Epidemiology of and Genetic Factors Associated with Acanthamoeba Keratitis
Abstract
:1. Introduction
2. Epidemiology
3. Classification
Morphological Group | Species | Genotype | Strain Type | Reference |
---|---|---|---|---|
Group-I | A. astronyxis | T7 | ATCC 30137 | [58] |
A. comandoni | T9 | ATCC 30135 | [59] | |
A. echinulate | T4 | ATCC 50239 | [35] | |
A. tubiashi | T8 | ATCC 30867 | [60] | |
A. byersii | T18 | PRA- 411 | [61] | |
Group-II | A. castellanii | T4 | ATCC 50374 = 30011 | [62] |
A. terricola | T4 | ATCC 30134 | [63] | |
A. gigantean | – | ATCC 50670 | [64] | |
A. polyphaga | T4 | ATCC 30871 | [65] | |
A. griffinii | T3 | ATCC 30731 | [66] | |
A. rhysodes | T4 | ATCC 30973 | [67] | |
A. diuionensis | T4 | ATCC 50238 | [35] | |
A. lugdunensis | T4 | ATCC 50240 | [35] | |
A. quina | T4 | ATCC 50241 | [35] | |
A. paradiuionensis | T4 | ATCC 50251 | [35] | |
A. mauritaniensis | T4 | ATCC 50253 | [35] | |
A. triangularis | T4 | ATCC 50254 | [35] | |
A. hatchetti | T11 | ATCC 30730 | [68] | |
A. stevensoni | T11 | ATCC 50388 | [69] | |
A. pearcei | T3 | ATCC 50435 | [70] | |
A.micheli | T19 | BRO2-T19 | [47] | |
A. pyriformis | T21 | CCAP 1501/19 | [71] | |
Group-III | A. palestinensis | T2 | ATCC 30870 | [72] |
A. culbertsoni | T10 | ATCC 30171 | [67] | |
A. pustulosa | T2 | ATCC 50252 | [35] | |
A. royreba | T4 | ATCC 30884 | [73] | |
A. lenticulata | T5 | ATCC 30841 | [74] | |
A. healyi | T12 | ATCC 30866 | [75] | |
A. jacobsi | T15 | ATCC 30732 | [76] | |
A. sohi | – | Acanthamoeba YM-4 | [77] | |
A. bangkokensis sp. nov. | T23 | AcW61 | [78] |
4. Life Cycle and Morphology
5. Pathogenesis
6. Innate and Adaptive Host Immune Responses
7. Immune Evasion
8. Genetic Variations Associated with the Severity of Disease
9. Diagnosis
10. Prevention
11. Conclusions/Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Rivera, F.; Lares, F.; Gallegos, E.; Ramirez, E.; Bonilla, P.; Calderon, A.; Martinez, J.J.; Rodriguez, S.; Alcocer, J. Pathogenic amoebae in natural thermal waters of three resorts of Hidalgo, Mexico. Environ. Res. 1989, 50, 289–295. [Google Scholar] [CrossRef]
- Rivera, F.; Lares, F.; Ramirez, E.; Bonilla, P.; Rodriguez, S.; Labastida, A.; Ortiz, R.; Hernandez, D. Pathogenic Acanthamoeba isolated during an atmospheric survey in Mexico City. Clin. Infect. Dis. 1991, 13, S388–S389. [Google Scholar] [CrossRef] [PubMed]
- Michel, R.; Hauröder-Philippczyk, B.; Müller, K.-D.; Weishaar, I. Acanthamoeba from human nasal mucosa infected with an obligate intracellular parasite. Eur. J. Protistol. 1994, 30, 104–110. [Google Scholar] [CrossRef]
- Tawfeek, G.M.; Bishara, S.A.-H.; Sarhan, R.M.; ElShabrawi Taher, E.; ElSaady Khayyal, A. Genotypic, physiological, and biochemical characterization of potentially pathogenic Acanthamoeba isolated from the environment in Cairo, Egypt. Parasitol. Res. 2016, 115, 1871–1881. [Google Scholar] [CrossRef] [PubMed]
- Lass, A.; Guerrero, M.; Li, X.; Karanis, G.; Ma, L.; Karanis, P. Detection of Acanthamoeba spp. in water samples collected from natural water reservoirs, sewages, and pharmaceutical factory drains using LAMP and PCR in China. Sci. Total Environ. 2017, 584, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Carnt, N.A.; Subedi, D.; Lim, A.W.; Lee, R.; Mistry, P.; Badenoch, P.R.; Kilvington, S.; Dutta, D.J.C.; Optometry, E. Prevalence and seasonal variation of Acanthamoeba in domestic tap water in greater Sydney, Australia. Clin. Exp. Optom. 2020, 103, 782–786. [Google Scholar] [CrossRef] [PubMed]
- Wopereis, D.B.; Bazzo, M.L.; de Macedo, J.P.; Casara, F.; Golfeto, L.; Venancio, E.; de Oliveira, J.G.; Rott, M.B.; Caumo, K.S. Free-living amoebae and their relationship to air quality in hospital environments: Characterization of Acanthamoeba spp. obtained from air-conditioning systems. Parasitology 2020, 147, 782–790. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Kalra, S.K.; Tejan, N.; Ghoshal, U. Nanoparticles based therapeutic efficacy against Acanthamoeba: Updates and future prospect. Exp. Parasitol. 2020, 218, 108008. [Google Scholar] [CrossRef] [PubMed]
- Pacella, E.; La Torre, G.; De Giusti, M.; Brillante, C.; Lombardi, A.M.; Smaldone, G.; Lenzi, T.; Pacella, F. Results of case-control studies support the association between contact lens use and Acanthamoeba keratitis. Clin. Ophthalmol. 2013, 7, 991–994. [Google Scholar] [CrossRef]
- Nwachuku, N.; Gerba, C.P. Health effects of Acanthamoeba spp. and its potential for waterborne transmission. In Reviews of Environmental Contamination and Toxicology; Springer: Berlin/Heidelberg, Germany, 2003; pp. 93–131. [Google Scholar]
- Nagington, J.; Watson, P.; Playfair, T.; McGill, J.; Jones, B.; Steele, A. Amoebic infection of the eye. Lancet 1974, 304, 1537–1540. [Google Scholar] [CrossRef]
- Tu, E.Y.; Joslin, C.E.; Sugar, J.; Shoff, M.E.; Booton, G.C. Prognostic factors affecting visual outcome in Acanthamoeba keratitis. Ophthalmology 2008, 115, 1998–2003. [Google Scholar] [CrossRef]
- Carnt, N.; Hoffman, J.J.; Verma, S.; Hau, S.; Radford, C.F.; Minassian, D.C.; Dart, J.K.G. Acanthamoeba keratitis: Confirmation of the UK outbreak and a prospective case-control study identifying contributing risk factors. Br. J. Ophthalmol. 2018, 102, 1621–1628. [Google Scholar] [CrossRef]
- Niederkorn, J.Y.; Alizadeh, H.; Leher, H.; McCulley, J.P. The pathogenesis of Acanthamoeba keratitis. Microbes Infect. 1999, 1, 437–443. [Google Scholar] [CrossRef]
- Carnt, N.; Stapleton, F. Strategies for the prevention of contact lens-related Acanthamoeba keratitis: A review. Ophthalmic Physiol. Opt. 2016, 36, 77–92. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, D.L.; Kwitko, S.; Marinho, D.R.; De Araújo, B.S.; Locatelli, C.I.; Rott, M.B. Acanthamoeba keratitis in Porto Alegre (southern Brazil): 28 cases and risk factors. Parasitol. Res. 2018, 117, 747–750. [Google Scholar] [CrossRef] [PubMed]
- Scruggs, B.A.; Quist, T.S.; Salinas, J.L.; Greiner, M.A. Notes from the field: Acanthamoeba keratitis cases—Iowa, 2002–2017. Morb. Mortal. Wkly. Rep. 2019, 68, 448. [Google Scholar] [CrossRef] [PubMed]
- Carnt, N.A.; Subedi, D.; Connor, S.; Kilvington, S. The relationship between environmental sources and the susceptibility of Acanthamoeba keratitis in the United Kingdom. PLoS ONE 2020, 15, e0229681. [Google Scholar] [CrossRef] [PubMed]
- Buerano, C.C.; Trinidad, A.D.; Fajardo, L.S.N.; Cua, I.Y.; Baclig, M.O.; Natividad, F.F. Isolation of Acanthamoeba genotype T4 from a non-contact lens wearer from the Philippines. Trop. Med. Health 2014, 42, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Page, M.A.; Mathers, W.D. Acanthamoeba keratitis: A 12-year experience covering a wide spectrum of presentations, diagnoses, and outcomes. J. Ophtalmol. 2013, 2013, 670242. [Google Scholar]
- Lee, W.B.; Gotay, A. Bilateral Acanthamoeba keratitis in Synergeyes contact lens wear: Clinical and confocal microscopy findings. Eye Contact Lens Sci. Clin. Pract. 2010, 36, 164–169. [Google Scholar]
- Voyatzis, G.; McElvanney, A. Bilateral Acanthamoeba keratitis in an experienced two-weekly disposable contact lens wearer. Eye Contact Lens Sci. Clin. Pract. 2007, 33, 201–202. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, R.G.; Watters, G.; Johnson, R.; Ormonde, S.E.; Snibson, G.R. Acanthamoeba keratitis and contact lens wear. Clin. Exp. Optom. 2007, 90, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo-Morales, J.; Martín-Navarro, C.M.; López-Arencibia, A.; Arnalich-Montiel, F.; Piñero, J.E.; Valladares, B. Acanthamoeba keratitis: An emerging disease gathering importance worldwide? Trends Parasitol. 2013, 29, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, X.; Wei, Z.; Cao, K.; Zhang, Z.; Liang, Q. The global epidemiology and clinical diagnosis of Acanthamoeba keratitis. J. Infect. Public Health 2023, 16, 841–852. [Google Scholar] [CrossRef] [PubMed]
- Schaumberg, D.A.; Snow, K.K.; Dana, M.R. The epidemic of Acanthamoeba keratitis: Where do we stand? Cornea 1998, 17, 3. [Google Scholar] [CrossRef]
- Cope, J.R.; Collier, S.A.; Rao, M.M.; Chalmers, R.; Mitchell, G.L.; Richdale, K.; Wagner, H.; Kinoshita, B.T.; Lam, D.Y.; Sorbara, L.; et al. Contact lens wearer demographics and risk behaviors for contact lens-related eye infections—United States, 2014. Morb. Mortal. Wkly. Rep. 2015, 64, 865. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.E.; Ivarsen, A.; Hjortdal, J. Increasing incidence of Acanthamoeba keratitis in a large tertiary ophthalmology department from year 1994 to 2018. Acta Ophthalmol. 2020, 98, 445–448. [Google Scholar] [CrossRef] [PubMed]
- Randag, A.C.; Van Rooij, J.; Van Goor, A.T.; Verkerk, S.; Wisse, R.P.; Saelens, I.E.; Stoutenbeek, R.; van Dooren, B.T.; Cheng, Y.Y.; Eggink, C.A. The rising incidence of Acanthamoeba keratitis: A 7-year nationwide survey and clinical assessment of risk factors and functional outcomes. PLoS ONE 2019, 14, e0222092. [Google Scholar] [CrossRef]
- Graffi, S.; Peretz, A.; Jabaly, H.; Koiefman, A.; Naftali, M. Acanthamoeba keratitis: Study of the 5-year incidence in Israel. Br. J. Ophthalmol. 2013, 97, 1382–1383. [Google Scholar] [CrossRef]
- Joslin, C.E.; Tu, E.Y.; Shoff, M.E.; Booton, G.C.; Fuerst, P.A.; McMahon, T.T.; Anderson, R.J.; Dworkin, M.S.; Sugar, J.; Davis, F.G.; et al. The association of contact lens solution use and Acanthamoeba keratitis. Arch. Ophthalmol. 2007, 144, 169–180. e162. [Google Scholar] [CrossRef]
- Yoder, J.S.; Verani, J.; Heidman, N.; Hoppe-Bauer, J.; Alfonso, E.C.; Miller, D.; Jones, D.B.; Bruckner, D.; Langston, R.; Jeng, B.H.; et al. Acanthamoeba keratitis: The persistence of cases following a multistate outbreak. Ophthalmic Epidemiol. 2012, 19, 221–225. [Google Scholar] [CrossRef]
- Tu, E.Y. Acanthamoeba keratitis: A new normal. Am. J. Ophthalmol. 2014, 158, 417–419. [Google Scholar] [CrossRef]
- Höllhumer, R.; Keay, L.; Watson, S.J. Acanthamoeba keratitis in Australia: Demographics, associated factors, presentation and outcomes: A 15-year case review. Eye 2020, 34, 725–732. [Google Scholar] [CrossRef]
- Pussard, M. Morphologie de la paroikystique et taxonomie du genre Acanthamoeba (Protozoa, Amoebida). Protistologica 1977, 13, 557–598. [Google Scholar]
- Wang, Y.; Jiang, L.; Zhao, Y.; Ju, X.; Wang, L.; Jin, L.; Fine, R.D.; Li, M. Biological characteristics and pathogenicity of Acanthamoeba. Front. Microbiol. 2023, 14, 1147077. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.H. Molecular phylogeny of Acanthamoeba. Korean J. Parasitol. 2009, 47, S21. [Google Scholar] [CrossRef]
- Corsaro, D. Update on Acanthamoeba phylogeny. Parasitol. Res. 2020, 119, 3327–3338. [Google Scholar] [CrossRef] [PubMed]
- de Lacerda, A.G.; Lira, M. Acanthamoeba keratitis: A review of biology, pathophysiology and epidemiology. Ophthalmic Physiol. Opt. 2021, 41, 116–135. [Google Scholar] [CrossRef] [PubMed]
- Fuerst, F.; McAllister, P.; Nanda, A.; Wyatt, P. Does energy efficiency matter to home-buyers? An investigation of EPC ratings and transaction prices in England. Energy Econ. 2015, 48, 145–156. [Google Scholar] [CrossRef]
- Khan, N.A. Acanthamoeba: Biology and increasing importance in human health. FEMS Microbiol. Rev. 2006, 30, 564–595. [Google Scholar] [CrossRef]
- Castrillón, J.C.; Orozco, L.P. Acanthamoeba spp. como parásitos patógenos y oportunistas. Rev. Chil. Infectol. 2013, 30, 147–155. [Google Scholar] [CrossRef]
- Fuerst, P.A.; Booton, G.C. Species, sequence types and alleles: Dissecting genetic variation in Acanthamoeba. Pathogens 2020, 9, 534. [Google Scholar] [CrossRef]
- Gast, R.J.; Ledee, D.R.; Fuerst, P.A.; Byers, T.J. Subgenus systematics of Acanthamoeba: Four nuclear 18S rDNA sequence types. J. Eukaryot. Microbiol. 1996, 43, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Taher, E.E.; Méabed, E.M.; Abdallah, I.; Wahed, W.Y.A. Acanthamoeba keratitis in noncompliant soft contact lenses users: Genotyping and risk factors, a study from Cairo, Egypt. J. Infect. Public Health 2018, 11, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Maghsood, A.H.; Sissons, J.; Rezaian, M.; Nolder, D.; Warhurst, D.; Khan, N.A. Acanthamoeba genotype T4 from the UK and Iran and isolation of the T2 genotype from clinical isolates. J. Med Microbiol. 2005, 54, 755–759. [Google Scholar] [CrossRef] [PubMed]
- Corsaro, D.; Walochnik, J.; Köhsler, M.; Rott, M.B. Acanthamoeba misidentification and multiple labels: Redefining genotypes T16, T19, and T20 and proposal for Acanthamoeba micheli sp. nov.(genotype T19). Parasitol. Res. 2015, 114, 2481–2490. [Google Scholar] [CrossRef] [PubMed]
- Fuerst, P.A.; Booton, G.C.; Crary, M. Phylogenetic analysis and the evolution of the 18S rRNA gene typing system of Acanthamoeba. J. Eukaryot. Microbiol. 2015, 62, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Walochnik, J.; Obwaller, A.; Aspöck, H. Correlations between morphological, molecular biological, and physiological characteristics in clinical and nonclinical isolates of Acanthamoeba spp. Appl. Environ. Microbiol. 2000, 66, 4408–4413. [Google Scholar] [CrossRef] [PubMed]
- Gomes, T.d.S.; Magnet, A.; Izquierdo, F.; Vaccaro, L.; Redondo, F.; Bueno, S.; Sánchez, M.L.; Angulo, S.; Fenoy, S.; Hurtado, C.; et al. Acanthamoeba spp. in contact lenses from healthy individuals from Madrid, Spain. PLoS ONE 2016, 11, e0154246. [Google Scholar] [CrossRef] [PubMed]
- Walochnik, J.; Scheikl, U.; Haller-Schober, E. Twenty years of Acanthamoeba diagnostics in Austria. J. Eukaryot. Microbiol. 2015, 62, 3–11. [Google Scholar] [CrossRef]
- Casero, R.D.; Mongi, F.; Laconte, L.; Rivero, F.; Sastre, D.; Teherán, A.; Herrera, G.; Ramírez, J.D. Molecular and morphological characterization of Acanthamoeba isolated from corneal scrapes and contact lens wearers in Argentina. Infect. Genet. Evol. 2017, 54, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Ledee, D.; Iovieno, A.; Miller, D.; Mandal, N.; Diaz, M.; Fell, J.; Fini, M.; Alfonso, E.J. Molecular identification of T4 and T5 genotypes in isolates from Acanthamoeba keratitis patients. J. Clin. Microbiol. 2009, 47, 1458–1462. [Google Scholar] [CrossRef]
- Maciver, S.K.; Asif, M.; Simmen, M.W.; Lorenzo-Morales, J. A systematic analysis of Acanthamoeba genotype frequency correlated with source and pathogenicity: T4 is confirmed as a pathogen-rich genotype. Eur. J. Protistol. 2013, 49, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Di Cave, D.; Monno, R.; Bottalico, P.; Guerriero, S.; D’amelio, S.; D’orazi, C.; Berrilli, F. Acanthamoeba T4 and T15 genotypes associated with keratitis infections in Italy. Eur. J. Clin. Microbiol. Infect. Dis. 2009, 28, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Roshni Prithiviraj, S.; Rajapandian, S.G.K.; Gnanam, H.; Gunasekaran, R.; Mariappan, P.; Sankalp Singh, S.; Prajna, L. Clinical presentations, genotypic diversity and phylogenetic analysis of Acanthamoeba species causing keratitis. J. Med. Microbiol. 2020, 69, 87–95. [Google Scholar] [CrossRef]
- Otero-Ruiz, A.; Gonzalez-Zuñiga, L.D.; Rodriguez-Anaya, L.Z.; Lares-Jiménez, L.F.; Gonzalez-Galaviz, J.R.; Lares-Villa, F. Distribution and current state of molecular genetic characterization in pathogenic free-living amoebae. Pathogens 2022, 11, 1199. [Google Scholar] [CrossRef] [PubMed]
- Ray, D.; Hayes, R.E. Hartmannella astronyxis: A new species of free-living ameba. Cytology and life cycle. J. Morphol. 1954, 95, 159–188. [Google Scholar] [CrossRef]
- Pussard, M. Acanthamoeba comandoni n. sp., comparaison avec A. terricola. Rev. Ecol. Biol. Sol. 1964, 1, 587–610. [Google Scholar]
- Lewis, E.J.; Sawyer, T.K. Acanthamoeba tubiashi n. sp., a new species of fresh-water Amoebida (Acanthamoebidae). Trans. Am. Microsc. Soc. 1979, 98, 543–549. [Google Scholar] [CrossRef]
- Qvarnstrom, Y.; Nerad, T.A.; Visvesvara, G.S. Characterization of a new pathogenic Acanthamoeba species, A. byersi n. sp., isolated from a human with fatal amoebic encephalitis. J. Eukaryot. Microbiol. 2013, 60, 626–633. [Google Scholar] [CrossRef]
- Douglas, M. Notes on the classification of the amoeba found by Castellani in cultures of a yeast-like fungus. J. Trop. Med. Hyg. 1930, 33, 59. [Google Scholar]
- Pussard, M. Cytologie d’une Amibe terricola: Acanthamoeba terricola n. sp. Ann. Sci. Nat. Zool. 1964, 6, 565–600. [Google Scholar]
- Schmoller, H. Beschreibung einiger kulturamöben mariner herkunft. J. Protozool. 1964, 11, 497–502. [Google Scholar] [CrossRef]
- Page, F.C. Re-definition of the genus Acanthamoeba with descriptions of three species. J. Protozool. 1967, 14, 709–724. [Google Scholar] [CrossRef]
- Sawyer, T.K. Acanthamoeba griffini, a new species of marine amoeba. J. Protozool. 1971, 18, 650–654. [Google Scholar] [CrossRef]
- Singh, B.N.; Das, S.R. Studies on pathogenic and non-pathogenic small free-living amoebae and the bearing of nuclear division on the classification of the order Amoebida. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1970, 259, 435–476. [Google Scholar] [PubMed]
- Sawyer, T.K.; Visvesvara, G.S.; Harke, B.A. Pathogenic amoebas from brackish and ocean sediments, with a description of Acanthamoeba hatchetti, n. sp. Science 1977, 196, 1324–1325. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, T.K.; Nerad, T.A.; Lewis, E.J.; McLaughlin, S.M. Acanthamoeba stevensoni N. Sp.(Protozoa: Amoebida) from Sewage-Contaminated Shellfish Beds in Raritan Bay, New York. Eukaryot. Microbiol. 1993, 40, 742–746. [Google Scholar] [CrossRef]
- Nerad, T.A.; Sawyer, T.K.; Lewis, E.J.; McLaughlin, S.M. Acanthamoeba pearcei n. sp. (Protozoa: Amoebida) from sewage contaminated sediments. J. Eukaryot. Microbiol. 1995, 42, 702–705. [Google Scholar] [CrossRef] [PubMed]
- Tice, A.K.; Shadwick, L.L.; Fiore-Donno, A.M.; Geisen, S.; Kang, S.; Schuler, G.A.; Spiegel, F.W.; Wilkinson, K.A.; Bonkowski, M.; Dumack, K.; et al. Expansion of the molecular and morphological diversity of Acanthamoebidae (Centramoebida, Amoebozoa) and identification of a novel life cycle type within the group. Biol. Direct 2016, 11, 69. [Google Scholar] [CrossRef] [PubMed]
- Reich, K. Studien über die Bodenprotozoen Palästinas; G. Fischer: Schaffhausen, Switzerland, 1933. [Google Scholar]
- Willaert, E.; Stevens, A.; Tyndall, R.L. Taxonomy Acanthamoeba royreba sp. n. from a Human Tumor Cell Culture. J. Protozool. 1978, 25, 1–14. [Google Scholar] [CrossRef]
- Molet, B.; Ermolieff-Braun, G. Description d’Une Amibe d’Eau Douce: Acanthamoeba lenticulata, sp. nov. (Amoebida). Protistologica. 1976, 12, 571–576. [Google Scholar]
- Moura, H.; Wallace, S.; Visvesvara, G.S. Acanthamoeba healyi n. sp. and the isoenzyme and immunoblot profiles of Acanthamoeba spp., groups 1 and 3. J. Protozool. 1992, 39, 573–583. [Google Scholar] [CrossRef]
- Sawyer, T.K.; Nerad, T.A.; Visvesvara, G.S. Acanthamoeba jacobsi sp. n.(Protozoa: Acanthamoebidae) from sewage contaminated ocean sediments. J. Helminthol. Soc. Wash. 1992, 59, 223–226. [Google Scholar]
- Im, K.; Shin, H.J. Acanthamoeba sohi, n. sp., a pathogenic Korean isolate YM-4 from a freshwater fish. Korean J. Parasitol. 2003, 41, 181. [Google Scholar] [CrossRef]
- Putaporntip, C.; Kuamsab, N.; Nuprasert, W.; Rojrung, R.; Pattanawong, U.; Tia, T.; Yanmanee, S.; Jongwutiwes, S. Analysis of Acanthamoeba genotypes from public freshwater sources in Thailand reveals a new genotype, T23 Acanthamoeba bangkokensis sp. nov. Sci. Rep. 2021, 11, 17290. [Google Scholar] [CrossRef] [PubMed]
- Fanselow, N.; Sirajuddin, N.; Yin, X.-T.; Huang, A.J.; Stuart, P.M. Acanthamoeba keratitis, pathology, diagnosis and treatment. Pathogens 2021, 10, 323. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, R.; Khan, N.A. Biology and pathogenesis of Acanthamoeba. Parasites Vectors 2012, 5, 6. [Google Scholar] [CrossRef] [PubMed]
- Bowers, B.; Olszewski, T. Acanthamoeba discriminates internally between digestible and indigestible particles. J. Cell Biol. 1983, 97, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Marciano-Cabral, F.; Cabral, G. Acanthamoeba spp. as agents of disease in humans. Clin. Microbiol. Rev. 2003, 16, 273–307. [Google Scholar] [CrossRef] [PubMed]
- Tan, E.M.; Starr, M.R.; Henry, M.R.; Pritt, B.S. The brief case: A “fresh” pair of contact lenses. Am. Soc. Microbiol. 2018, 56, e00790-17. [Google Scholar] [CrossRef]
- Omaña-Molina, M.A.; González-Robles, A.; Salazar-Villatoro, L.; Bernal-Escobar, A.; Durán-Díaz, Á.; Méndez-Cruz, A.R.; Martínez-Palomo, A.J.E.; Lens, C. Silicone hydrogel contact lenses surface promote Acanthamoeba castellanii trophozoites adherence: Qualitative and quantitative analysis. Eye Contact Lens 2014, 40, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Weisman, R.A. Differentiation in Acanthamoeba castellanii. Annu. Rev. Microbiol. 1976, 30, 189–219. [Google Scholar] [CrossRef]
- Sriram, R.; Shoff, M.; Booton, G.; Fuerst, P.; Visvesvara, G.S. Survival of Acanthamoeba cysts after desiccation for more than 20 years. J. Clin. Microbiol. 2008, 46, 4045–4048. [Google Scholar] [CrossRef] [PubMed]
- Byers, T.J.; Akins, R.A.; Maynard, B.J.; Lefken, R.A.; Martin, S.M. Rapid growth of Acanthamoeba in defined media; induction of encystment by glucose-acetate starvation. J. Protozool. 1980, 27, 216–219. [Google Scholar] [CrossRef]
- Mazur, T.; Hadaś, E.; Iwanicka, I. The duration of the cyst stage and the viability and virulence of Acanthamoeba isolates. Trop. Med. Parasitol. Off. Organ Dtsch. Tropenmedizinische Ges. Dtsch. Ges. Tech. Zusammenarbeit (GTZ) 1995, 46, 106–108. [Google Scholar]
- Bouheraoua, N.; Labbé, A.; Chaumeil, C.; Liang, Q.; Laroche, L.; Borderie, V. Acanthamoeba keratitis. J. Fr. Ophtalmol. 2014, 37, 640–652. [Google Scholar] [CrossRef]
- Lloyd, D.; Turner, N.; Khunkitti, W.; Hann, A.; Furr, J.; Russell, A.D. Encystation in Acanthamoeba castellanii: Development of Biocide Resistance 1. J. Eukaryot. Microbiol. 2001, 48, 11–16. [Google Scholar] [CrossRef]
- Turner, N.; Harris, J.; Russell, A.; Lloyd, D. Microbial differentiation and changes in susceptibility to antimicrobial agents. J. Appl. Microbiol. 2000, 89, 751–759. [Google Scholar] [CrossRef]
- Kremer, I.; Cohen, E.J.; Eagle, R.C., Jr.; Udell, I.; Laibson, P.R. Histopathologic evaluation of stromal inflammation in Acanthamoeba keratitis. Eye Contact Lens 1994, 20, 45–48. [Google Scholar]
- Kilvington, S. Acanthamoeba trophozoite and cyst adherence to four types of soft contact lens and removal by cleaning agents. Eye 1993, 7, 535–538. [Google Scholar] [CrossRef]
- John, T.; Desai, D.; Sahm, D. Adherence of Acanthamoeba castellanii cysts and trophozoites to unworn soft contact lenses. Arch. Ophthalmol. 1989, 108, 658–664. [Google Scholar] [CrossRef]
- Niederkorn, J.Y. The biology of Acanthamoeba keratitis. Exp. Eye Res. 2021, 202, 108365. [Google Scholar] [CrossRef]
- Omaña-Molina, M.; Hernandez-Martinez, D.; Sanchez-Rocha, R.; Cardenas-Lemus, U.; Salinas-Lara, C.; Mendez-Cruz, A.R.; Colin-Barenque, L.; Aley-Medina, P.; Espinosa-Villanueva, J.; Moreno-Fierros, L.; et al. In vivo CNS infection model of Acanthamoeba genotype T4: The early stages of infection lack presence of host inflammatory response and are a slow and contact-dependent process. Parasitol. Res. 2017, 116, 725–733. [Google Scholar] [CrossRef]
- Huth, S.; Reverey, J.F.; Leippe, M.; Selhuber-Unkel, C. Adhesion forces and mechanics in mannose-mediated acanthamoeba interactions. PLoS ONE 2017, 12, e0176207. [Google Scholar] [CrossRef]
- Yoo, K.-T.; Jung, S.-Y. Effects of mannose on pathogenesis of Acanthamoeba castellanii. Korean J. Parasitol. 2012, 50, 365. [Google Scholar] [CrossRef]
- Sharma, C.; Khurana, S.; Bhatia, A.; Arora, A.; Gupta, A. The gene expression and proteomic profiling of Acanthamoeba isolates. Exp. Parasitol. 2023, 255, 108630. [Google Scholar] [CrossRef] [PubMed]
- Matin, A.; Jung, S.-Y. Phospholipase activities in clinical and environmental isolates of Acanthamoeba. Korean J. Parasitol. 2011, 49, 1. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo-Morales, J.; Khan, N.A.; Walochnik, J. An update on Acanthamoeba keratitis: Diagnosis, pathogenesis and treatment. Parasite 2015, 22, 10. [Google Scholar] [CrossRef] [PubMed]
- Pellegrin, J.; Ortega-Barria, E.; Barza, M.; Baum, J.; Pereira, M. Neuraminidase activity in acanthamoeba species trophozoites and cysts. Investig. Ophthalmol. Vis. Sci. 1991, 32, 3061–3066. [Google Scholar] [PubMed]
- Panjwani, N. Pathogenesis of Acanthamoeba keratitis. Ocul. Surf. 2010, 8, 70–79. [Google Scholar] [CrossRef]
- Alves, D.d.S.M.M.; Gonçalves, G.S.; Moraes, A.S.; Alves, L.M.; Carmo Neto, J.R.d.; Hecht, M.M.; Nitz, N.; Gurgel-Gonçalves, R.; Bernardes, G.; de Castro, A.M. The first Acanthamoeba keratitis case in the Midwest region of Brazil: Diagnosis, genotyping of the parasite and disease outcome. Rev. Soc. Bras. Med. Trop. 2018, 51, 716–719. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Luna, J.d.J.; Cervantes-Sandoval, I.; Calderón, J.; Navarro-García, F.; Tsutsumi, V.; Shibayama, M. Protease activities of Acanthamoeba polyphaga and Acanthamoeba castellanii. Can. J. Microbiol. 2006, 52, 16–23. [Google Scholar] [CrossRef]
- Cirelli, C.; Mesquita, E.I.S.; Chagas, I.A.R.; Furst, C.; Possamai, C.O.; Abrahão, J.S.; dos Santos Silva, L.K.; Grossi, M.F.; Tagliati, C.A.; Costa, A.O. Extracellular protease profile of Acanthamoeba after prolonged axenic culture and after interaction with MDCK cells. Parasitol. Res. 2020, 119, 659–666. [Google Scholar] [CrossRef]
- Moon, E.-K.; Hong, Y.; Chung, D.-I.; Kong, H.-H. Cysteine protease involving in autophagosomal degradation of mitochondria during encystation of Acanthamoeba. Mol. Biochem. Parasitol. 2012, 185, 121–126. [Google Scholar] [CrossRef]
- Hong, Y.; Kang, J.-M.; Joo, S.-Y.; Song, S.-M.; Lê, H.G.; Thái, T.L.; Lee, J.; Goo, Y.-K.; Chung, D.-I.; Sohn, W.-M.; et al. Molecular and biochemical properties of a cysteine protease of Acanthamoeba castellanii. Korean J. Parasitol. 2018, 56, 409. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Rico, G.; Martínez-Castillo, M.; De La Garza, M.; Shibayama, M.; Serrano-Luna, J. Acanthamoeba castellanii proteases are capable of degrading iron-binding proteins as a possible mechanism of pathogenicity. J. Eukaryot. Microbiol. 2015, 62, 614–622. [Google Scholar] [CrossRef] [PubMed]
- Łanocha-Arendarczyk, N.; Baranowska-Bosiacka, I.; Gutowska, I.; Kolasa-Wołosiuk, A.; Kot, K.; Łanocha, A.; Metryka, E.; Wiszniewska, B.; Chlubek, D.; Kosik-Bogacka, D. The activity of matrix metalloproteinases (MMP-2, MMP-9) and their tissue inhibitors (TIMP-1, TIMP-3) in the cerebral cortex and hippocampus in experimental acanthamoebiasis. Int. J. Mol. Sci. 2018, 19, 4128. [Google Scholar] [CrossRef]
- Sissons, J.; Alsam, S.; Goldsworthy, G.; Lightfoot, M.; Jarroll, E.L.; Khan, N.A. Identification and properties of proteases from an Acanthamoeba isolate capable of producing granulomatous encephalitis. BMC Microbiol. 2006, 6, 42. [Google Scholar] [CrossRef]
- Van Klink, F.; Taylor, W.M.; Alizadeh, H.; Jager, M.J.; Van Rooijen, N.; Niederkorn, J.Y. The role of macrophages in Acanthamoeba keratitis. Investig. Ophthalmol. Vis. Sci. 1996, 37, 1271–1281. [Google Scholar]
- Marciano-Cabral, F.; Toney, D.M. The interaction of Acanthamoeba spp. with activated macrophages and with macrophage cell lines. J. Eukaryot. Microbiol. 1998, 45, 452–458. [Google Scholar] [CrossRef]
- Hurt, M.; Proy, V.; Niederkorn, J.Y.; Alizadeh, H. The interaction of Acanthamoeba castellanii cysts with macrophages and neutrophils. J. Parasitol. 2003, 89, 565–572. [Google Scholar] [CrossRef]
- Stewart, G.; Shupe, K.; Kim, I.; Silvany, R.; Alizadeh, H.; McCulley, J.P.; Niederkorn, J.Y. Antibody-dependent neutrophil-mediated killing of Acanthamoeba castellanii. Int. J. Parasitol. 1994, 24, 739–742. [Google Scholar] [CrossRef]
- Clarke, D.W.; Alizadeh, H.; Niederkorn, J.Y. Failure of Acanthamoeba castellanii to produce intraocular infections. Investig. Ophthalmol. Vis. Sci. 2005, 46, 2472–2478. [Google Scholar] [CrossRef]
- Cano, A.; Mattana, A.; Woods, S.; Henriquez, F.L.; Alexander, J.; Roberts, C.W. Acanthamoeba activates macrophages predominantly through Toll-like receptor 4-and MyD88-dependent mechanisms to induce interleukin-12 (IL-12) and IL-6. Infect. Immun. 2017, 85, e01054-16. [Google Scholar] [CrossRef] [PubMed]
- Carnt, N.; Montanez, V.M.; Galatowicz, G.; Veli, N.; Calder, V. Tear cytokine levels in contact lens wearers with acanthamoeba keratitis. Cornea 2017, 36, 791–798. [Google Scholar] [CrossRef]
- Carnt, N.A.; Pang, I.; Burdon, K.P.; Calder, V.; Dart, J.K.; Subedi, D.; Hardcastle, A.J. Innate and adaptive gene single nucleotide polymorphisms associated with susceptibility of severe inflammatory complications in Acanthamoeba keratitis. Investig. Ophthalmol. Vis. Sci. 2021, 62, 33. [Google Scholar] [CrossRef]
- Alizadeh, H.; Apte, S.; El-Agha, M.-S.H.; Li, L.; Hurt, M.; Howard, K.; Cavanagh, H.D.; McCulley, J.P.; Niederkorn, J. Tear IgA and serum IgG antibodies against Acanthamoeba in patients with Acanthamoeba keratitis. Cornea 2001, 20, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Zheng, W.; Wang, Y.; Zhao, D.; Jiang, X.; Lv, S. A rabbit model of Acanthamoeba keratitis that better reflects the natural human infection. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2015, 298, 1509–1517. [Google Scholar] [CrossRef] [PubMed]
- Pumidonming, W.; Walochnik, J.; Dauber, E.; Petry, F. Binding to complement factors and activation of the alternative pathway by Acanthamoeba. Immunobiology 2011, 216, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, H.; He, Y.; McCulley, J.P.; Ma, D.; Stewart, G.L.; Via, M.; Haehling, E.; Niederkorn, J.Y. Successful immunization against Acanthamoeba keratitis in a pig model. Cornea 1995, 14, 180–186. [Google Scholar] [CrossRef]
- Kong, H.-H.; Kim, T.-H.; Chung, D.-I. Purification and characterization of a secretory serine proteinase of Acanthamoeba healyi isolated from GAE. J. Parasitol. 2000, 86, 12–17. [Google Scholar] [CrossRef]
- Foulks, G.N. Acanthamoeba keratitis and contact lens wear: Static or increasing problem? Eye Contact Lens. 2007, 33, 412–414. [Google Scholar] [CrossRef]
- Neelam, S.; Niederkorn, J.Y. Focus: Infectious diseases: Pathobiology and immunobiology of Acanthamoeba keratitis: Insights from animal models. Yale J. Biol. Med. 2017, 90, 261. [Google Scholar]
- Mathers, W.; Stevens, G., Jr.; Rodrigues, M.; Chan, C.C.; Gold, J.; Visvesvara, G.S.; Lemp, M.A.; Zimmerman, L.E. Immunopathology and electron microscopy of Acanthamoeba keratitis. Am. J. Ophthalmol. 1987, 103, 626–635. [Google Scholar] [CrossRef] [PubMed]
- Clarke, D.W.; Niederkorn, J.Y. The immunobiology of Acanthamoeba keratitis. Microbes Infect. 2006, 8, 1400–1405. [Google Scholar] [CrossRef] [PubMed]
- Klink, F.V.; Leher, H.; Jager, M.; Alizadeh, H.; Taylor, W.; Niederkorn, J.Y. Systemic immune response to Acanthamoeba keratitis in the Chinese hamster. Ocul. Immunol. Inflamm. 1997, 5, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-M.; Chang, Y.-T.; Shih, M.-H.; Lin, W.-C.; Huang, F.-C. Identification and characterization of a secreted M28 aminopeptidase protein in Acanthamoeba. Parasitol. Res. 2019, 118, 1865–1874. [Google Scholar] [CrossRef]
- Betanzos, A.; Bañuelos, C.; Orozco, E. Host invasion by pathogenic amoebae: Epithelial disruption by parasite proteins. Genes 2019, 10, 618. [Google Scholar] [CrossRef] [PubMed]
- Willcox, M.D.P. Tear film, contact lenses and tear biomarkers. Clin. Exp. Optom. 2019, 102, 350–363. [Google Scholar] [CrossRef] [PubMed]
- Ismail, N.N.; Yusof, H. Occurrence of The Pathogenic Amoeba Naegleria fowleri, Pathogenesis, Diagnosis, and Treatment Options. Malays. J. Med. Health Sci. 2021, 17, 285–295. [Google Scholar]
- Knickelbein, J.E.; Kovarik, J.; Dhaliwal, D.K.; Chu, C.T. Acanthamoeba keratitis: A clinicopathologic case report and review of the literature. Hum. Pathol. 2013, 44, 918–922. [Google Scholar] [CrossRef] [PubMed]
- Niederkorn, J.Y. Innate and adaptive immune responses to ocular Acanthamoeba infections. Expert Rev. Ophthalmol. 2008, 3, 665–672. [Google Scholar] [CrossRef]
- McClellan, K.; Howard, K.; Mayhew, E.; Niederkorn, J.Y.; Alizadeh, H. Adaptive immune responses to Acanthamoeba cysts. Exp. Eye Res. 2002, 75, 285–293. [Google Scholar] [CrossRef]
- Carnt, N.A.; Willcox, M.D.; Hau, S.; Garthwaite, L.L.; Evans, V.E.; Radford, C.F.; Dart, J.K.; Chakrabarti, S.; Stapleton, F. Association of single nucleotide polymorphisms of interleukins-1β,-6, and-12B with contact lens keratitis susceptibility and severity. Ophthalmology 2012, 119, 1320–1327. [Google Scholar] [CrossRef]
- Carnt, N.A.; Willcox, M.D.; Hau, S.; Keay, L.; Dart, J.K.; Chakrabarti, S.; Stapleton, F. Immune defense single nucleotide polymorphisms and recruitment strategies associated with contact lens keratitis. Ophthalmology 2012, 119, 1997–2002. [Google Scholar] [CrossRef]
- Carnt, N.A.; Cipriani, V.; Stapleton, F.J.; Calder, V.; Willcox, M.D. Association study of single nucleotide polymorphisms in IL-10 and IL-17 genes with the severity of microbial keratitis. Contact Lens Anterior Eye 2019, 42, 658–661. [Google Scholar] [CrossRef]
- Megha, K.; Sharma, M.; Gupta, A.; Sehgal, R.; Khurana, S. Microbiological diagnosis of Acanthamoebic keratitis: Experience from tertiary care center of North India. Diagn. Microbiol. Infect. Dis. 2021, 100, 115339. [Google Scholar] [CrossRef]
- Szentmáry, N.; Daas, L.; Shi, L.; Laurik, K.L.; Lepper, S.; Milioti, G.; Seitz, B. Acanthamoeba keratitis—Clinical signs, differential diagnosis and treatment. J. Curr. Ophthalmol. 2019, 31, 16–23. [Google Scholar] [CrossRef]
- Yera, H.; Ok, V.; Kuet, F.L.K.; Dahane, N.; Ariey, F.; Hasseine, L.; Delaunay, P.; Martiano, D.; Marty, P.; Bourges, J.L. PCR and culture for diagnosis of Acanthamoeba keratitis. Br. J. Ophthalmol. 2021, 105, 1302–1306. [Google Scholar] [CrossRef]
- Goh, J.W.; Harrison, R.; Hau, S.; Alexander, C.L.; Tole, D.M.; Avadhanam, V.S.M. Comparison of in vivo confocal microscopy, PCR and culture of corneal scrapes in the diagnosis of Acanthamoeba keratitis. Cornea 2018, 37, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Penland, R.L.; Wilhelmus, K.R. Comparison of axenic and monoxenic media for isolation of Acanthamoeba. J. Clin. Microbiol. 1997, 35, 915–922. [Google Scholar] [CrossRef] [PubMed]
- Muiño, L.; Rodrigo, D.; Villegas, R.; Romero, P.; Peredo, D.E.; Vargas, R.A.; Liempi, D.; Osuna, A.; Jercic, M.I. Effectiveness of sampling methods employed for Acanthamoeba keratitis diagnosis by culture. Int. Ophthalmol. 2019, 39, 1451–1458. [Google Scholar] [CrossRef] [PubMed]
- Grossniklaus, H.E.; Waring IV, G.O.; Akor, C.; Castellano-Sanchez, A.A.; Bennett, K. Evaluation of hematoxylin and eosin and special stains for the detection of acanthamoeba keratitis in penetrating keratoplasties. Am. J. Ophthalmol. 2003, 136, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Kheirkhah, A.; Satitpitakul, V.; Syed, Z.A.; Müller, R.; Goyal, S.; Tu, E.Y.; Dana, R. Factors influencing the diagnostic accuracy of laser-scanning in vivo confocal microscopy for Acanthamoeba keratitis. Cornea 2018, 37, 818–823. [Google Scholar] [CrossRef]
- De Craene, S.; Knoeri, J.; Georgeon, C.; Kestelyn, P.; Borderie, V.M. Assessment of confocal microscopy for the diagnosis of polymerase chain reaction–positive Acanthamoeba keratitis: A case-control study. Ophthalmology 2018, 125, 161–168. [Google Scholar] [CrossRef]
- Alkatan, H.M.; Al-Essa, R.S. Challenges in the diagnosis of microbial keratitis: A detailed review with update and general guidelines. Saudi J. Ophthalmol. 2019, 33, 268–276. [Google Scholar] [CrossRef]
- Li, S.; Bian, J.; Wang, Y.; Wang, S.; Wang, X.; Shi, W. Clinical features and serial changes of Acanthamoeba keratitis: An in vivo confocal microscopy study. Eye 2020, 34, 327–334. [Google Scholar] [CrossRef]
- Lehmann, O.J.; Green, S.M.; Morlet, N.; Kilvington, S.; Keys, M.F.; Matheson, M.M.; Dart, J.; McGill, J.I.; Watt, P.J. Polymerase chain reaction analysis of corneal epithelial and tear samples in the diagnosis of Acanthamoeba keratitis. Invest. Ophthalmol. Vis. Sci. 1998, 39, 1261–1265. [Google Scholar]
Characteristics | Pathogenic Amoeba | Non-Pathogenic Amoeba |
---|---|---|
Acanthopodia | Higher number of complex Acanthopodia. | Lower number of less-complex Acanthopodia. |
Adherence to host cells | Higher number of MBPs and LBPs results in higher affinity for adherence to host cells. | Smaller number of MBPs and LBPs results in lower affinity for adherence to host cells. |
Cyst formation | Formation of highly resistant cysts with complex outer layers. | Formation of cysts with simpler outer layers, potentially less resistant. |
Motility | May display increased motility and faster movement. | Generally slower and less dynamic motility. |
Surface features | Presence of distinctive surface structures, such as ridges or spines. | Surface features are typically smoother and less pronounced. |
Method | Strengths | Limitations |
---|---|---|
Culture | 1. Gold standard for AK diagnosis. 2. Easy to perform. | 1. Requires 1–2 weeks for a positive result. 2. Influenced by specimen type. |
IVCM | 1. High specificity and sensitivity. 2. Non-invasive. 3. Instant results. | 1. Recognizes cysts only. 2. Expensive and not widely available. 3. User-dependent. |
PCR | 1. High specificity and sensitivity. 2. Rapid results. 3. Allows genotyping, which helps in disease management and epidemiological studies. | 1. False-positive results in presence of dead amoeba. 2. False-negative results during treatment. 3. Reduced sensitivity in the initial phase of infection. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilyas, M.; Stapleton, F.; Willcox, M.D.P.; Henriquez, F.; Peguda, H.K.; Rayamajhee, B.; Zahid, T.; Petsoglou, C.; Carnt, N.A. Epidemiology of and Genetic Factors Associated with Acanthamoeba Keratitis. Pathogens 2024, 13, 142. https://doi.org/10.3390/pathogens13020142
Ilyas M, Stapleton F, Willcox MDP, Henriquez F, Peguda HK, Rayamajhee B, Zahid T, Petsoglou C, Carnt NA. Epidemiology of and Genetic Factors Associated with Acanthamoeba Keratitis. Pathogens. 2024; 13(2):142. https://doi.org/10.3390/pathogens13020142
Chicago/Turabian StyleIlyas, Muhammad, Fiona Stapleton, Mark D. P. Willcox, Fiona Henriquez, Hari Kumar Peguda, Binod Rayamajhee, Tasbiha Zahid, Constantinos Petsoglou, and Nicole A. Carnt. 2024. "Epidemiology of and Genetic Factors Associated with Acanthamoeba Keratitis" Pathogens 13, no. 2: 142. https://doi.org/10.3390/pathogens13020142
APA StyleIlyas, M., Stapleton, F., Willcox, M. D. P., Henriquez, F., Peguda, H. K., Rayamajhee, B., Zahid, T., Petsoglou, C., & Carnt, N. A. (2024). Epidemiology of and Genetic Factors Associated with Acanthamoeba Keratitis. Pathogens, 13(2), 142. https://doi.org/10.3390/pathogens13020142