West Nile Virus Infection in Occupational Settings—A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Research Question
2.3. Database and Search Strategy
- (a)
- Settings of the study: year, region and targeted groups.
- (b)
- Total number of sampled cases and their demographic characteristics.
- (c)
- Number of reference population (i.e., adults; if available).
- (d)
- Characteristics of the laboratory techniques that were ultimately employed.
- Diagnosis of previous infection of WNV.
- Occupational exposure to WNV.
2.4. Risk of bias Assessment
3. Results
3.1. Observational Studies
3.2. Case Reports
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barrett, A.D. Japanese encephalitis and dengue vaccines. Biologicals 1997, 25, 27–34. [Google Scholar] [CrossRef]
- Nybakken, G.E.; Nelson, C.A.; Chen, B.R.; Diamond, M.S.; Fremont, D.H. Crystal structure of the West Nile virus envelope glycoprotein. J. Virol. 2006, 80, 11467–11474. [Google Scholar] [CrossRef]
- D’Amore, C.; Grimaldi, P.; Ascione, T.; Conti, V.; Sellitto, C.; Franci, G.; Kafil, S.H.; Pagliano, P. West Nile Virus diffusion in temperate regions and climate change. A systematic review. Infez. Med. 2023, 31, 20–30. [Google Scholar]
- ECDC. Available online: https://www.ecdc.europa.eu/en/west-nile-fever/surveillance-and-disease-data/disease-data-ecdc (accessed on 18 December 2023).
- Molaei, G.; Andreadis, T.G.; Armstrong, P.M.; Anderson, J.F.; Vossbrinck, C.R. Host feeding patterns of Culex mosquitoes and West Nile virus transmission, northeastern United States. Emerg. Infect. Dis. 2006, 12, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Mrzljak, A.; Dinjar-Kujundzic, P.; Santini, M.; Barbic, L.; Kosuta, I.; Savic, V.; Tabain, I.; Vilibic-Cavlek, T. West Nile Virus: An Emerging Threat in Transplant Population. Vector Borne Zoonotic Dis. 2020, 20, 613–618. [Google Scholar] [CrossRef]
- Chancey, C.; Grinev, A.; Volkova, E.; Rios, M. The global ecology and epidemiology of West Nile virus. Biomed. Res. Int. 2015, 2015, 376230. [Google Scholar] [CrossRef]
- Durand, B.; Haskouri, H.; Lowenski, S.; Vachiery, N.; Beck, C.; Lecollinet, S. Seroprevalence of West Nile and Usutu viruses in military working horses and dogs, Morocco, 2012: Dog as an alternative WNV sentinel species? Epidemiol. Infect. 2016, 144, 1857–1864. [Google Scholar] [CrossRef]
- Bakonyi, T.; Haussig, J.M. West Nile virus keeps on moving up in Europe. Euro Surveill. 2020, 25, 2001938. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, D.R.; Marfin, A.A.; Montgomery, S.P.; Kipp, A.M.; Lehman, J.A.; Biggerstaff, B.J.; Elko, V.L.; Collins, P.D.; Jones, J.E.; Campbell, G.L. The epidemic of West Nile virus in the United States, 2002. Vector Borne Zoonotic Dis. 2004, 4, 61–70. [Google Scholar] [CrossRef]
- Campbell, G.L.; Marfin, A.A.; Lanciotti, R.S.; Gubler, D.J. West Nile virus. Lancet Infect. Dis. 2002, 2, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Nir, Y.; Beemer, A.; Goldwasser, R.A. West Nile Virus infection in mice following exposure to a viral aerosol. Br. J. Exp. Pathol. 1965, 46, 443–449. [Google Scholar] [PubMed]
- Petersen, L.R.; Brault, A.C.; Nasci, R.S. West Nile virus: Review of the literature. J. Am. Med. Assoc. 2013, 310, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Qi, Z.; Qian, X. Recent Advancements in Mosquito-Borne Flavivirus Vaccine Development. Viruses 2023, 4, 813. [Google Scholar] [CrossRef] [PubMed]
- Chirico, F.; Magnavita, N. West Nile virus infection in Europe: Need for an integration of occupational health practice and public health activities. Commentary. Ann. Ist. Super. Sanita 2019, 55, 3–5. [Google Scholar]
- Nosrat, C.; Altamirano, J.; Anyamba, A.; Caldwell, J.M.; Damoah, R.; Mutuku, F.; Ndenga, B.; LaBeaud, A.D. Impact of recent climate extremes on mosquito-borne disease transmission in Kenya. PLoS Negl. Trop. Dis. 2021, 15, e0009182. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing Decision 2018/945 of 22 June 2018 on the Communicable Diseases and Related Special Health Issues to Be Covered by Epidemiological Surveillance as well as Relevant Case Definitions; European Commission: Bruxelles, Belgium, 2018; Available online: https://eur-lex.europa.eu/eli/dec_impl/2018/945/oj (accessed on 10 December 2023).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Br. Med. J. 2021, 372, n71. [Google Scholar] [CrossRef]
- Eick, S.M.; Goin, D.E.; Chartres, N.; Lam, J.; Woodruff, T.J. Assessing risk of bias in human environmental epidemiology studies using three tools: Different conclusions from different tools. Syst. Rev. 2020, 9, 249. [Google Scholar] [CrossRef]
- National Toxicology Programm, U.S. Department of Health and Human Science. Handbook for Conducting a Literature-Based Health Assessment Using OHAT Approach for Systematic Review and Evidence Integration; National Toxicology Program: Durham, NC, USA, 2019. [Google Scholar]
- de Bellegarde de Saint Lary, C.; Kasbergen, L.M.R.; Bruijning-Verhagen, P.C.J.L.; van der Jeugd, H.; Chandler, F.; Hogema, B.M.; Zaaijer, H.L.; van der Klis, F.R.; Barzon, L.; de Bruin, E.; et al. Assessing West Nile virus (WNV) and Usutu virus (USUV) exposure in bird ringers in the Netherlands: A high-risk group for WNV and USUV infection? One Health 2023, 16, 100533. [Google Scholar] [CrossRef]
- Salgado, B.B.; de Jesus Maués, F.C.; Pereira, R.L.; Chiang, J.O.; de Oliveira Freitas, M.N.; Ferreira, M.S.; Martins, L.C.; da Costa Vasconcelos, P.F.; Ganoza, C.; Lalwani, P. Prevalence of arbovirus antibodies in young healthy adult population in Brazil. Parasit. Vectors 2021, 14, 403. [Google Scholar] [CrossRef]
- Alzuheir, I.; Fayyad, A.; Jalboush, N.; Abdallah, R.; Abutarbush, S.; Gharaibeh, M.; Bdarneh, M.; Khraim, N.; Abu Helal, M.; Abu Helal, B. Seroprevalence and risk factors of West Nile virus infection in veterinarians and horses in Northern Palestine. Vet. World 2021, 14, 1241–1246. [Google Scholar] [CrossRef]
- Babahajian, A.; Sharifi, P.; Babahajiani, W.; Vafaii, S.; Yousefinejad, V.; Babahajiani, S.; Mohsenpour, B.; Kalmarzi, R.N.; Rasouli, M.A.; Souri, M. Seroprevalence of West Nile Virus in Regular Blood Donors Referred to the Blood Bank of Kurdistan Province, Iran. Sudan. J. Med. Sci. 2022, 17, 192–203. [Google Scholar] [CrossRef]
- Dorko, E.; Bušová, A.; Csank, T.; Feketeová, E.; Rimárová, K.; Diabelková, J.; Čellár, R.; Bereš, M.; Gyuranecz, M.; Pistl, J.; et al. West Nile virus—A new infection in the Slovak Republic? Cent. Eur. J. Public Health 2018, 26, S51–S55. [Google Scholar] [CrossRef] [PubMed]
- Remoli, M.E.; Fiorentini, C.; Marchi, A.; Di Renzi, S.; Vonesch, N.; Peri, M.V.; Bastianini, L.; Rossi, S.; Bartoccini, G.; Kuttappasery, M.L.; et al. Seroprevalence survey of arboviruses in workers from Tuscany, Italy. Med. Lav. 2018, 109, 125–131. [Google Scholar] [PubMed]
- Simpson, G.J.G.; Quan, V.; Frean, J.; Knobel, D.L.; Rossouw, J.; Weyer, J.; Marcotty, T.; Godfroid, J.; Blumberg, L.H. Prevalence of Selected Zoonotic Diseases and Risk Factors at a Human-Wildlife-Livestock Interface in Mpumalanga Province, South Africa. Vector Borne Zoonotic Dis. 2018, 18, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Enkhtsetseg, A.; Davadoorj, R.; Fernandez, S.; Mongkolsirichaikul, D.; Yingst, S.L.; Altantuul, D.; Elbegdorj, E.; Ganchimeg, L. Seroconversion to Causes of Febrile Illness in Mongolian Peacekeepers Deployed to South Sudan. Am. J. Trop. Med. Hyg. 2016, 95, 1469–1471. [Google Scholar] [CrossRef] [PubMed]
- Hadjichristodoulou, C.; Pournaras, S.; Mavrouli, M.; Marka, A.; Tserkezou, P.; Baka, A.; Billinis, C.; Katsioulis, A.; Psaroulaki, A.; Papa, A.; et al. West Nile Virus Seroprevalence in the Greek Population in 2013: A Nationwide Cross-Sectional Survey. PLoS ONE 2015, 10, e0143803. [Google Scholar] [CrossRef] [PubMed]
- van Eeden, C.; Swanepoel, R.; Venter, M. Antibodies against West Nile and Shuni Viruses in Veterinarians, South Africa. Emerg. Infect. Dis. 2014, 20, 1409–1411. [Google Scholar] [CrossRef] [PubMed]
- Karakoç, Z.; Tüzüner, B.M.; Ergonul, O.; Pierro, A.; Di Fonzo, E.; Koruk, I.; Sambri, V. West nile virus infection in the Mesopotamia region, Syria border of Turkey. Vector Borne Zoonotic Dis. 2013, 13, 739–743. [Google Scholar] [CrossRef]
- Barzon, L.; Pacenti, M.; Cusinato, R.; Cattai, M.; Franchin, E.; Pagni, S.; Martello, T.; Bressan, S.; Squarzon, L.; Cattelan, A.M.; et al. Human cases of West Nile Virus infection in north-eastern Italy, 15 June to 15 November 2010. Euro Surveill 2011, 16, 19949. [Google Scholar] [CrossRef]
- Barzon, L.; Squarzon, L.; Cattai, M.; Franchin, E.; Pagni, S.; Cusinato, R.; Palù, G. West Nile virus infection in Veneto region, Italy, 2008–2009. Euro Surveill 2009, 14, 19289. [Google Scholar] [CrossRef]
- Spataro, P.; Scoglio, M.E.; Di Pietro, A.; Chirico, C.; Visalli, G.; Macrì, B.; Cannavò, G.; Picerno, I. Seroprevalence study on the diffusion of the West Nile virus among blood donors, healthcare workers, jockeys, grooms and fowlers, veterinary surgeons and hunters in Messina (Italy). J. Prev. Med. Hyg. 2008, 49, 22–25. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). West Nile virus infection among turkey breeder farm workers–Wisconsin, 2002. MMWR Morb. Mortal. Wkly. Rep. 2003, 52, 1017–1019. [Google Scholar]
- Bin, H.; Grossman, Z.; Pokamunski, S.; Malkinson, M.; Weiss, L.; Duvdevani, P.; Banet, C.; Weisman, Y.; Annis, E.; Gandaku, D.; et al. West Nile fever in Israel 1999–2000: From geese to humans. Ann. N. Y. Acad. Sci. 2001, 951, 127–142. [Google Scholar] [CrossRef]
- Bryan, J.P.; Iqbal, M.; Ksiazek, T.G.; Ahmed, A.; Duncan, J.F.; Awan, B.; Krieg, R.E.; Riaz, M.; Leduc, J.W.; Nabi, S.; et al. Prevalence of sand fly fever, West Nile, Crimean-Congo hemorrhagic fever, and leptospirosis antibodies in Pakistani military personnel. Mil. Med. 1996, 161, 149–153. [Google Scholar] [CrossRef]
- Vieira, M.A.C.S.; Romano, A.P.M.; Almeida-Neto, W.S.; Rodrigues, S.G.; Azevedo, R.S.S.; Eulálio, K.D.; Chiang, J.O.; Vasconcelos, P.F.C.; Silva, E.V.P.; Borba, A.S. West Nile Virus Encephalitis: The First Human Case Recorded in Brazil. Am. J. Trop. Med. Hyg. 2015, 93, 377–379. [Google Scholar] [CrossRef]
- Venter, M.; Steyl, J.; Human, S.; Weyer, J.; Zaayman, D.; Blumberg, L.; Leman, P.A.; Paweska, J.; Swanepoel, R. Transmission of West Nile virus during horse autopsy. Emerg. Infect. Dis. 2010, 16, 573–575. [Google Scholar] [CrossRef]
- Venter, M.; Burt, F.J.; Blumberg, L.; Fickl, H.; Paweska, J.; Swanepoel, R. Cytokine induction after laboratory-acquired West Nile virus infection. New Engl. J. Med. 2009, 360, 1260–1262. [Google Scholar] [CrossRef]
- Fonseca, K.; Prince, G.D.; Bratvold, J.; Fox, J.D.; Pybus, M.; Preksaitis, J.K.; Tilley, P. West Nile virus infection and conjunctival exposure. Emerg. Infect. Dis. 2005, 11, 1648–1649. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Laboratory-acquired West Nile virus infections—United States, 2002. MMWR Morb. Mortal. Wkly. Rep. 2002, 51, 1133–1135. [Google Scholar]
- Defilippo, F.; Dottori, M.; Lelli, D.; Chiari, M.; Cereda, D.; Farioli, M.; Chianese, R.; Cerioli, M.P.; Faccin, F.; Canziani, S.; et al. Assessment of the Costs Related to West Nile Virus Monitoring in Lombardy Region (Italy) between 2014 and 2018. Int. J. Environ. Res. Public Health 2022, 19, 5541. [Google Scholar] [CrossRef]
- Barrett, A.D.T. Economic burden of West Nile virus in the United States. Am. J. Trop. Med. Hyg. 2014, 90, 389–390. [Google Scholar] [CrossRef] [PubMed]
- Farooq, Z.; Rocklöv, J.; Wallin, J.; Abiri, N.; Sewe, M.O.; Sjödin, H.; Semenza, J.C. Artificial intelligence to predict West Nile virus outbreaks with eco-climatic drivers. Lancet Reg. Health Eur. 2022, 17, 100370. [Google Scholar] [CrossRef] [PubMed]
- Farooq, Z.; Sjödin, H.; Semenza, J.C.; Tozan, Y.; Sewe, M.O.; Wallin, J.; Rocklöv, J. European projections of West Nile virus transmission under climate change scenarios. One Health 2023, 16, 100509. [Google Scholar] [CrossRef] [PubMed]
- Clayton, S. Climate Change and Mental Health. Curr. Env. Health Rep. 2021, 8, 1–6. [Google Scholar] [CrossRef]
- Wilson, M.E. The traveller and emerging infections: Sentinel, courier, transmitter. J. Appl. Microbiol. 2003, 94, 1S–11S. [Google Scholar] [CrossRef]
- National Institute for Occupational Safety and Health; National Center for Infectious Diseases (U.S.). Division of Vector-Borne Infectious Diseases. In Recommendations for Protecting Outdoor Workers from West Nile Virus Exposure; 2005. Available online: https://stacks.cdc.gov/view/cdc/11381 (accessed on 15 December 2023).
- ECDC. European Centre for Disease Prevention and Control, Vector Control Practices and Strategies against West Nile Virus; ECDC: Stockholm, Sweden, 2020; Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Vector-control-practices-and-strategies-against-West-Nile-virus.pdf (accessed on 20 December 2023).
- Gould, C.V.; Staples, J.E.; Huang, C.Y.-H.; Brault, A.C.; Nett, R.J. Combating West Nile virus disease—Time to revisit vaccination. N. Engl. J. Med. 2023, 4, 1633–1636. [Google Scholar] [CrossRef]
Item | Definition |
---|---|
Population of interest | Workers reporting prolonged outdoor activities or contact with WNV-infected vectors or animals or their biological fluids and with a laboratory diagnosis of WNV infection. |
Investigated result | Confirmed West Nile virus infection |
Controls | Workers, professionals or the general population without a history of prolonged outdoor activity or contact with WNV-infected vectors or animals and without prior laboratory diagnosis of WNV infection |
Outcome | Occupational sectors and population more exposed to WNV infection |
Study | Country (Year of Analysis) | Study Population | Analytical/Diagnostic Method | Conclusions/Outcomes Seroprevalence |
---|---|---|---|---|
De Bellegarde de Saint Lary et al. (2023) [21] | Netherlands (2021) | 157 bird-ringers vs 58 healthcare workers, 96 blood donors, 94 subjects from Dutch general population (control groups). | IgG protein microarray (possible positive) followed by FRNT a (confirmed positive) | IgG-possible-positive: 21/157 bird-ringers (13.3%), 0/58 healthcare workers (0.0%), 2/96 blood donors (2.1%), 4/94 general population (4.3%); FNRT confirmed positive: 1/21 bird ringers |
Salgado et al. (2021) [22] | Brazil (2014–2015) | 298 Brazilian army personnel participating in a jungle survival course. | IgG in-house HIA b | IgG-positive: 139/298 (46.6%) |
Alzuheir et al. (2021) [23] | Palestine (2020) | 100 veterinarians | IgG ELISA c | IgG-positive: 23/100 (23.0%). |
Babahajian et al. (2021) [24] | Iran (2018–2019) | 259 blood donors classified by job (7 farmers, 11 army personnel). | IgM/IgG ELISA c | -IgG-positive: 14/269 (5.4%), 1/7 farmer (14.3%), 0/11 (0.0%) army personnel; -IgM-positive 3/269 (1.2%), no farmer or army personnel. |
Dorko et al. (2018) [25] | Slovakia (not reported) | 265 patients and 199 possible high-risk subjects (103 soldiers, 45 Roma ethnicity, 31 gardeners, 20 agricultural workers) | IgM/IgG ELISA c, positive samples confirmed by PRNT d | IgM/IgG-positive PRNT: 3/464 (0.65%), two patients and one with a possible occupational origin (shepherdess). |
Remoli et al. (2018) [26] | Italy (2012) | 101 agricultural and forestry workers vs 100 employees in public health offices (not exposed workers) | IgG ELISA c confirmed by PRNT d | IgG-positive PRNT: 0/201 (0.0%). |
Simpson et al. (2018) [27] | South Africa (2013) | 64 workers employed at cattle dip-tanks (farmers, herders, veterinary) and 74 patients with acute febrile illness. | IgM in-house HIA a confirmed by IgM in-house ELISA c | IgM-positive ELISA: 0/64 (0.0%) dip tankster, 0/73 (0.0%) febrile patients. |
Enkhtsetseg et al. (2016) [28] | Mongolia (2012–2013) | 632 Mongolian army personnel deploying to South Sudan | IgG IFA e | IgG-positive: 23/632 (3.6%), 14/632 (2.2%) positive even in sera collected before deployment. |
Hadjichristodoulou et al. (2015) [29] | Greece (2013) | 2897 individuals grouped by jobs: (A) 147 farmer/worker, (B) 857 employer, (C) 272 freelancer, (D) 455 housewife/unemployed, (E) 811 child/student and (F) 355 retired. | IgG ELISA c, positive samples analyzed for IgM ELISA and confirmed by PRNT d | IgG-positive ELISA: (A) 3/147 (2.0%), (B) 14/857 (1.6%), (C) 1/272 (0.4%), (D) (1.3%) and (F) (4.8%). |
van Eeden et al. (2014) [30] | South Africa (2011–2012) | 127 veterinarians | HIA b and neutralization assay tests | Antibodies positive: 10/127 (7.9%); |
Karakoç et al. (2012) [31] | Turkey (2009) | 182 high-risk workers (farmers, agricultural workers, unemployed, free traders) vs 125 low-risk workers (housewives, teachers, students, priests) | IgG/IgM ELISA c, positive samples tested by IFA e and confirmed by MNTA f | MNTA-positive: 38/182 (20.9%) high-risk group vs 14/125 (11.2%) low-risk occupation group. |
Barzon et al. (2009; 2011) [32,33] | Italy (2008) | 321 workers from farms with WNV horse positive cases. | IgG/IgM ELISA c confirmed by PRNT d | IgG-positive PRNT: 5/321(1.6%), two of them also IgM-positive. |
Spataro et al. (2008) [34] | Italy (2006) | 600 healthcare workers, 100 hunters, 80 stable workers as jockey and grooms, 100 fowlers, 100 veterinary surgeons and 500 blood donors. | IgG ELISA c | IgG-positive: no positive case in any group (0.0%). |
CDC (2003) [35] | US (2002) | 70 workers from 6 turkey farms (57 breeders and 13 non-breeders) vs 23 turkey meat processing facilities workers vs 14 neighborhood residents. | IgM ELISA c confirmed by PRNT d | IgM-positive PRNT: 10/57 (17.5%) in turkey breeder farm workers vs 0.0% in the other groups. |
Bin et al. (2001) [36] | Israel (1998–1999) | 37 farmers and veterinarians working with sick geese (study group) vs 39 working with healthy geese (control group) | Neutralization assay followed by IgG ELISA c | IgG-positive ELISA: 33/37 (89.2%) study group vs 2/39 (5.1%) control group. |
Bryan et al. (1996) [37] | Pakistan (1986–1987) | Three groups of military workers: (A) 212 in training, (B) 192 involved in hepatitis E outbreak at a military academy and (C) 254 admitted to a military hospital for acute febrile illness | IgG ELISA c | IgG-positive in the three groups: (A) 75/212 (35.4%), (B) 63/192 (32.8%) and (C) 105/254 (41.3%) |
Study | RISK OF BIAS | |||||
---|---|---|---|---|---|---|
D1 | D2 | D3 | D4 | D5 | D6 | |
De Bellegarde de Saint Lary et al., 2023 [21] | + | + | + | ++ | - | + |
Salgado et al., 2021 [22] | + | + | - | - | + | + |
Alzuheir et al., 2021 [23] | - | + | + | + | - | - |
Babahajian et al., 2021 [24] | + | + | + | + | - | + |
Dorko et al., 2018 [25] | - | - | + | - | - | + |
Remoli et al., 2018 [26] | + | + | + | + | ++ | + |
Simpson et al., 2018 [27] | + | + | + | - | - | + |
Enkhtsetseg et al., 2016 [28] | + | + | + | - | + | + |
Hadjichristodoulou et al., 2015 [29] | + | + | + | + | + | + |
van Eeden et al., 2014 [30] | + | - | ++ | + | + | + |
Karakoç et al., 2012 [31] | + | + | + | + | + | + |
Barzon et al., 2009 and 2011 [32,33] | + | + | + | + | + | + |
Spataro et al., 2008 [34] | + | + | - | - | + | + |
CDC, 2003 [35] | + | + | + | + | + | + |
Bin et al., 2001 [36] | + | + | ++ | + | + | + |
Bryan et al., 1996 [37] | + | + | + | + | + | + |
Study | Country (Year) | Job | Possible Route of Transmission/Source of Infection | Diagnostic Analysis |
Vieira et al. (2015) [38] | Brazil (2014) | Ranch worker | Not stated/chickens and horses WNV-positive in the worker’s farm | IgM ELISA b, PRNT and HIA on serum. |
Venter et al. (2009, 2010) [39,40] | South Africa (not reported) | Veterinary student performing an autopsy | Possible aerosol transmission/infected horse’s brain and spinal cord | Isolation of WNV from serum, confirmed by PCR |
Researcher | Needle-stick injury (percutaneous inoculation)/infected cell culture fluid | Serum positive samples | ||
Fonseca et al. (2005) [41] | Canada (2003) | Animal control officer | Conjunctival (mucocutaneous transmission)/infected crow brain and cerebrospinal fluid | RT PCR a blood sample positive after 7 days; IgM ELISA b after 14 days |
CDC (2002) [42] | US (2002) | Laboratory worker performing a necropsy | Percutaneous (wound at thumb)/infected bird brain | IgM-positive since the accident: ELISA b after 13 and 21 days, neutralizing test after 21 days. |
Laboratory worker harvesting brain | Needle-stick injury (percutaneous inoculation) /infected mouse brain | IgM-positive since the accident: ELISA b after 10 days. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odigie, A.E.; Stufano, A.; Schino, V.; Zarea, A.A.K.; Ndiana, L.A.; Mrenoshki, D.; Ugochukwu, I.C.I.; Lovreglio, P.; Greco, G.; Pratelli, A.; et al. West Nile Virus Infection in Occupational Settings—A Systematic Review. Pathogens 2024, 13, 157. https://doi.org/10.3390/pathogens13020157
Odigie AE, Stufano A, Schino V, Zarea AAK, Ndiana LA, Mrenoshki D, Ugochukwu ICI, Lovreglio P, Greco G, Pratelli A, et al. West Nile Virus Infection in Occupational Settings—A Systematic Review. Pathogens. 2024; 13(2):157. https://doi.org/10.3390/pathogens13020157
Chicago/Turabian StyleOdigie, Amienwanlen E., Angela Stufano, Valentina Schino, Aya Attia Koraney Zarea, Linda A. Ndiana, Daniela Mrenoshki, Iniobong C. I. Ugochukwu, Piero Lovreglio, Grazia Greco, Annamaria Pratelli, and et al. 2024. "West Nile Virus Infection in Occupational Settings—A Systematic Review" Pathogens 13, no. 2: 157. https://doi.org/10.3390/pathogens13020157
APA StyleOdigie, A. E., Stufano, A., Schino, V., Zarea, A. A. K., Ndiana, L. A., Mrenoshki, D., Ugochukwu, I. C. I., Lovreglio, P., Greco, G., Pratelli, A., Camero, M., & Tempesta, M. (2024). West Nile Virus Infection in Occupational Settings—A Systematic Review. Pathogens, 13(2), 157. https://doi.org/10.3390/pathogens13020157