSTM1-NRF2-KEAP1 Axis. Viruses 2023, 15, 391. [Google Scholar] [CrossRef]
  246. Chen, G.; Liu, C.H.; Zhou, L.; Krug, R.M. Cellular DDX21 RNA helicase inhibits influenza A virus replication but is counteracted by the viral NS1 protein. Cell Host Microbe 2014, 15, 484–493. [Google Scholar] [CrossRef]
  247. Thulasi Raman, S.N.; Liu, G.; Pyo, H.M.; Cui, Y.C.; Xu, F.; Ayalew, L.E.; Tikoo, S.K.; Zhou, Y. DDX3 Interacts with Influenza A Virus NS1 and NP Proteins and Exerts Antiviral Function through Regulation of Stress Granule Formation. J. Virol. 2016, 90, 3661–3675. [Google Scholar] [CrossRef]
  248. Chen, G.; Ma, L.C.; Wang, S.; Woltz, R.L.; Grasso, E.M.; Montelione, G.T.; Krug, R.M. A double-stranded RNA platform is required for the interaction between a host restriction factor and the NS1 protein of influenza A virus. Nucleic Acids Res. 2020, 48, 304–315. [Google Scholar] [CrossRef]
  249. Kesavardhana, S.; Samir, P.; Zheng, M.; Malireddi, R.K.S.; Karki, R.; Sharma, B.R.; Place, D.E.; Briard, B.; Vogel, P.; Kanneganti, T.D. DDX3X coordinates host defense against influenza virus by activating the NLRP3 inflammasome and type I interferon response. J. Biol. Chem. 2021, 296, 100579. [Google Scholar] [CrossRef]
  250. Yu, C.; Li, S.; Zhang, X.; Khan, I.; Ahmad, I.; Zhou, Y.; Li, S.; Shi, J.; Wang, Y.; Zheng, Y.H. MARCH8 Inhibits Ebola Virus Glycoprotein, Human Immunodeficiency Virus Type 1 Envelope Glycoprotein, and Avian Influenza Virus H5N1 Hemagglutinin Maturation. mBio 2020, 11, 01882-20. [Google Scholar] [CrossRef]
  251. Villalon-Letelier, F.; Brooks, A.G.; Londrigan, S.L.; Reading, P.C. MARCH8 Restricts Influenza A Virus Infectivity but Does Not Downregulate Viral Glycoprotein Expression at the Surface of Infected Cells. mBio 2021, 12, e0148421. [Google Scholar] [CrossRef]
  252. Villalon-Letelier, F.; Farrukee, R.; Londrigan, S.L.; Brooks, A.G.; Reading, P.C. Isoforms of Human MARCH1 Differ in Ability to Restrict Influenza A Viruses Due to Differences in Their N Terminal Cytoplasmic Domain. Viruses 2022, 14, 2549. [Google Scholar] [CrossRef]
  253. Wang, S.; Chi, X.; Wei, H.; Chen, Y.; Chen, Z.; Huang, S.; Chen, J.L. Influenza A virus-induced degradation of eukaryotic translation initiation factor 4B contributes to viral replication by suppressing IFITM3 protein expression. J. Virol. 2014, 88, 8375–8385. [Google Scholar] [CrossRef]
  254. Gao, Q.; Yang, C.; Ren, C.; Zhang, S.; Gao, X.; Jin, M.; Chen, H.; Ma, W.; Zhou, H. Eukaryotic Translation Elongation Factor 1 Delta Inhibits the Nuclear Import of the Nucleoprotein and PA-PB1 Heterodimer of Influenza A Virus. J. Virol. 2020, 95, e01391-20. [Google Scholar] [CrossRef]
  255. Nagesh, P.T.; Husain, M. Influenza A Virus Dysregulates Host Histone Deacetylase 1 That Inhibits Viral Infection in Lung Epithelial Cells. J. Virol. 2016, 90, 4614–4625. [Google Scholar] [CrossRef]
  256. Nagesh, P.T.; Hussain, M.; Galvin, H.D.; Husain, M. Histone Deacetylase 2 Is a Component of Influenza A Virus-Induced Host Antiviral Response. Front. Microbiol. 2017, 8, 1315. [Google Scholar] [CrossRef]
  257. Nutsford, A.N.; Galvin, H.D.; Ahmed, F.; Husain, M. The Class IV human deacetylase, HDAC11, exhibits anti-influenza A virus properties via its involvement in host innate antiviral response. Cell Microbiol. 2019, 21, e12989. [Google Scholar] [CrossRef]
  258. Husain, M.; Cheung, C.Y. Histone deacetylase 6 inhibits influenza A virus release by downregulating the trafficking of viral components to the plasma membrane via its substrate, acetylated microtubules. J. Virol. 2014, 88, 11229–11239. [Google Scholar] [CrossRef] [PubMed]
  259. Koyuncu, E.; Budayeva, H.G.; Miteva, Y.V.; Ricci, D.P.; Silhavy, T.J.; Shenk, T.; Cristea, I.M. Sirtuins are evolutionarily conserved viral restriction factors. mBio 2014, 5, e02249-14. [Google Scholar] [CrossRef] [PubMed]
  260. Galvin, H.D.; Husain, M. Influenza A virus-induced host caspase and viral PA-X antagonize the antiviral host factor, histone deacetylase 4. J. Biol. Chem. 2019, 294, 20207–20221. [Google Scholar] [CrossRef]
  261. Xia, B.; Lu, J.; Wang, R.; Yang, Z.; Zhou, X.; Huang, P. miR-21-3p Regulates Influenza A Virus Replication by Targeting Histone Deacetylase-8. Front. Cell Infect. Microbiol. 2018, 8, 175. [Google Scholar] [CrossRef]
  262. Yang, L.; Chen, S.; Zhao, Q.; Pan, C.; Peng, L.; Han, Y.; Li, L.; Ruan, J.; Xia, J.; Yang, H.; et al. Histone deacetylase 3 contributes to the antiviral innate immunity of macrophages by interacting with FOXK1 to regulate STAT1/2 transcription. Cell Rep. 2022, 38, 110302. [Google Scholar] [CrossRef]
  263. Kim, J.A.; Seong, R.K.; Shin, O.S. Enhanced Viral Replication by Cellular Replicative Senescence. Immune Netw. 2016, 16, 286–295. [Google Scholar] [CrossRef]
  264. Wang, D.; Meng, Q.; Huo, L.; Yang, M.; Wang, L.; Chen, X.; Wang, J.; Li, Z.; Ye, X.; Liu, N.; et al. Overexpression of Hdac6 enhances resistance to virus infection in embryonic stem cells and in mice. Protein Cell 2015, 6, 152–156. [Google Scholar] [CrossRef] [PubMed]
  265. Zanin, M.; DeBeauchamp, J.; Vangala, G.; Webby, R.J.; Husain, M. Histone Deacetylase 6 Knockout Mice Exhibit Higher Susceptibility to Influenza A Virus Infection. Viruses 2020, 12, 728. [Google Scholar] [CrossRef] [PubMed]
  266. Choi, S.J.; Lee, H.C.; Kim, J.H.; Park, S.Y.; Kim, T.H.; Lee, W.K.; Jang, D.J.; Yoon, J.E.; Choi, Y.I.; Kim, S.; et al. HDAC6 regulates cellular viral RNA sensing by deacetylation of RIG-I. EMBO J. 2016, 35, 429–442. [Google Scholar] [CrossRef] [PubMed]
  267. Zhang, Z.; Fang, X.; Wu, X.; Ling, L.; Chu, F.; Li, J.; Wang, S.; Zang, J.; Zhang, B.; Ye, S.; et al. Acetylation-Dependent Deubiquitinase OTUD3 Controls MAVS Activation in Innate Antiviral Immunity. Mol. Cell 2020, 79, 304–319 e307. [Google Scholar] [CrossRef] [PubMed]
  268. Chen, H.; Qian, Y.; Chen, X.; Ruan, Z.; Ye, Y.; Chen, H.; Babiuk, L.A.; Jung, Y.S.; Dai, J. HDAC6 Restricts Influenza A Virus by Deacetylation of the RNA Polymerase PA Subunit. J. Virol. 2019, 93, 01896-18. [Google Scholar] [CrossRef] [PubMed]
  269. De Angelis, M.; Amatore, D.; Checconi, P.; Zevini, A.; Fraternale, A.; Magnani, M.; Hiscott, J.; De Chiara, G.; Palamara, A.T.; Nencioni, L. Influenza Virus Down-Modulates G6PD Expression and Activity to Induce Oxidative Stress and Promote Its Replication. Front. Cell Infect. Microbiol. 2021, 11, 804976. [Google Scholar] [CrossRef] [PubMed]
  270. Hussain, M.; Ahmed, F.; Henzeler, B.; Husain, M. Anti-microbial host factor HDAC6 is antagonised by the influenza A virus through host caspases and viral PA. FEBS J. 2023, 290, 2744–2759. [Google Scholar] [CrossRef]
  271. Husain, M.; Harrod, K.S. Enhanced acetylation of alpha-tubulin in influenza A virus infected epithelial cells. FEBS Lett. 2011, 585, 128–132. [Google Scholar] [CrossRef]
  272. Ma, H.; Kien, F.; Maniere, M.; Zhang, Y.; Lagarde, N.; Tse, K.S.; Poon, L.L.; Nal, B. Human annexin A6 interacts with influenza a virus protein M2 and negatively modulates infection. J. Virol. 2012, 86, 1789–1801. [Google Scholar] [CrossRef] [PubMed]
  273. Komissarov, A.; Sergeeva, M.; Zhuravlev, E.; Medvedev, S.; Malakhova, A.; Andreeva, E.; Shurygina, A.P.; Gorshkov, A.; Timofeeva, M.; Balakhonova, E.; et al. CRISPR-Cas9 mediated knockout of AnxA6 gene enhances influenza A virus replication in low-permissive HEK293FT cell line. Gene 2022, 809, 146024. [Google Scholar] [CrossRef] [PubMed]
  274. Gao, P.; Ji, M.; Liu, X.; Chen, X.; Liu, H.; Li, S.; Jia, B.; Li, C.; Ren, L.; Zhao, X.; et al. Apolipoprotein E mediates cell resistance to influenza virus infection. Sci. Adv. 2022, 8, eabm6668. [Google Scholar] [CrossRef]
  275. Trimarco, J.D.; Nelson, S.L.; Chaparian, R.R.; Wells, A.I.; Murray, N.B.; Azadi, P.; Coyne, C.B.; Heaton, N.S. Cellular glycan modification by B3GAT1 broadly restricts influenza virus infection. Nat. Commun. 2022, 13, 6456. [Google Scholar] [CrossRef]
  276. Heaton, B.E.; Kennedy, E.M.; Dumm, R.E.; Harding, A.T.; Sacco, M.T.; Sachs, D.; Heaton, N.S. A CRISPR Activation Screen Identifies a Pan-avian Influenza Virus Inhibitory Host Factor. Cell Rep. 2017, 20, 1503–1512. [Google Scholar] [CrossRef]
  277. Wong, H.H.; Fung, K.; Nicholls, J.M. MDCK-B4GalNT2 cells disclose a alpha2,3-sialic acid requirement for the 2009 pandemic H1N1 A/California/04/2009 and NA aid entry of A/WSN/33. Emerg. Microbes Infect. 2019, 8, 1428–1437. [Google Scholar] [CrossRef]
  278. Park, J.S.; Woo, S.J.; Song, C.S.; Han, J.Y. Modification of surface glycan by expression of beta-1,4-N-acetyl-galactosaminyltransferase (B4GALNT2) confers resistance to multiple viruses infection in chicken fibroblast cell. Front. Vet. Sci. 2023, 10, 1160600. [Google Scholar] [CrossRef]
  279. Pinto, R.M.; Bakshi, S.; Lytras, S.; Zakaria, M.K.; Swingler, S.; Worrell, J.C.; Herder, V.; Hargrave, K.E.; Varjak, M.; Cameron-Ruiz, N.; et al. BTN3A3 evasion promotes the zoonotic potential of influenza A viruses. Nature 2023, 619, 338–347. [Google Scholar] [CrossRef]
  280. Sun, H.; Wang, K.; Yao, W.; Liu, J.; Lv, L.; Shi, X.; Chen, H. Inter-Fighting between Influenza A Virus NS1 and β-TrCP: A Novel Mechanism of Anti-Influenza Virus. Viruses 2022, 14, 2426. [Google Scholar] [CrossRef]
  281. Fan, Y.; Mok, C.K.; Chan, M.C.; Zhang, Y.; Nal, B.; Kien, F.; Bruzzone, R.; Sanyal, S. Cell Cycle-independent Role of Cyclin D3 in Host Restriction of Influenza Virus Infection. J. Biol. Chem. 2017, 292, 5070–5088. [Google Scholar] [CrossRef] [PubMed]
  282. Yang, M.L.; Chen, Y.H.; Wang, S.W.; Huang, Y.J.; Leu, C.H.; Yeh, N.C.; Chu, C.Y.; Lin, C.C.; Shieh, G.S.; Chen, Y.L.; et al. Galectin-1 binds to influenza virus and ameliorates influenza virus pathogenesis. J. Virol. 2011, 85, 10010–10020. [Google Scholar] [CrossRef] [PubMed]
  283. Chen, Y.; Zhou, J.; Cheng, Z.; Yang, S.; Chu, H.; Fan, Y.; Li, C.; Wong, B.H.; Zheng, S.; Zhu, Y.; et al. Functional variants regulating LGALS1 (Galectin 1) expression affect human susceptibility to influenza A(H7N9). Sci. Rep. 2015, 5, 8517. [Google Scholar] [CrossRef] [PubMed]
  284. Bao, J.; Wang, X.; Liu, S.; Zou, Q.; Zheng, S.; Yu, F.; Chen, Y. Galectin-1 Ameliorates Influenza A H1N1pdm09 Virus-Induced Acute Lung Injury. Front. Microbiol. 2020, 11, 1293. [Google Scholar] [CrossRef] [PubMed]
  285. Hsu, W.B.; Shih, J.L.; Shih, J.R.; Du, J.L.; Teng, S.C.; Huang, L.M.; Wang, W.B. Cellular protein HAX1 interacts with the influenza A virus PA polymerase subunit and impedes its nuclear translocation. J. Virol. 2013, 87, 110–123. [Google Scholar] [CrossRef]
  286. Mazel-Sanchez, B.; Boal-Carvalho, I.; Silva, F.; Dijkman, R.; Schmolke, M. H5N1 Influenza A Virus PB1-F2 Relieves HAX-1-Mediated Restriction of Avian Virus Polymerase PA in Human Lung Cells. J. Virol. 2018, 92, 00425-18. [Google Scholar] [CrossRef]
  287. Li, X.; Qu, B.; He, G.; Cardona, C.J.; Song, Y.; Xing, Z. Critical Role of HAX-1 in Promoting Avian Influenza Virus Replication in Lung Epithelial Cells. Mediat. Inflamm. 2018, 2018, 3586132. [Google Scholar] [CrossRef]
  288. Wang, X.; Lin, L.; Zhong, Y.; Feng, M.; Yu, T.; Yan, Y.; Zhou, J.; Liao, M. Cellular hnRNPAB binding to viral nucleoprotein inhibits flu virus replication by blocking nuclear export of viral mRNA. iScience 2021, 24, 102160. [Google Scholar] [CrossRef] [PubMed]
  289. Ye, H.; Bi, Z.; Fan, W.; Song, S.; Yan, L. Cellular hnRNPAB interacts with avian influenza viral protein PB2 and inhibits virus replication potentially by restricting PB2 mRNA nuclear export and PB2 protein level. Virus Res. 2021, 305, 198573. [Google Scholar] [CrossRef]
  290. Li, G.; Zhang, J.; Tong, X.; Liu, W.; Ye, X. Heat shock protein 70 inhibits the activity of Influenza A virus ribonucleoprotein and blocks the replication of virus in vitro and in vivo. PLoS ONE 2011, 6, e16546. [Google Scholar] [CrossRef]
  291. Manzoor, R.; Kuroda, K.; Yoshida, R.; Tsuda, Y.; Fujikura, D.; Miyamoto, H.; Kajihara, M.; Kida, H.; Takada, A. Heat shock protein 70 modulates influenza A virus polymerase activity. J. Biol. Chem. 2014, 289, 7599–7614. [Google Scholar] [CrossRef]
  292. Munir, M.; Embry, A.; Doench, J.G.; Heaton, N.S.; Wilen, C.B.; Orchard, R.C. Genome-wide CRISPR activation screen identifies JADE3 as an antiviral activator of NF-kB. bioRxiv 2023. [Google Scholar] [CrossRef]
  293. Feng, T.; Tong, H.; Ming, Z.; Deng, L.; Liu, J.; Wu, J.; Chen, Z.; Yan, Y.; Dai, J. Matrix metalloproteinase 3 restricts viral infection by enhancing host antiviral immunity. Antivir. Res. 2022, 206, 105388. [Google Scholar] [CrossRef]
  294. Wang, P.; Song, W.; Mok, B.W.; Zhao, P.; Qin, K.; Lai, A.; Smith, G.J.; Zhang, J.; Lin, T.; Guan, Y.; et al. Nuclear factor 90 negatively regulates influenza virus replication by interacting with viral nucleoprotein. J. Virol. 2009, 83, 7850–7861. [Google Scholar] [CrossRef] [PubMed]
  295. Wen, X.; Huang, X.; Mok, B.W.; Chen, Y.; Zheng, M.; Lau, S.Y.; Wang, P.; Song, W.; Jin, D.Y.; Yuen, K.Y.; et al. NF90 exerts antiviral activity through regulation of PKR phosphorylation and stress granules in infected cells. J. Immunol. 2014, 192, 3753–3764. [Google Scholar] [CrossRef]
  296. Li, T.; Li, X.; Zhu, W.; Wang, H.; Mei, L.; Wu, S.; Lin, X.; Han, X. NF90 is a novel influenza A virus NS1-interacting protein that antagonizes the inhibitory role of NS1 on PKR phosphorylation. FEBS Lett. 2016, 590, 2797–2810. [Google Scholar] [CrossRef]
  297. Huang, K.; Zhang, Y.; Gong, W.; Yang, Y.; Jiang, L.; Zhao, L.; Yang, Y.; Wei, Y.; Li, C.; He, X.; et al. PGRMC1 Exerts Its Function of Anti-Influenza Virus in the Central Nervous System. Microbiol. Spectr. 2021, 9, e0073421. [Google Scholar] [CrossRef] [PubMed]
  298. Wang, L.; Fu, B.; Li, W.; Patil, G.; Liu, L.; Dorf, M.E.; Li, S. Comparative influenza protein interactomes identify the role of plakophilin 2 in virus restriction. Nat. Commun. 2017, 8, 13876. [Google Scholar] [CrossRef]
  299. Wang, G.; Zhao, Y.; Zhou, Y.; Jiang, L.; Liang, L.; Kong, F.; Yan, Y.; Wang, X.; Wang, Y.; Wen, X.; et al. PIAS1-mediated SUMOylation of influenza A virus PB2 restricts viral replication and virulence. PLoS Pathog. 2022, 18, e1010446. [Google Scholar] [CrossRef]
  300. Chen, H.; Gao, X.; Zhao, S.; Bao, C.; Ming, X.; Qian, Y.; Zhou, Y.; Jung, Y.S. Pirh2 restricts influenza A virus replication by modulating short-chain ubiquitination of its nucleoprotein. FASEB J. 2022, 36, e22537. [Google Scholar] [CrossRef]
  301. Yang, C.H.; Hsu, C.F.; Lai, X.Q.; Chan, Y.R.; Li, H.C.; Lo, S.Y. Cellular PSMB4 Protein Suppresses Influenza A Virus Replication through Targeting NS1 Protein. Viruses 2022, 14, 2277. [Google Scholar] [CrossRef] [PubMed]
  302. Chia, B.S.; Li, B.; Cui, A.; Eisenhaure, T.; Raychowdhury, R.; Lieb, D.; Hacohen, N. Loss of the Nuclear Protein RTF2 Enhances Influenza Virus Replication. J. Virol. 2020, 94, 00319–00320. [Google Scholar] [CrossRef] [PubMed]
  303. Kakugawa, S.; Shimojima, M.; Goto, H.; Horimoto, T.; Oshimori, N.; Neumann, G.; Yamamoto, T.; Kawaoka, Y. Mitogen-activated protein kinase-activated kinase RSK2 plays a role in innate immune responses to influenza virus infection. J. Virol. 2009, 83, 2510–2517. [Google Scholar] [CrossRef] [PubMed]
  304. Lai, K.K.; Munro, J.B.; Shi, G.; Majdoul, S.; Compton, A.A.; Rein, A. Restriction of Influenza A Virus by SERINC5. mBio 2022, 13, e0292322. [Google Scholar] [CrossRef]
  305. Zhao, F.; Xu, F.; Liu, X.; Hu, Y.; Wei, L.; Fan, Z.; Wang, L.; Huang, Y.; Mei, S.; Guo, L.; et al. SERINC5 restricts influenza virus infectivity. PLoS Pathog. 2022, 18, e1010907. [Google Scholar] [CrossRef] [PubMed]
  306. Martin-Sancho, L.; Tripathi, S.; Rodriguez-Frandsen, A.; Pache, L.; Sanchez-Aparicio, M.; McGregor, M.J.; Haas, K.M.; Swaney, D.L.; Nguyen, T.T.; Mamede, J.I.; et al. Restriction factor compendium for influenza A virus reveals a mechanism for evasion of autophagy. Nat. Microbiol. 2021, 6, 1319–1333. [Google Scholar] [CrossRef] [PubMed]
  307. Hu, Y.; Chen, X.; Ling, Y.; Zhou, K.; Han, M.; Wang, X.; Yue, M.; Li, Y. Influenza A virus inhibits TET2 expression by endoribonuclease PA-X to attenuate type I interferon signaling and promote viral replication. PLoS Pathog. 2023, 19, e1011550. [Google Scholar] [CrossRef] [PubMed]
  308. Zhu, Y.; Wang, R.; Yu, L.; Sun, H.; Tian, S.; Li, P.; Jin, M.; Chen, H.; Ma, W.; Zhou, H. Human TRA2A determines influenza A virus host adaptation by regulating viral mRNA splicing. Sci. Adv. 2020, 6, eaaz5764. [Google Scholar] [CrossRef]
  309. Kuo, S.M.; Chen, C.J.; Chang, S.C.; Liu, T.J.; Chen, Y.H.; Huang, S.Y.; Shih, S.R. Inhibition of Avian Influenza A Virus Replication in Human Cells by Host Restriction Factor TUFM Is Correlated with Autophagy. mBio 2017, 8, 00481-17. [Google Scholar] [CrossRef]
  310. Fu, B.; Wang, L.; Li, S.; Dorf, M.E. ZMPSTE24 defends against influenza and other pathogenic viruses. J. Exp. Med. 2017, 214, 919–929. [Google Scholar] [CrossRef]
  311. Li, S.; Fu, B.; Wang, L.; Dorf, M.E. ZMPSTE24 Is Downstream Effector of Interferon-Induced Transmembrane Antiviral Activity. DNA Cell Biol. 2017, 36, 513–517. [Google Scholar] [CrossRef]
  312. Song, L.; Liu, H.; Gao, S.; Jiang, W.; Huang, W. Cellular microRNAs inhibit replication of the H1N1 influenza A virus in infected cells. J. Virol. 2010, 84, 8849–8860. [Google Scholar] [CrossRef]
  313. Kumar, A.; Kumar, A.; Ingle, H.; Kumar, S.; Mishra, R.; Verma, M.K.; Biswas, D.; Kumar, N.S.; Mishra, A.; Raut, A.A.; et al. MicroRNA hsa-miR-324-5p Suppresses H5N1 Virus Replication by Targeting the Viral PB1 and Host CUEDC2. J. Virol. 2018, 92, 01057-18. [Google Scholar] [CrossRef] [PubMed]
  314. Ma, Y.J.; Yang, J.; Fan, X.L.; Zhao, H.B.; Hu, W.; Li, Z.P.; Yu, G.C.; Ding, X.R.; Wang, J.Z.; Bo, X.C.; et al. Cellular microRNA let-7c inhibits M1 protein expression of the H1N1 influenza A virus in infected human lung epithelial cells. J. Cell Mol. Med. 2012, 16, 2539–2546. [Google Scholar] [CrossRef] [PubMed]
  315. Peng, S.; Wang, J.; Wei, S.; Li, C.; Zhou, K.; Hu, J.; Ye, X.; Yan, J.; Liu, W.; Gao, G.F.; et al. Endogenous Cellular MicroRNAs Mediate Antiviral Defense against Influenza A Virus. Mol. Ther. Nucleic Acids 2018, 10, 361–375. [Google Scholar] [CrossRef] [PubMed]
  316. Bamunuarachchi, G.; Yang, X.; Huang, C.; Liang, Y.; Guo, Y.; Liu, L. MicroRNA-206 inhibits influenza A virus replication by targeting tankyrase 2. Cell Microbiol. 2021, 23, e13281. [Google Scholar] [CrossRef]
  317. Lin, X.; Yu, S.; Ren, P.; Sun, X.; Jin, M. Human microRNA-30 inhibits influenza virus infection by suppressing the expression of SOCS1, SOCS3, and NEDD4. Cell Microbiol. 2020, 22, e13150. [Google Scholar] [CrossRef]
  318. Zhang, N.; Ma, Y.; Tian, Y.; Zhou, Y.; Tang, Y.; Hu, S. Downregulation of microRNA-221 facilitates H1N1 influenza A virus replication through suppression of type-IFN response by targeting the SOCS1/NF-kappaB pathway. Mol. Med. Rep. 2021, 24, 497. [Google Scholar] [CrossRef]
  319. Yang, X.; Liang, Y.; Bamunuarachchi, G.; Xu, Y.; Vaddadi, K.; Pushparaj, S.; Xu, D.; Zhu, Z.; Blaha, R.; Huang, C.; et al. miR-29a is a negative regulator of influenza virus infection through targeting of the frizzled 5 receptor. Arch. Virol. 2021, 166, 363–373. [Google Scholar] [CrossRef]
Table 1. ISGs restricting the influenza virus lifecycle at different stages.
Table 1. ISGs restricting the influenza virus lifecycle at different stages.
Viral Lifecycle StageISGs (Antiviral Targets)
AttachmentMUC1, SPOCK2 (virions);
EntryhGBP-2, hGBP-5, Serpin 1 (host protease); IFITM 1, 2, and 3, NCOA7, RABGAP1L (viral–endosomal membrane fusion)
SynthesisCEACAM1, miRNA101 (mTOR); hGBP-3, p21, SERTAD3 (viral RNA polymerase); IFIT 1, 2, and 3, ISG20, OAS 1, 2, 3, and L, TRIM 25 and 56 (viral RNA); MOV10, Mx (vRNP); PKR (eIF-2α); ZAPS (viral mRNA)
AssemblyISG15 (Tsg101); TRIM 14 and 22 (NP); TRIM21 (M1); TRIM35 (PB2); ZAPL (PA, PB2)
ReleaseTetherin (virions); Viperin (lipid rafts)
Innate responseIFI16, miRNA485 (RIG-I); circVAMP3, ISG15 (NS1); lncRNAs (RIG-I, interferon); SLFN 11 and 14
Table 2. Non-ISGs restricting the influenza virus lifecycle at different stages.
Table 2. Non-ISGs restricting the influenza virus lifecycle at different stages.
Viral Lifecycle StageNon-ISGs (Antiviral Targets)
AttachmentAPOE (cell membrane); B3GAT1, B4GALNT2 (sialic acid); galectin-1 (virions)
EntryMARCH8 (host protease); SERINC5, ZMPSTE24 (viral–endosomal membrane fusion)
SynthesisBTN3A3, RTF2, hsa-mir-127-3p, -486-5p, -593-5p, and -487b-5p (viral RNA); eEF1D (vRNP); HAX-1 (PA); hnRNPAB (viral mRNA); DDX21, Hsp70, PKP2, TUFM (PB1, PB2); NF90 (NP); microRNA let-7c, TRA2A (M mRNA); miR-323, -491, -654, and -324-5p (PB1 RNA)
AssemblyCyclophilin E (NP); cyclophilin A (M1); PIAS1 (PB2); Pirh2 (NP); TRIM16 (NRF2); TRIM 32, 41 (PB1); TBC1D5 (M2); β-TrCP
ReleaseAnnexin 6, cyclin D3 (M2)
Innate responseCyclophilin A, PGRMC1 (RIG-I); DDX30, PSMB4 (NS1); eIF4B, HDACs (interferons, ISGs); JADE3; MMP3; NF90 (PKR, NS1); RSK2; TET2 (STAT1); miR-29a (frizzled 5); miR-30 and -221 (SOCS 1 and 3); miR-206 (tankyrase)
Table 3. Influenza virus strategies to escape the restriction from ISGs and non-ISGs.
Table 3. Influenza virus strategies to escape the restriction from ISGs and non-ISGs.
StrategiesISGsNon-ISGs
Mutations in viral proteinsMx, TRIM22BTN3A3, TRA2A, TUFM
Downregulation of expressionIFITM3, Tetherinβ-TrCP, HDACs, TET2
Sequestration or interferencehGBP-1, OAS, PKR, TRIM25, ZAPDDX3, DDX21, HAX-1
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Husain, M. Influenza Virus Host Restriction Factors: The ISGs and Non-ISGs. Pathogens 2024, 13, 127. https://doi.org/10.3390/pathogens13020127

AMA Style

Husain M. Influenza Virus Host Restriction Factors: The ISGs and Non-ISGs. Pathogens. 2024; 13(2):127. https://doi.org/10.3390/pathogens13020127

Chicago/Turabian Style

Husain, Matloob. 2024. "Influenza Virus Host Restriction Factors: The ISGs and Non-ISGs" Pathogens 13, no. 2: 127. https://doi.org/10.3390/pathogens13020127

APA Style

Husain, M. (2024). Influenza Virus Host Restriction Factors: The ISGs and Non-ISGs. Pathogens, 13(2), 127. https://doi.org/10.3390/pathogens13020127

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop