Medical Device-Associated Biofilm Infections and Multidrug-Resistant Pathogens
Abstract
:1. Introduction
2. Hospital-Acquired Infections
3. Biofilm Formation on Medical Devices
4. Most Common Pathogenic Bacteria Involved in Medical Device-Associated Biofilm Infections
4.1. Escherichia coli
4.2. Klebsiella pneumoniae
4.3. Proteus mirabilis
4.4. Pseudomonas aeruginosa
4.5. Acinetobacter baumannii
4.6. Staphylococcus aureus
4.7. Staphylococcus epidermidis
4.8. Enterococcus spp.
5. Pathogenesis of Venous Catheter Contamination and Catheter-Associated Bloodstream Infections (CA-BSIs)
6. Pathogenesis of Urinary Catheter Colonization and Catheter-Associated Urinary Tract Infections (CA-UTIs)
7. Prevention of CA-BSIs
7.1. Education, Training and Surveillance
7.2. Aseptic Techniques
7.3. Catheter Insertion Site
7.4. Catheter Lock Solutions
7.5. Dressing
7.6. Antimicrobial Agents Release
7.7. Contact Kill Systems
7.8. Antifouling Approaches
8. Prevention of CA-UTIs
8.1. Avoidance of Urinary Catheter Use
8.2. Alternatives to Indwelling UC
8.3. Education and Training
8.4. Aseptic Techniques for Insertion and Maintenance of UCs
8.5. Antimicrobial Coatings
8.6. Antifouling Approaches
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ullman, A.J.; Marsh, N.; Mihala, G.; Cooke, M.; Rickard, C.M. Complications of central venous access devices: A systematic review. Pediatrics 2015, 136, e1331–e1344. [Google Scholar] [CrossRef]
- Santos, F.K.Y.; Flumignan, R.L.G.; Areias, L.L.; Sarpe, A.K.P.; Amaral, F.C.F.; Ávila, R.B.; Vasconcelos, V.T.; Guedes Neto, H.J.; Amorim, J.E.; Nakano, L.C.U. Peripherally inserted central catheter versus central venous catheter for intravenous access: A protocol for systematic review and meta-analysis. Medicine 2020, 99, e20352. [Google Scholar] [CrossRef]
- Zhang, K.; Li, X.; Yu, C.; Wang, Y. Promising therapeutic strategies against microbial biofilm challenges. Front. Cell. Infect. Microbiol. 2020, 10, 359. [Google Scholar] [CrossRef]
- Guenezan, J.; Drugeon, B.; Marjanovic, N.; Mimoz, O. Treatment of central line-associated bloodstream infections. Crit. Care 2018, 22, 303. [Google Scholar] [CrossRef]
- Casimero, C.; Ruddock, T.; Hegarty, C.; Barber, R.; Devine, A.; Davis, J. Minimising blood stream infection: Developing new materials for intravascular catheters. Medicines 2020, 7, 49. [Google Scholar] [CrossRef]
- Aumeran, C.; Mottet-Auselo, B.; Forestier, C.C.; Nana, P.A.; Hennequin, C.; Robin, F.; Souweine, B.; Traoré, O.; Lautrette, A. A prospective study on the pathogenesis of catheter-associated bacteriuria in critically ill patients. BMC Microbiol. 2021, 21, 86. [Google Scholar] [CrossRef]
- Yasir, M.; Willcox, M.D.P.; Dutta, D. Action of antimicrobial peptides against bacterial biofilms. Materials 2018, 11, 2468. [Google Scholar] [CrossRef]
- Wi, Y.M.; Patel, R. Understanding biofilms and novel approaches to the diagnosis, prevention, and treatment of medical devicea-Associated infections. Infect. Dis. Clin. N. Am. 2018, 32, 915–929. [Google Scholar] [CrossRef]
- Arciola, C.R.; Campoccia, D.; Speziale, P.; Montanaro, L.; Costerton, J.W. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 2012, 33, 5967–5982. [Google Scholar] [CrossRef]
- Kannappan, A.; Sivaranjani, M.; Srinivasan, R.; Rathna, J.; Pandian, S.K.; Ravi, A.V. Inhibitory efficacy of geraniol on biofilm formation and development of adaptive resistance in Staphylococcus epidermidis RP62A. J. Med. Microbiol. 2017, 66, 1506–1515. [Google Scholar] [CrossRef]
- Li, P.; Yin, R.; Cheng, J.; Lin, J. Bacterial biofilm formation on biomaterials and approaches to its treatment and prevention. Int. J. Mol. Sci. 2023, 24, 11680. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Y.; Breslawec, A.P.; Liang, T.; Deng, Z.; Kuperman, L.L.; Yu, Q. Strategy to combat biofilms: A focus on biofilm dispersal enzymes. NPJ Biofilms Microbiomes 2023, 9, 63. [Google Scholar] [CrossRef]
- Yan, J.; Bassler, B.L. Surviving as a community: Antibiotic tolerance and persistence in bacterial biofilms. Cell Host Microbe 2019, 26, 15–21. [Google Scholar] [CrossRef]
- Wainwright, J.; Hobbs, G.; Nakouti, I. Persister cells: Formation, resuscitation and combative therapies. Arch. Microbiol. 2021, 203, 5899–5906. [Google Scholar] [CrossRef]
- Stojowska-Swędrzyńska, K.; Kuczyńska-Wiśnik, D.; Laskowska, E. New strategies to kill metabolically-dormant cells directly bypassing the need for active cellular processes. Antibiotics 2023, 12, 1044. [Google Scholar] [CrossRef]
- Theis, T.J.; Daubert, T.A.; Kluthe, K.E.; Brodd, K.L.; Nuxoll, A.S. Staphylococcus aureus persisters are associated with reduced clearance in a catheter-associated biofilm infection. Front. Cell. Infect. Microbiol. 2023, 13, 1178526. [Google Scholar] [CrossRef]
- Gahlot, R.; Nigam, C.; Kumar, V.; Yadav, G.; Anupurba, S. Catheter-related bloodstream infections. Int. J. Crit. Illn. Inj. Sci. 2014, 4, 162–167. [Google Scholar] [CrossRef]
- Pitiriga, V.; Kanellopoulos, P.; Bakalis, I.; Kampos, E.; Sagris, I.; Saroglou, G.; Tsakris, A. Central venous catheter-related bloodstream infection and colonization: The impact of insertion site and distribution of multidrug-resistant pathogens. Antimicrob. Resist. Infect. Control 2020, 9, 189. [Google Scholar] [CrossRef]
- Zander, Z.K.; Becker, M.L. Antimicrobial and antifouling strategies for polymeric medical devices. ACS Macro. Lett. 2017, 7, 16–25. [Google Scholar] [CrossRef]
- Sato, A.; Nakamura, I.; Fujita, H.; Tsukimori, A.; Kobayashi, T.; Fukushima, S.; Fujii, T.; Matsumoto, T. Peripheral venous catheter-related bloodstream infection is associated with severe complications and potential death: A retrospective observational study. BMC Infect. Dis. 2017, 17, 434. [Google Scholar] [CrossRef]
- Beecham, G.B.; Tackling, G. Peripheral Line Placement. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar] [PubMed]
- Miliani, K.; Taravella, R.; Thillard, D.; Chauvin, V.; Martin, E.; Edouard, S.; Astagneau, P.; CATHEVAL Study Group. Peripheral venous catheter-related adverse events: Evaluation from a multicentre epidemiological study in France (the CATHEVAL Project). PLoS ONE 2017, 12, e0168637. [Google Scholar] [CrossRef]
- Chen, Y.M.; Fan, X.W.; Liu, M.H.; Wang, J.; Yang, Y.Q.; Su, Y.F. Risk factors for peripheral venous catheter failure: A prospective cohort study of 5345 patients. J. Vasc. Access 2021, 13, 11297298211015035. [Google Scholar] [CrossRef]
- Bertoglio, S.; van Boxtel, T.; Goossens, G.A.; Dougherty, L.; Furtwangler, R.; Lennan, E.; Pittiruti, M.; Sjovall, K.; Stas, M. Improving outcomes of short peripheral vascular access in oncology and chemotherapy administration. J. Vasc. Access 2017, 18, 89–96. [Google Scholar] [CrossRef]
- Chauhan, A.; Bernardin, A.; Mussard, W.; Kriegel, I.; Estève, M.; Ghigo, J.M.; Beloin, C.; Semetey, V. Preventing biofilm formation and associated occlusion by biomimetic glycocalyxlike polymer in central venous catheters. J. Infect. Dis. 2014, 210, 1347–1356. [Google Scholar] [CrossRef]
- Christensen, G.D.; Simpson, W.A.; Bisno, A.L.; Beachey, E.H. Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect. Immun. 1982, 37, 318–326. [Google Scholar] [CrossRef]
- Gominet, M.; Compain, F.; Beloin, C.; Lebeaux, D. Central venous catheters and biofilms: Where do we stand in 2017? APMIS 2017, 125, 365–375. [Google Scholar] [CrossRef]
- Richards, G.A.; Brink, A.J.; McIntosh, R.; Steel, H.C.; Cockeran, R. Investigation of biofilm formation on a charged intravenous catheter relative to that on a similar but uncharged catheter. Med. Devices 2014, 7, 219–224. [Google Scholar] [CrossRef]
- Donlan, R.M. A new approach to mitigate biofilm formation on totally implantable venous access ports. J. Infect. Dis. 2014, 210, 1345–1346. [Google Scholar] [CrossRef]
- Lutwick, L.; Al-Maani, A.S.; Mehtar, S.; Memish, Z.; Rosenthal, V.D.; Dramowski, A.; Lui, G.; Osman, T.; Bulabula, A.; Bearman, G. Managing and preventing vascular catheter infections: A position paper of the international society for infectious diseases. Int. J. Infect. Dis. 2019, 84, 22–29. [Google Scholar] [CrossRef]
- Maki, D.G.; Kluger, D.M.; Crnich, C.J. The risk of bloodstream infection in adults with different intravascular devices: A systematic review of 200 published prospective studies. Mayo. Clin. Proc. 2006, 81, 1159–1171. [Google Scholar] [CrossRef]
- Cortese, Y.J.; Wagner, V.E.; Tierney, M.; Devine, D.; Fogarty, A. Review of catheter-associated urinary tract infections and in vitro urinary tract models. J. Healthc. Eng. 2018, 2018, 2986742. [Google Scholar] [CrossRef] [PubMed]
- Melo, L.D.R.; Veiga, P.; Cerca, N.; Kropinski, A.M.; Almeida, C.; Azeredo, J.; Sillankorva, S. Development of a phage cocktail to control Proteus mirabilis catheter-associated urinary tract infections. Front. Microbiol. 2016, 7, 1024. [Google Scholar] [CrossRef] [PubMed]
- Jordan, R.P.C.; Malic, S.; Waters, M.G.; Stickler, D.J.; Williams, D.W. Development of an antimicrobial urinary catheter to inhibit urinary catheter encrustation. Microbiol. Discov. 2015, 3, 1. [Google Scholar] [CrossRef]
- Adegun, P.T.; Odimayo, M.S.; Olaogun, J.G.; Emmanuel, E.E. Comparison of uropathogens and antibiotic susceptibility patterns in catheterized ambulant middle-aged and elderly Nigerian patients with bladder outlet obstruction. Turk. J. Urol. 2019, 45, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Gaston, J.R.; Andersen, M.J.; Johnson, A.O.; Bair, K.L.; Sullivan, C.M.; Guterman, L.B.; White, A.N.; Brauer, A.L.; Learman, B.S.; Flores-Mireles, A.L.; et al. Enterococcus faecalis polymicrobial interactions facilitate biofilm formation, antibiotic recalcitrance, and persistent colonization of the catheterized urinary tract. Pathogens 2020, 9, 835. [Google Scholar] [CrossRef] [PubMed]
- Letica-Kriegel, A.S.; Salmasian, H.; Vawdrey, D.K.; Youngerman, B.E.; Green, R.A.; Furuya, E.Y.; Calfee, D.P.; Perotte, R. Identifying the risk factors for catheter-associated urinary tract infections: A large cross-sectional study of six hospitals. BMJ Open 2019, 9, e022137. [Google Scholar] [CrossRef] [PubMed]
- Maki, D.G.; Tambyah, P.A. Engineering out the risk for infection with urinary catheters. Emerg. Infect. Dis. 2001, 7, 342–347. [Google Scholar] [CrossRef]
- Schmiemann, G.; Kniehl, E.; Gebhardt, K.; Matejczyk, M.M.; Hummers-Pradier, E. The diagnosis of urinary tract infection: A systematic review. Dtsch. Arztebl. Int. 2010, 107, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Crader, M.F.; Leslie, S.W. Bacteruria. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar] [PubMed]
- Haque, M.; Sartelli, M.; McKimm, J.; Abu Bakar, M. Health care-associated infections- an overview. Infect. Drug. Resist. 2018, 11, 2321–2333. [Google Scholar] [CrossRef]
- Anggi, A.; Wijaya, D.W.; Ramayani, O.R. Risk factors for catheter-associated urinary tract infection and uropathogen bacterial profile in the intensive care unit in hospitals in Medan, Indonesia. Open Access Maced. J. Med. Sci. 2019, 7, 3488–3492. [Google Scholar] [CrossRef]
- Loose, M.; Naber, K.G.; Purcell, L.; Wirth, M.P.; Wagenlehner, F. Anti-biofilm effect of octenidine and polyhexanide on uropathogenic biofilm-producing bacteria. Urol. Int. 2021, 105, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Tassew, S.G.; Alebachew Woldu, M.; Amogne Degu, W.; Shibeshi, W. Management of hospital-acquired infections among patients hospitalized at Zewditu memorial hospital, Addis Ababa, Ethiopia: A prospective cross-sectional study. PLoS ONE 2020, 15, e0231949. [Google Scholar] [CrossRef] [PubMed]
- Avershina, E.; Shapovalova, V.; Shipulin, G. Fighting antibiotic resistance in hospital-acquired infections: Current state and emerging technologies in disease prevention, diagnostics and therapy. Front. Microbiol. 2021, 12, 707330. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Guo, R.; Xie, B.; Lai, Q.; Xu, J.; Hu, N.; Wan, L.; Dai, M.; Zhang, B. Drug resistance of pathogens causing nosocomial infection in orthopedics from 2012 to 2017: A 6-year retrospective study. J. Orthop. Surg. Res. 2021, 16, 100. [Google Scholar] [CrossRef] [PubMed]
- Dadi, N.C.T.; Radochová, B.; Vargová, J.; Bujdáková, H. Impact of healthcare-associated infections connected to medical devices- an Update. Microorganisms 2021, 9, 2332. [Google Scholar] [CrossRef] [PubMed]
- Percival, S.L.; Suleman, L.; Vuotto, C.; Donelli, G. Healthcare-associated infections, medical devices and biofilms: Risk, toleranceand control. J. Med. Microbiol. 2015, 64, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Vergalito, F.; Pietrangelo, L.; Petronio, G.; Colitto, F.; Alfio Cutuli, M.; Magnifico, I.; Venditti, N.; Guerra, G.; Di Marco, R. Vitamin E for Prevention of Biofilm-caused healthcare-associated infections. Open Med. 2019, 15, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Gmiter, D.; Kaca, W. Into the understanding the multicellular lifestyle of Proteus mirabilis on solid surfaces. Front. Cell. Infect. Microbiol. 2022, 12, 864305. [Google Scholar] [CrossRef] [PubMed]
- Khatoon, Z.; McTiernan, C.D.; Suuronen, E.J.; Mah, T.F.; Alarcon, E.I. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 2018, 4, e01067. [Google Scholar] [CrossRef]
- Olivares, E.; Badel-Berchoux, S.; Provot, C.; Prévost, G.; Bernardi, T.; Jehl, F. Clinical impact of antibiotics for the treatment of Pseudomonas aeruginosa biofilm infections. Front. Microbiol. 2020, 10, 2894. [Google Scholar] [CrossRef]
- Jamal, M.; Ahmad, W.; Andleeb, S.; Jalil, F.; Imran, M.; Nawaz, M.A.; Hussain, T.; Ali, M.; Rafiq, M.; Kamil, M.A. Bacterial biofilm and associated infections. J. Chin. Med. Assoc. 2018, 81, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Perry, E.K.; Tan, M.W. Bacterial biofilms in the human body: Prevalence and impacts on health and disease. Front. Cell. Infect. Microbiol. 2023, 13, 1237164. [Google Scholar] [CrossRef] [PubMed]
- Høiby, N. A personal history of research on microbial biofilms and biofilm infections. Pathog. Dis. 2014, 70, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Vestby, L.K.; Grønseth, T.; Simm, R.; Nesse, L.L. Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics 2020, 9, 59. [Google Scholar] [CrossRef] [PubMed]
- Kreve, S.; Reis, A.C.D. Bacterial adhesion to biomaterials: What regulates this attachment? A review. Jpn. Dent. Sci. Rev. 2021, 57, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Bawazir, M.; Dhall, A.; Kim, H.E.; He, L.; Heo, J.; Hwang, G. Implication of surface properties, bacterial motility, and hydrodynamic conditions on bacterial surface sensing and their initial adhesion. Front. Bioeng. Biotechnol. 2021, 9, 643722. [Google Scholar] [CrossRef]
- Karygianni, L.; Ren, Z.; Koo, H.; Thurnheer, T. Biofilm Matrixome: Extracellular components in structured microbial communities. Trends Microbiol. 2020, 28, 668–681. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Feng, G.; Moraru, C.I. Micro- and nanotopography sensitive bacterial attachment mechanisms: A review. Front. Microbiol. 2019, 10, 191. [Google Scholar] [CrossRef]
- Nakanishi, E.Y.; Palacios, J.H.; Godbout, S.; Fournel, S. Interaction between biofilm formation, surface material and cleanability considering different materials used in pig facilities—An Overview. Sustainability 2021, 13, 5836. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, C.; Chen, Z.; Allan, E.; Van Der Mei, H.C.; Busscher, H.J. Emergent heterogeneous microenvironments in biofilms: Substratum surface heterogeneity and bacterial adhesion force-sensing. FEMS Microbiol. Rev. 2018, 42, 259–272. [Google Scholar] [CrossRef]
- Donlan, R.M. Biofilms: Microbial life on surfaces. Emerg. Infect. Dis. 2002, 8, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Berne, C.; Ducret, A.; Hardy, G.G.; Brun, Y.V. Adhesins involved in attachment to abiotic surfaces by gram-negative bacteria. Microbiol. Spectr. 2015, 3. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, X.; Hao, Y.; Liu, Y.; Dong, Z.; Li, K. Biological and physiochemical methods of biofilm adhesion resistance control of medical-context surface. Int. J. Biol. Sci. 2021, 17, 1769–1781. [Google Scholar] [CrossRef]
- Hug, I.; Deshpande, S.; Sprecher, K.S.; Pfohl, T.; Jenal, U. Second messenger-mediated tactile response by a bacterial rotary motor. Science 2017, 358, 531–534. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Soto, I.; McTiernan, C.; Gonzalez-Gomez, M.; Ross, A.; Gupta, K.; Suuronen, E.J.; Mah, T.F.; Griffith, M.; Alarcon, E.I. Mimicking biofilm formation and development: Recent progress in in vitro and in vivo biofilm models. iScience 2021, 24, 102443. [Google Scholar] [CrossRef] [PubMed]
- Schulze, A.; Mitterer, F.; Pombo, J.P.; Schild, S. Biofilms by bacterial human pathogens: Clinical relevance-development, composition and regulation—Therapeutical strategies. Microb. Cell 2021, 8, 28–56. [Google Scholar] [CrossRef] [PubMed]
- Sauer, K.; Stoodley, P.; Goeres, D.M.; Hall-Stoodley, L.; Burmølle, M.; Stewart, P.S.; Bjarnsholt, T. The biofilm life cycle: Expanding the conceptual model of biofilm formation. Nat. Rev. Microbiol. 2022, 20, 608–620. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, M.H.; Idris, A.L.; Fan, X.; Guo, Y.; Yu, Y.; Jin, X.; Qiu, J.; Guan, X.; Huang, T. Beyond risk: Bacterial biofilms and their regulating approaches. Front. Microbiol. 2020, 11, 928. [Google Scholar] [CrossRef] [PubMed]
- Preda, V.G.; Săndulescu, O. Communication is the key: Biofilms, quorum sensing, formation and prevention. Discoveries 2019, 7, e100. [Google Scholar] [CrossRef]
- Cergole-Novella, M.C.; Pignatari, A.C.; Guth, B.E. Adhesion, biofilm and genotypic characteristics of antimicrobial resistant Escherichia coli isolates. Braz. J. Microbiol. 2015, 46, 167–171. [Google Scholar] [CrossRef]
- Ludden, C.; Coll, F.; Gouliouris, T.; Restif, O.; Blane, B.; Blackwell, G.A.; Kumar, N.; Naydenova, P.; Crawley, C.; Brown, N.M.; et al. Defining nosocomial transmission of Escherichia coli and antimicrobial resistance genes: A genomic surveillance study. Lancet Microbe 2021, 2, e472–e480. [Google Scholar]
- D’Incau, S.; Atkinson, A.; Leitner, L.; Kronenberg, A.; Kessler, T.M.; Marschall, J. Bacterial species and antimicrobial resistance differ between catheter and non-catheter-associated urinary tract infections: Data from a national surveillance network. Antimicrob. Steward. Healthc. Epidemiol. 2023, 3, e55. [Google Scholar] [CrossRef]
- Bunduki, G.K.; Heinz, E.; Phiri, V.S.; Noah, P.; Feasey, N.; Musaya, J. Virulence factors and antimicrobial resistance of uropathogenic Escherichia coli (UPEC) isolated from urinary tract infections: A systematic review and meta-analysis. BMC Infect. Dis. 2021, 21, 753. [Google Scholar] [CrossRef]
- Terlizzi, M.E.; Gribaudo, G.; Maffei, M.E. UroPathogenic Escherichia coli (UPEC) infections: Virulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies. Front. Microbiol. 2017, 8, 1566. [Google Scholar] [CrossRef]
- Valiatti, T.B.; Santos, F.F.; Santos, A.C.M.; Nascimento, J.A.S.; Silva, R.M.; Carvalho, E.; Sinigaglia, R.; Gomes, T.A.T. Genetic and virulence characteristics of a hybrid atypical enteropathogenic and uropathogenic Escherichia coli (aEPEC/UPEC) strain. Front. Cell. Infect. Microbiol. 2020, 10, 492. [Google Scholar] [CrossRef]
- Kumar, M.N.; Bhat, S.; Bhat, K.A.; Saralaya, V.; Shenoy Mulki, S. Characterization of virulence factors and antibiotic resistance pattern of uropathogenic Escherichia coli strains in a tertiary care center. F1000Research 2022, 11, 1163. [Google Scholar] [CrossRef]
- Cantas, L.; Suer, K.; Guler, E.; Imir, T. High emergence of ESBL-producing E. coli cystitis: Time to get smarter in Cyprus. Front. Microbiol. 2016, 6, 1446. [Google Scholar] [CrossRef]
- Weiner, L.; Webb, A.; Limbago, B.; Dudeck, M.; Patel, J.; Kallen, A.; Edwards, J.R.; Sievert, D. Antimicrobial-resistant pathogens associated with healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect. Control Hosp. Epidemiol. 2016, 37, 1288–1301. [Google Scholar] [CrossRef]
- Musinguzi, B.; Kabajulizi, I.; Mpeirwe, M.; Turugurwa, J.; Kabanda, T. Incidence and etiology of catheter associated urinary tract infection among admitted patients at kabale regional referral hospital, south western Uganda. Adv. Infect. Dis. 2019, 9, 183–196. [Google Scholar] [CrossRef]
- Ballén, V.; Cepas, V.; Ratia, C.; Gabasa, Y.; Soto, S.M. Clinical Escherichia coli: From biofilm formation to new antibiofilm strategies. Microorganisms 2022, 10, 1103. [Google Scholar] [CrossRef]
- Alshammari, M.; Ahmad, A.; AlKhulaifi, M.; Al Farraj, D.; Alsudir, S.; Alarawi, M.; Takashi, G.; Alyamani, E. Reduction of biofilm formation of Escherichia coli by targeting quorum sensing and adhesion genes using the CRISPR/Cas9-HDR approach, and its clinical application on urinary catheter. J. Infect. Public Health 2023, 16, 1174–1183. [Google Scholar] [CrossRef] [PubMed]
- Nye, T.M.; Zou, Z.; Obernuefemann, C.L.P.; Pinkner, J.S.; Lowry, E.; Kleinschmidt, K.; Bergeron, K.; Klim, A.; Dodson, K.W.; Flores-Mireles, A.L.; et al. Microbial co-occurrences on catheters from long-term catheterized patients. Nat. Commun. 2024, 15, 61. [Google Scholar] [CrossRef] [PubMed]
- Ripa, M.; Morata, L.; Rodríguez-Núñez, O.; Cardozo, C.; Puerta-Alcalde, P.; Hernández-Meneses, M.; Ambrosioni, J.; Linares, L.; Bodro, M.; Valcárcel, A.; et al. Short-term peripheral venous catheter-related bloodstream infections: Evidence for increasing prevalence of Gram-negative microorganisms from a 25-Year prospective observational study. Antimicrob. Agents Chemother. 2018, 62, e00892-18. [Google Scholar] [CrossRef]
- Tsuboi, M.; Hayakawa, K.; Mezaki, K.; Katanami, Y.; Yamamoto, K.; Kutsuna, S.; Takeshita, N.; Ohmagari, N. Comparison of the epidemiology and microbiology of peripheral line-and central line associated bloodstream infections. Am. J. Infect. Control 2019, 47, 8–10. [Google Scholar] [CrossRef]
- Surapat, B.; Montakantikul, P.; Malathum, K.; Kiertiburanakul, S.; Santanirand, P.; Chindavijak, B. Microbial epidemiology and risk factors for relapse in Gram-negative bacteria catheter-related bloodstream infection with a pilot prospective study in patients with catheter removal receiving short-duration of antibiotic therapy. BMC. Infect. Dis. 2020, 20, 604. [Google Scholar] [CrossRef] [PubMed]
- Lendak, D.; Puerta-Alcalde, P.; Moreno-García, E.; Chumbita, M.; García-Pouton, N.; Cardozo, C.; Morata, L.; Suárez-Lledó, M.; Hernández-Meneses, M.; Ghiglione, L.; et al. Changing epidemiology of catheter-related bloodstream infections in neutropenic oncohematological patients. PLoS ONE 2021, 16, e0251010. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Sharma, S.; Sharma, P.; Chandola, D.; Dang, S.; Gupta, S.; Gabrani, R. Escherichia coli biofilm: Development and therapeutic strategies. J. Appl. Microbiol. 2016, 121, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Potter, R.F.; McCoy, W.H.; Wildenthal, J.A.; Katumba, G.L.; Mucha, P.J.; Dantas, G.; Henderson, J.P.E. E. coli catheter-associated urinary tract infections are associated with distinctive virulence and biofilm gene determinants. JCI Insight 2023, 8, e161461. [Google Scholar] [CrossRef] [PubMed]
- Delcaru, C.; Alexandru, I.; Podgoreanu, P.; Grosu, M.; Stavropoulos, E.; Chifiriuc, M.; Lazar, V. Microbial biofilms in urinary tract infections and prostatitis: Etiology, pathogenicity, and combating strategies. Pathogens 2016, 5, 65. [Google Scholar] [CrossRef] [PubMed]
- Katongole, P.; Nalubega, F.; Florence, N.C.; Asiimwe, B.; Andia, I. Biofilm formation, antimicrobial susceptibility and virulence genes of uropathogenic Escherichia coli isolated from clinical isolates in Uganda. BMC Infect. Dis. 2020, 20, 453. [Google Scholar] [CrossRef]
- Dadi, B.R.; Abebe, T.; Zhang, L.; Mihret, A.; Abebe, W.; Amogne, W. Distribution of virulence genes and phylogenetics of uropathogenic Escherichia coli among urinary tract infection patients in Addis Ababa, Ethiopia. BMC Infect. Dis. 2020, 20, 108. [Google Scholar] [CrossRef] [PubMed]
- Reisner, A.; Maierl, M.; Jörger, M.; Krause, R.; Berger, D.; Haid, A.; Tesic, D.; Zechner, E.L. Type 1 fimbriae contribute to catheter-associated urinary tract infections caused by Escherichia coli. J. Bacteriol. 2014, 196, 931–939. [Google Scholar] [CrossRef] [PubMed]
- Hojati, Z.; Zamanzad, B.; Hashemzadeh, M.; Molaie, R.; Gholipour, A. The FimH gene in uropathogenic Escherichia coli strains isolated from patients with urinary tract infection. Jundishapur. J. Microbiol. 2015, 8, e17520. [Google Scholar] [CrossRef] [PubMed]
- Inegol, P.E.; Turkyilmaz, S. Investigation of P fimbriae presence in Escherichia coli strains isolated from urine samples in human, and their antibacterial resistance. Jundishapur. J. Microbiol. 2018, 11, e66119. [Google Scholar] [CrossRef]
- Kallas, P.; Haugen, H.J.; Gadegaard, N.; Stormonth-Darling, J.; Hulander, M.; Andersson, M.; Valen, H. Adhesion of Escherichia Coli to nanostructured surfaces and the role of type 1 fimbriae. Nanomaterials 2020, 10, 2247. [Google Scholar] [CrossRef] [PubMed]
- Sarshar, M.; Behzadi, P.; Ambrosi, C.; Zagaglia, C.; Palamara, A.T.; Scribano, D. FimH and anti-adhesive therapeutics: A disarming strategy against uropathogens. Antibiotics 2020, 9, 397. [Google Scholar] [CrossRef] [PubMed]
- Carere-Sigl, A.; Nowakowska, J.; Hevey, R.; Khanna, N.; Ernst, B. FimH antagonists prevent biofilm formation on catheter surfaces. In Carbohydrate Chemistry: Chemical and Biological Approaches; Rauter, A.P., Lindhorst, T.K., Queneau, Y., Eds.; Royal Society of Chemistry: London, UK, 2021; Volume 45, pp. 519–536. [Google Scholar]
- McLellan, L.K.; McAllaster, M.R.; Kim, A.S.; Tóthová, L.; Olson, P.D.; Pinkner, J.S.; Daugherty, A.L.; Hreha, T.N.; Janetka, J.W.; Fremont, D.H.; et al. A host receptor enables type 1 pilus-mediated pathogenesis of Escherichia coli pyelonephritis. PLoS Pathog. 2021, 17, e1009314. [Google Scholar] [CrossRef] [PubMed]
- Mousa, W.O.N.; Riad, O.; Omran, M. Expression of bla-CTX-M and fimH genes in uropathogenic Escherichia coli isolated from egyptian catheterized patients. Azhar Int. J. Pharm. Med. Sci. 2022, 2, 94–104. [Google Scholar] [CrossRef]
- Ramírez Castillo, F.Y.; Guerrero Barrera, A.L.; Harel, J.; Avelar González, F.J.; Vogeleer, P.; Arreola Guerra, J.M.; González Gámez, M. Biofilm formation by Escherichia coli isolated from urinary tract infections from Aguascalientes, Mexico. Microorganisms 2023, 11, 2858. [Google Scholar] [CrossRef]
- Ghavidel, M.; Gholamhosseini-Moghadam, T.; Nourian, K.; Ghazvini, K. Virulence factors analysis and antibiotic resistance of uropathogenic Escherichia coli isolated from patients in northeast of Iran. Iran. J. Microbiol. 2020, 12, 223–230. [Google Scholar] [CrossRef]
- Stærk, K.; Khandige, S.; Kolmos, H.J.; Møller-Jensen, J.; Andersen, T.E. Uropathogenic Escherichia coli express type 1 fimbriae only in surface adherent populations under physiological growth conditions. J. Infect. Dis. 2016, 213, 386–394. [Google Scholar] [CrossRef]
- Zuberi, A.; Ahmad, N.; Khan, A.U. CRISPRi induced suppression of fimbriae gene (fmH) of a uropathogenic Escherichia coli: An approach to inhibit microbial bioflms. Front. Immunol. 2017, 8, 1552. [Google Scholar]
- Jacobsen, S.M.; Stickler, D.J.; Mobley, H.L.; Shirtliff, M.E. Complicated catheter-associated urinary tract infections due to Esche-richia coli and Proteus mirabilis. Clin. Microbiol. Rev. 2008, 21, 26–59. [Google Scholar] [CrossRef]
- Gupta, S.; Kumar, P.; Rathi, B.; Verma, V.; Dhanda, R.S.; Devi, P.; Yadav, M. Targeting of Uropathogenic Escherichia coli papG gene using CRISPR-dot nanocomplex reduced virulence of UPEC. Sci. Rep. 2021, 11, 17801. [Google Scholar] [CrossRef]
- Nhu, N.T.K.; Phan, M.D.; Peters, K.M.; Lo, A.W.; Forde, B.M.; Min Chong, T.; Yin, W.F.; Chan, K.G.; Chromek, M.; Brauner, A.; et al. Discovery of new genes involved in curli production by a uropathogenic Escherichia coli strain from the highly virulent O45:K1:H7 lineage. mBio 2018, 9, e01462-18. [Google Scholar] [CrossRef]
- Luna-Pineda, V.M.; Moreno-Fierros, L.; Cázares-Domínguez, V.; Ilhuicatzi-Alvarado, D.; Ochoa, S.A.; Cruz-Córdova, A.; Va-lencia-Mayoral, P.; Rodríguez-Leviz, A.; Xicohtencatl-Cortes, J. Curli of uropathogenic Escherichia coli enhanceurinary tract col-onization as a fitness factor. Front. Microbiol. 2019, 10, 2063. [Google Scholar] [CrossRef]
- Murase, K.; Martin, P.; Porcheron, G.; Houle, S.; Helloin, E.; Pénary, M.; Nougayrède, J.P.; Dozois, C.M.; Hayashi, T.; Oswald, E. HlyF Produced by Extraintestinal Pathogenic Escherichia coli is a virulence factor that regulates outer membrane vesicle biogenesis. J. Infect. Dis. 2016, 213, 856–865. [Google Scholar] [CrossRef]
- van der Westhuizen, W.A.; Theron, C.W.; Boucher, C.E.; Bragg, R.R. Regulation of outer-membrane proteins (OMPs) A and F, during hlyF-induced outer-membrane vesicle (OMV) biosynthesis. Heliyon 2019, 5, e02014. [Google Scholar] [CrossRef]
- Raheel, I.; Hassan, W.H.; Salem, S.; Salam, H. Biofilm forming potentiality of Escherichia coli isolated from bovine endometritis and their antibiotic resistance profiles. J. Adv. Vet. Anim. Res. 2020, 7, 442–451. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, X.; Teng, D.; Mao, R.; Hao, Y.; Yang, N.; Wang, X.; Li, Z.; Wang, X.; Wang, J. Development of chimeric peptides to facilitate the neutralisation of lipopolysaccharides during bactericidal targeting of multidrug-resistant Escherichia coli. Commun. Biol. 2020, 3, 41. [Google Scholar] [CrossRef]
- Sachdeva, S.; Palur, R.V.; Sudhakar, K.U.; Rathinavelan, T.E. coli group 1 capsular polysaccharide exportation nanomachinary as a plausible antivirulence target in the perspective of emerging antimicrobial resistance. Front. Microbiol. 2017, 8, 70. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Muciño, E.; Arenas-Hernández, M.M.P.; Luna-Guevara, M.L. Mechanisms of Inhibition of Quorum Sensing as an Alternative for the Control of E. coli and Salmonella. Microorganisms 2022, 10, 884. [Google Scholar] [CrossRef] [PubMed]
- Stahlhut, S.G.; Struve, C.; Krogfelt, K.A.; Reisner, A. Biofilm formation of Klebsiella pneumoniae on urethral catheters requires either type 1 or type 3 fimbriae. FEMS Immunol. Med. Microbiol. 2012, 65, 350–359. [Google Scholar] [CrossRef]
- Gomes, A.É.I.; Pacheco, T.; Santos, C.d.S.d.; Pereira, J.A.; Ribeiro, M.L.; Darrieux, M.; Ferraz, L.F.C. Functional insights from KpfR, a new transcriptional regulator of fimbrial expression that is crucial for Klebsiella pneumoniae pathogenicity. Front. Microbiol. 2021, 11, 601921. [Google Scholar] [CrossRef] [PubMed]
- Vuotto, C.; Longo, F.; Pascolini, C.; Donelli, G.; Balice, M.P.; Libori, M.F.; Tiracchia, V.; Salvia, A.; Varaldo, P.E. Biofilm formation and antibiotic resistance in Klebsiella pneumoniae urinary strains. J. Appl. Microbiol. 2017, 123, 1003–1018. [Google Scholar] [CrossRef] [PubMed]
- Vargas, J.M.; Moreno Mochi, M.P.; Nuñez, J.M.; Cáceres, M.; Mochi, S.; Del Campo Moreno, R.; Jure, M.A. Virulence factors and clinical patterns of multiple-clone hypermucoviscous KPC-2 producing K. pneumoniae. Heliyon 2019, 5, e01829. [Google Scholar] [CrossRef]
- Riwu, K.H.P.; Effendi, M.H.; Rantam, F.A.; Khairullah, A.R.; Widodo, A. A review: Virulence factors of Klebsiella pneumonia as emerging infection on the food chain. Vet. World 2022, 15, 2172–2179. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wilksch, J.J.; Liu, H.; Zhang, X.; Torres, V.V.L.; Bi, W.; Mandela, E.; Cao, J.; Li, J.; Lithgow, T.; et al. Investigation of LuxS-mediated quorum sensing in Klebsiella pneumoniae. J. Med. Microbiol. 2020, 69, 402–413. [Google Scholar] [CrossRef]
- Armbruster, C.E.; Mobley, H.L.T.; Pearson, M.M. Pathogenesis of Proteus mirabilis Infection. EcoSal Plus 2018, 8. [Google Scholar] [CrossRef]
- Filipiak, A.; Chrapek, M.; Literacka, E.; Wawszczak, M.; Głuszek, S.; Majchrzak, M.; Wróbel, G.; Łysek-Gładysińska, M.; Gniadkowski, M.; Adamus-Białek, W. Pathogenic factors correlate with antimicrobial resistance among clinical Proteus mirabilis strains. Front. Microbiol. 2020, 11, 579389. [Google Scholar] [CrossRef]
- Wasfi, R.; Hamed, S.M.; Amer, M.A.; Fahmy, L.I. Proteus mirabilis Biofilm: Development and therapeutic strategies. Front. Cell. Infect. Microbiol. 2020, 10, 414. [Google Scholar] [CrossRef]
- Elhoshi, M.; El-Sherbiny, E.; Elsheredy, A.; Aboulela, A.G. A correlation study between virulence factors and multidrug resistance among clinical isolates of Proteus mirabilis. Braz. J. Microbiol. 2023, 54, 1387–1397. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Huang, Z.; Yang, T.; Wang, G.; Li, P.; Yang, B.; Li, J. Pathogenesis of Proteus mirabilis in catheter-associated urinary tract infections. Urol. Int. 2021, 105, 354–361. [Google Scholar] [CrossRef]
- Hamilton, A.L.; Kamm, M.A.; Ng, S.C.; Morrison, M. Proteus spp. as putative gastrointestinal pathogens. Clin. Microbiol. Rev. 2018, 31, e00085-17. [Google Scholar] [CrossRef]
- Milo, S.; Nzakizwanayo, J.; Hathaway, H.J.; Jones, B.V.; Jenkins, A.T.A. Emerging medical and engineering strategies for the prevention of long-term indwelling catheter blockage. Proc. Inst. Mech. Eng. H 2019, 233, 68–83. [Google Scholar] [CrossRef] [PubMed]
- Milo, S.; Heylen, R.A.; Glancy, J.; Williams, G.T.; Patenall, B.L.; Hathaway, H.J.; Thet, N.T.; Allinson, S.L.; Laabei, M.; Jenkins, A.T.A. A small-molecular inhibitor against Proteus mirabilis urease to treat catheter-associated urinary tract infections. Sci Rep. 2021, 11, 3726. [Google Scholar] [CrossRef]
- Diggle, S.P.; Whiteley, M. Microbe profile: Pseudomonas aeruginosa: Opportunistic pathogen and lab rat. Microbiology 2020, 166, 30–33. [Google Scholar] [CrossRef]
- Qin, S.; Xiao, W.; Zhou, C.; Pu, Q.; Deng, X.; Lan, L.; Liang, H.; Song, X.; Wu, M. Pseudomonas aeruginosa: Pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct. Target. Ther. 2022, 7, 199. [Google Scholar] [CrossRef]
- Huszczynski, S.M.; Lam, J.S.; Khursigara, C.M. The role of Pseudomonas aeruginosa lipopolysaccharide in bacterial pathogenesis and physiology. Pathogens 2019, 9, 6. [Google Scholar] [CrossRef] [PubMed]
- Thi, M.T.T.; Wibowo, D.; Rehm, B.H.A. Pseudomonas aeruginosa biofilms. Int. J. Mol. Sci. 2020, 21, 8671. [Google Scholar] [CrossRef]
- Lopes, J.A.; Rghei, A.D.; Thompson, B.; Susta, L.; Khursigara, C.M.; Wootton, S.K. Overcoming barriers to preventing and treating P. aeruginosa infections using AAV vectored immunoprophylaxis. Biomedicines 2022, 10, 3162. [Google Scholar] [CrossRef] [PubMed]
- Jurado-Martín, I.; Sainz-Mejías, M.; McClean, S. Pseudomonas aeruginosa: An audacious pathogen with an adaptable arsenal of virulence factors. Int. J. Mol. Sci. 2021, 22, 3128. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Huang, X.; Wang, Q.; Yao, D.; Lu, W. Virulence factors of Pseudomonas Aeruginosa and antivirulence strategies to combat its drug resistance. Front. Cell. Infect. Microbiol. 2022, 12, 926758. [Google Scholar] [CrossRef]
- Reynolds, D.; Kollef, M. The Epidemiology and pathogenesis and treatment of Pseudomonas aeruginosa infections: An update. Drugs 2021, 81, 2117–2131. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.; Cheng, J.; Wang, J.; Li, P.; Lin, J. Treatment of Pseudomonas aeruginosa infectious biofilms: Challenges and strategies. Front. Microbiol. 2022, 13, 955286. [Google Scholar] [CrossRef] [PubMed]
- Colquhoun, J.M.; Rather, P.N. Insights into mechanisms of biofilm formation in Acinetobacter baumannii and implications for uropathogenesis. Front. Cell. Infect. Microbiol. 2020, 10, 253. [Google Scholar] [CrossRef] [PubMed]
- Shenkutie, A.M.; Yao, M.Z.; Siu, G.K.; Wong, B.K.C.; Leung, P.H. Biofilm-induced antibiotic resistance in clinical Acinetobacter baumannii isolates. Antibiotics 2020, 9, 817. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.R.; Lee, J.H.; Park, M.; Park, K.S.; Bae, I.K.; Kim, Y.B.; Cha, C.J.; Jeong, B.C.; Lee, S.H. Biology of Acinetobacter baumannii: Pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Front. Cell. Infect. Microbiol. 2017, 7, 55. [Google Scholar] [CrossRef] [PubMed]
- Sarshar, M.; Behzadi, P.; Scribano, D.; Palamara, A.T.; Ambrosi, C. Acinetobacter baumannii: An ancient commensal with weapons of a pathogen. Pathogens 2021, 10, 387. [Google Scholar] [CrossRef]
- Uppalapati, S.R.; Sett, A.; Pathania, R. The outer membrane proteins OmpA, CarO, and OprD of Acinetobacter baumannii confer a two-pronged defense in facilitating its success as a potent human pathogen. Front. Microbiol. 2020, 11, 589234. [Google Scholar] [CrossRef]
- Pompilio, A.; Scribano, D.; Sarshar, M.; Di Bonaventura, G.; Palamara, A.T.; Ambrosi, C. Gram-negative bacteria holdingtogether in a biofilm: The Acinetobacter baumannii way. Microorganisms 2021, 9, 1353. [Google Scholar] [CrossRef] [PubMed]
- Morris, F.C.; Dexter, C.; Kostoulias, X.; Uddin, M.I.; Peleg, A.Y. The mechanisms of disease caused by Acinetobacter baumannii. Front. Microbiol. 2019, 10, 1601. [Google Scholar] [CrossRef]
- Idrees, M.; Sawant, S.; Karodia, N.; Rahman, A. Staphylococcus aureus biofilm: Morphology, genetics, pathogenesis and treatment strategies. Int. J. Environ. Res. Public Health 2021, 18, 7602. [Google Scholar] [CrossRef] [PubMed]
- Arciola, C.R.; Campoccia, D.; Ravaioli, S.; Montanaro, L. Polysaccharide intercellular adhesin in biofilm: Structural and regulatory aspects. Front. Cell. Infect. Microbiol. 2015, 5, 7. [Google Scholar] [CrossRef]
- Nguyen, H.T.T.; Nguyen, T.H.; Otto, M. The staphylococcal exopolysaccharide PIA—Biosynthesis and role in biofilm formation, colonization, and infection. Comput. Struct. Biotechnol. J. 2020, 4, 3324–3334. [Google Scholar] [CrossRef]
- Magro, G.; Biffani, S.; Minozzi, G.; Ehricht, R.; Monecke, S.; Luini, M.; Piccinini, R. Virulence genes of S. aureus from dairy cow mastitis and contagiousness risk. Toxins 2017, 9, E195. [Google Scholar] [CrossRef] [PubMed]
- Moormeier, D.E.; Bayles, K.W. Staphylococcus aureus biofilm: A complex developmental organism. Mol. Microbiol. 2017, 104, 365–376. [Google Scholar] [CrossRef]
- McCarthy, H.; Waters, E.M.; Bose, J.L.; Foster, S.; Bayles, K.W.; O’Neill, E.; Fey, P.D.; O’Gara, J.P. The major autolysin is redundant for Staphylococcus aureus USA300 LAC JE2 virulence in a murine device-related infection model. FEMS Microbiol. Lett. 2016, 363, fnw087. [Google Scholar] [CrossRef]
- Hiltunen, A.K.; Savijoki, K.; Nyman, T.A.; Miettinen, I.; Ihalainen, P.; Peltonen, J.; Fallarero, A. Structural and functional dynamics of Staphylococcus aureus biofilms and biofilm matrix proteins on different clinical materials. Microorganisms 2019, 7, 584. [Google Scholar] [CrossRef]
- Cucarella, C.; Solano, C.; Valle, J.; Amorena, B.; Lasa, I.; Penadés, J.R. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J. Bacteriol. 2001, 183, 2888–2896. [Google Scholar] [CrossRef]
- Valle, J.; Fang, X.; Lasa, I. Revisiting Bap multidomain protein: More than sticking bacteria together. Front. Microbiol. 2020, 11, 613581. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, A.; Jayasree, T.; Valliammai, A.; Pandian, S.K. Myrtenol attenuates MRSA biofilm and virulence by suppressing sarA expression dynamism. Front. Microbiol. 2019, 10, 2027. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, F.; Rohde, H.; Vilanova, M.; Cerca, N. Fighting Staphylococcus epidermidis biofilm-associated infections: Can iron be the key to success? Front. Cell. Infect. Microbiol. 2021, 11, 798563. [Google Scholar] [CrossRef] [PubMed]
- Otto, M. Staphylococcal biofilms. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef] [PubMed]
- Foster, T.J. Surface proteins of Staphylococcus epidermidis. Front. Microbiol. 2020, 11, 1829. [Google Scholar] [CrossRef] [PubMed]
- Joubert, I.A.; Otto, M.; Strunk, T.; Currie, A.J. Look who’s talking: Host and pathogen drivers of Staphylococcus epidermidis virulence in neonatal sepsis. Int. J. Mol. Sci. 2022, 23, 860. [Google Scholar] [CrossRef] [PubMed]
- Michalik, S.; Sundaramoorthy, N.; Murr, A.; Depke, M.; Völker, U.; Bröker, B.M.; Aamot, H.V.; Schmidt, F. Early-Stage Staphylococcus aureus bloodstream infection causes changes in the concentrations of lipoproteins and acute-phase proteins and is associated with low Antibody titers against bacterial virulence factors. mSystems 2020, 5, e00632-19. [Google Scholar] [CrossRef] [PubMed]
- Stępień-Pyśniak, D.; Hauschild, T.; Kosikowska, U.; Dec, M.; Urban-Chmiel, R. Biofilm formation capacity and presence of virulence factors among commensal Enterococcus spp. from wild birds. Sci Rep. 2019, 9, 11204. [Google Scholar] [CrossRef] [PubMed]
- Codelia-Anjum, A.; Lerner, L.B.; Elterman, D.; Zorn, K.C.; Bhojani, N.; Chughtai, B. Enterococcal urinary tract infections: A review of the pathogenicity, epidemiology, and treatment. Antibiotics 2023, 12, 778. [Google Scholar] [CrossRef]
- Ramos, Y.; Morales, D.K. Exopolysaccharide-mediated surface penetration as new virulence trait in Enterococcus faecalis. Commun. Integr. Biol. 2019, 12, 144–147. [Google Scholar] [CrossRef]
- Madsen, K.T.; Skov, M.N.; Gill, S.; Kemp, M. Virulence factors associated with Enterococcus Faecalis infective endocarditis: A mini review. Open Microbiol. J. 2017, 11, 1–11. [Google Scholar] [CrossRef]
- Șchiopu, P.; Toc, D.A.; Colosi, I.A.; Costache, C.; Ruospo, G.; Berar, G.; Gălbău, Ș.G.; Ghilea, A.C.; Botan, A.; Pană, A.G.; et al. An overview of the factors involved in biofilm production by the Enterococcus genus. Int. J. Mol. Sci. 2023, 24, 11577. [Google Scholar] [CrossRef] [PubMed]
- Gajewska, J.; Chajęcka-Wierzchowska, W.; Byczkowska-Rostkowska, Z.; Saki, M. Biofilm formation capacity and presence of virulence determinants among Enterococcus species from milk and raw milk cheeses. Life 2023, 13, 495. [Google Scholar] [CrossRef] [PubMed]
- Hashem, Y.A.; Abdelrahman, K.A.; Aziz, R.K. Phenotype–genotype correlations and distribution of key virulence factors in Enterococcus faecalis isolated from patients with urinary tract infections. Infect. Drug Resist. 2021, 14, 1713–1723. [Google Scholar] [CrossRef]
- Gorrie, C.L.; Mirčeta, M.; Wick, R.R.; Judd, L.M.; Lam, M.M.C.; Gomi, R.; Abbott, I.J.; Thomson, N.R.; Strugnell, R.A.; Pratt, N.F.; et al. Genomic dissection of Klebsiella pneumoniae infections in hospital patients reveals insights into an opportunistic pathogen. Nat. Commun. 2022, 13, 3017. [Google Scholar] [CrossRef]
- Ballén, V.; Gabasa, Y.; Ratia, C.; Ortega, R.; Tejero, M.; Soto, S. Antibiotic resistance and virulence profiles of Klebsiella pneumoniae strains isolated from different clinical sources. Front. Cell. Infect. Microbiol. 2021, 11, 738223. [Google Scholar] [CrossRef]
- Mączyńska, B.; Paleczny, J.; Oleksy-Wawrzyniak, M.; Choroszy-Król, I.; Bartoszewicz, M. In Vitro susceptibility of multi-drug resistant Klebsiella pneumoniae strains causing nosocomial infections to fosfomycin, a comparison of determination methods. Pathogens 2021, 10, 512. [Google Scholar] [CrossRef]
- Kaye, K.S.; Gupta, V.; Mulgirigama, A.; Joshi, A.V.; Ye, G.; Scangarella-Oman, N.E.; Yu, K.; Mitrani-Gold, F.S. Prevalence, regional distribution, and trends of antimicrobial resistance among female outpatients with urine Klebsiella spp. isolates: A multicenter evaluation in the United States between 2011 and 2019. Antimicrob. Resist. Infect. Control 2024, 13, 21. [Google Scholar] [CrossRef] [PubMed]
- Hafiz, T.A.; Alanazi, S.; Alghamdi, S.S.; Mubaraki, M.A.; Aljabr, W.; Madkhali, N.; Alharbi, S.R.; Binkhamis, K.; Alotaibi, F. Klebsiella pneumoniae bacteraemia epidemiology: Resistance profiles and clinical outcome of King Fahad Medical City isolates, Riyadh, Saudi Arabia. BMC Infect. Dis. 2023, 23, 579. [Google Scholar] [CrossRef]
- Ibrahim, M.E. Risk factors in acquiring multidrug-resistant Klebsiella pneumoniae infections in a hospital setting in Saudi Arabia. Sci Rep. 2023, 13, 11626. [Google Scholar] [CrossRef]
- Barbadoro, P.; Labricciosa, F.M.; Recanatini, C.; Gori, G.; Tirabassi, F.; Martini, E.; Gioia, M.G.; D’Errico, M.M.; Prospero, E. Catheter-associated urinary tract infection: Role of the setting of catheter insertion. Am. J. Infect. Control 2015, 43, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Silva, A.; Simões, L.; Guimarães, R.A. Incidence of central venous catheter-related bloodstream infections: Evaluation of bundle prevention in two intensive care units in central Brazil. Sci. World J. 2019, 2019, 1025032. [Google Scholar] [CrossRef] [PubMed]
- Oleksy-Wawrzyniak, M.; Junka, A.; Brożyna, M.; Paweł, M.; Kwiek, B.; Nowak, M.; Mączyńska, B.; Bartoszewicz, M. The in vitro ability of Klebsiella pneumoniae to form biofilm and the potential of various compounds to eradicate it from urinary catheters. Pathogens 2021, 11, 42. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Cortés, P.; Martin-Loeches, I.; Rodríguez, A.; Bou, G.; Cantón, R.; Diaz, E.; De la Fuente, C.; Torre-Cisneros, J.; Nuvials, F.X.; Salavert, M.; et al. Current positioning against severe infections due to Klebsiella pneumoniae in hospitalized adults. Antibiotics 2022, 11, 1160. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Wu, H.; Chen, H.; Jiang, Y. A case report: Intermittent catheterization combined with rehabilitation in the treatment of carbapenem-resistant Klebsiella pneumoniae catheter-associated urinary tract infection. Front. Cell. Infect. Microbiol. 2022, 12, 1027576. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Xu, J.; Chen, X.; Ren, Y.; Zhao, L. Risk factors and molecular epidemiology of bloodstream infections due to carbapenem-resistant Klebsiella pneumoniae. Diagn. Microbiol. Infect. Dis. 2023, 106, 115955. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.; Sharma, L.; Dela Cruz, C.S.; Zhang, D. Clinical epidemiology, risk factors, and control strategies of Klebsiella pneumoniae infection. Front. Microbiol. 2021, 12, 750662. [Google Scholar] [CrossRef]
- Li, Y.; Kumar, S.; Zhang, L.; Wu, H. Klebsiella pneumonia and its antibiotic resistance: A bibliometric analysis. BioMed Res. Int. 2022, 2022, 1668789. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, G.; Chao, X.; Xie, L.; Wang, H. The Characteristic of virulence, biofilm and antibiotic resistance of Klebsiella pneumoniae. Int. J. Environ. Res. Public Health 2020, 17, 6278. [Google Scholar] [CrossRef]
- Snitkin, E.S.; Won, S.; Pirani, A.; Lapp, Z.; Weinstein, R.A.; Lolans, K.; Hayden, M.K. Integrated genomic and interfacility patient-transfer data reveal the transmission pathways of multidrug-resistant Klebsiella pneumoniae in a regional outbreak. Sci. Transl. Med. 2017, 9, eaan0093. [Google Scholar] [CrossRef]
- Wyres, K.L.; Lam, M.M.C.; Holt, K.E. Population genomics of Klebsiella pneumoniae. Nat. Rev. Microbiol. 2020, 18, 344–359. [Google Scholar] [CrossRef] [PubMed]
- Shadkam, S.; Goli, H.R.; Mirzaei, B.; Gholami, M.; Ahanjan, M. Correlation between antimicrobial resistance and biofilm formation capability among Klebsiella pneumoniae strains isolated from hospitalized patients in Iran. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 13. [Google Scholar] [CrossRef] [PubMed]
- Nirwati, H.; Sinanjung, K.; Fahrunissa, F.; Wijaya, F.; Napitupulu, S.; Hati, V.P.; Hakim, M.S.; Meliala, A.; Aman, A.T.; Nuryastuti, T. Biofilm formation and antibiotic resistance of Klebsiella pneumoniae isolated from clinical samples in a tertiary care hospital, Klaten, Indonesia. BMC Proc. 2019, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Alcantar-Curiel, M.D.; Blackburn, D.; Saldana, Z.; Gayosso-Vazquez, C.; Iovine, N.M.; De la Cruz, M.A.; Girón, J.A. Multi-functional analysis of Klebsiella pneumoniae fimbrial types in adherence and biofilm formation. Virulence 2013, 4, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Murphy, C.N.; Mortensen, M.S.; Krogfelt, K.A.; Clegg, S. Role of Klebsiella pneumoniae type 1 and type 3 fimbriae in colonizing silicone tubes implanted into the bladders of mice as a model of catheter-associated urinary tract infections. Infect. Immun. 2013, 81, 3009–3017. [Google Scholar] [CrossRef] [PubMed]
- Wasfi, R.; Elkhatib, W.F.; Ashour, H.M. Molecular typing and virulence analysis of multidrug resistant Klebsiella pneumoniae clinical isolates recovered from Egyptianhospitals. Sci. Rep. 2016, 6, 38929. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.L.; da Silva, B.C.M.; Rezende, G.S.; Nakamura-Silva, R.; Pitondo-Silva, A.; Campanini, E.B.; Brito, M.C.A.; da Silva, E.M.L.; Freire, C.C.M.; da Cunha, A.F.; et al. High prevalence of multidrug-resistant Klebsiella pneumoniae harboring several virulence and β-lactamase encoding genes in a Brazilian intensive care unit. Front. Microbiol. 2019, 9, 3198. [Google Scholar] [CrossRef] [PubMed]
- Devanga Ragupathi, N.K.; Muthuirulandi Sethuvel, D.P.; Triplicane Dwarakanathan, H.; Murugan, D.; Umashankar, Y.; Monk, P.N.; Karunakaran, E.; Veeraraghavan, B. The influence of biofilms on carbapenem susceptibility and patient outcome in device associated K. pneumoniae infections: Insights into phenotype vs genome-wide analysis and correlation. Front. Microbiol. 2020, 11, 591679. [Google Scholar] [CrossRef] [PubMed]
- Ochońska, D.; Ścibik, Ł.; Brzychczy-Włoch, M. Biofilm formation of clinical Klebsiella pneumoniae strains isolated from tracheostomy tubes and their association with antimicrobial resistance, virulence and genetic diversity. Pathogens 2021, 10, 1345. [Google Scholar] [CrossRef]
- Makhrmash, J.H.; Al-Aidy, S.R.; Qaddoori, B.H. Investigation of biofilm virulence genes prevalence in Klebsiella pneumoniae isolated from the urinary tract infections. Arch. Razi Inst. 2022, 77, 1421–1427. [Google Scholar] [CrossRef]
- Li, Y.; Ni, M. Regulation of biofilm formation in Klebsiella pneumoniae. Front. Microbiol. 2023, 14, 1238482. [Google Scholar] [CrossRef] [PubMed]
- El Fertas-Aissani, R.; Messai, Y.; Alouache, S.; Bakour, R. Virulence profiles and antibiotic susceptibility patterns of Klebsiella pneumoniae strains isolated from different clinical specimens. Pathol. Biol. 2013, 61, 209–216. [Google Scholar] [CrossRef]
- Chen, K.M.; Chiang, M.K.; Wang, M.; Ho, H.C.; Lu, M.C.; Lai, Y.C. The role of pgaC in Klebsiella pneumoniae virulence and biofilm formation. Microb. Pathog. 2014, 77, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Mirzaie, A.; Ranjbar, R. Antibiotic resistance, virulence-associated genes analysis and molecular typing of Klebsiella pneumoniae strains recovered from clinical samples. AMB Express 2021, 11, 122. [Google Scholar] [CrossRef]
- Hafiz, T.A.; Alghamdi, G.S.; Alkudmani, Z.S.; Alyami, A.S.; AlMazyed, A.; Alhumaidan, O.S.; Mubaraki, M.A.; Alotaibi, F.E. Multidrug-resistant Proteus mirabilis infections and clinical outcome at tertiary hospital in Riyadh, Saudi Arabia. Infect. Drug. Resist. 2024, 17, 571–581. [Google Scholar] [CrossRef]
- Armbruster, C.E.; Smith, S.N.; Johnson, A.O.; DeOrnellas, V.; Eaton, K.A.; Yep, A.; Mody, L.; Wu, W.; Mobley, H.L.T. The Pathogenic potential of Proteus mirabilis is enhanced by other uropathogens during polymicrobial urinary tract infection. Infect. Immun. 2017, 85, e00808-16. [Google Scholar] [CrossRef]
- Al-Bassam, W.W.; Al-Kazaz, A.K. The isolation and characterization of Proteus mirabilis from different clinical samples. J. Biotechnol. Res. Cen. 2013, 7, 24–30. [Google Scholar] [CrossRef]
- Jabur, M.H.; AL-Saedi, E.A.; Trad, J.K. Isolation of Proteus mirabilis and Proteus vulgaris from different clinical sources and study of some virulence factors. J. Bab. Univ. Pure Applied. Sci. 2013, 21, 43–48. [Google Scholar]
- Schaffer, J.N.; Pearson, M.M. Proteus mirabilis and urinary tract infections. Microbiol. Spectr. 2015, 3. [Google Scholar] [CrossRef]
- Armbruster, C.E.; Forsyth-DeOrnellas, V.; Johnson, A.O.; Smith, S.N.; Zhao, L.; Wu, W.; Mobley, H.L.T. Genome-wide transposon mutagenesis of Proteus mirabilis: Essential genes, fitness factors for catheter-associated urinary tract infection, and the impact of polymicrobial infection on fitness requirements. PLoS Pathog. 2017, 13, e1006434. [Google Scholar] [CrossRef]
- Fusco, A.; Coretti, L.; Savio, V.; Buommino, E.; Lembo, F.; Donnarumma, G. Biofilm formation and immunomodulatory activity of Proteus mirabilis clinically isolated strains. Int. J. Mol. Sci. 2017, 18, 414. [Google Scholar] [CrossRef] [PubMed]
- Shelenkov, A.; Petrova, L.; Fomina, V.; Zamyatin, M.; Mikhaylova, Y.; Akimkin, V. Multidrug-resistant Proteus mirabilis strain with cointegrate plasmid. Microorganisms 2020, 8, 1775. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, D.W.; Lopes Barboza, M.G.; Faustino, G.; Yamanaka Inagaki, W.T.; Sanches, M.S.; Takayama Kobayashi, R.K.; Vespero, E.C.; Dejato Rocha, S.P. Virulence, resistance and clonality of Proteus mirabilis isolated from patients with community-acquired urinary tract infection (CA-UTI) in Brazil. Microb. Pathog. 2021, 152, 104642. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Cen, X.; He, M.; Wen, Y.; Zhang, H. Isolation, biological and whole genome characteristics of a Proteus mirabilis bacteriophage strain. BMC Microbiol. 2023, 23, 215. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wen, S.; Zhao, L.; Xia, Q.; Pan, Y.; Liu, H.; Wei, C.; Chen, H.; Ge, J.; Wang, H. Association among biofilm formation, virulence gene expression, and antibiotic resistance in Proteus mirabilis isolates from diarrhetic animals in Northeast China. BMC Vet. Res. 2020, 16, 176. [Google Scholar] [CrossRef] [PubMed]
- Scavone, P.; Iribarnegaray, V.; Caetano, A.L.; Schlapp, G.; Härtel, S.; Zunino, P. Fimbriae have distinguishable roles in Proteus mirabilis biofilm formation. Pathog. Dis. 2016, 74, ftw033. [Google Scholar] [CrossRef]
- Li, Y.; Yin, M.; Fang, C.; Fu, Y.; Dai, X.; Zeng, W.; Zhang, L. Genetic analysis of resistance and virulence characteristics of clinical multidrug-resistant Proteus mirabilis isolates. Front. Cell. Infect. Microbiol. 2023, 13, 1229194. [Google Scholar] [CrossRef] [PubMed]
- Talebi, A.; Momtaz, H.; Tajbakhsh, E. Frequency distribution of virulence factors and antibiotic resistance genes in uropathogenic Proteus species isolated from clinical samples. Lett. Appl. Microbiol. 2023, 76, ovac043. [Google Scholar] [CrossRef]
- Ciofu, O.; Tolker-Nielsen, T. Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents- how P. aeruginosa can escape antibiotics. Front. Microbiol. 2019, 10, 913. [Google Scholar] [CrossRef]
- Tuon, F.F.; Dantas, L.R.; Suss, P.H.; Tasca Ribeiro, V.S. Pathogenesis of the Pseudomonas aeruginosa biofilm: A review. Pathogens 2022, 11, 300. [Google Scholar] [CrossRef]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Litwin, A.; Rojek, S.; Gozdzik, W.; Duszynska, W. Pseudomonas aeruginosa device associated—Healthcare associated infections and its multidrug resistance at intensive care unit of University Hospital: Polish, 8.5-year, prospective, single-centre study. BMC Infect. Dis. 2021, 21, 180. [Google Scholar] [CrossRef] [PubMed]
- Edward, E.A.; El Shehawy, M.R.; Abouelfetouh, A.; Aboulmagd, E. Prevalence of different virulence factors and their association with antimicrobial resistance among Pseudomonas aeruginosa clinical isolates from Egypt. BMC Microbiol. 2023, 23, 161. [Google Scholar] [CrossRef] [PubMed]
- Asker, D.; Awad, T.S.; Raju, D.; Sanchez, H.; Lacdao, I.; Gilbert, S.; Sivarajah, P.; Andes, D.R.; Sheppard, D.C.; Howell, P.L.; et al. Preventing Pseudomonas aeruginosa biofilms on indwelling catheters by surface-bound enzymes. ACS Appl. Bio. Mater. 2021, 4, 8248–8258. [Google Scholar] [CrossRef] [PubMed]
- Asmare, Z.; Awoke, T.; Genet, C.; Admas, A.; Melese, A.; Mulu, W. Incidence of catheter-associated urinary tract infections by Gram-negative bacilli and their ESBL and carbapenemase production in specialized hospitals of Bahir Dar, northwest Ethiopia. Antimicrob. Resist. Infect. Control. 2024, 13, 10. [Google Scholar] [CrossRef]
- Cole, S.J.; Records, A.R.; Orr, M.W.; Linden, S.B.; Lee, V.T. Catheter-associated urinary tract infection by Pseudomonas aeruginosa is mediated by exopolysaccharide-independent biofilms. Infect. Immun. 2014, 82, 2048–2058. [Google Scholar] [CrossRef] [PubMed]
- Awoke, N.; Kassa, T.; Teshager, L. Magnitude of biofilm formation and antimicrobial resistance pattern of bacteria isolated from urinary catheterized inpatients of jimma university medical center, Southwest Ethiopia. Int. J. Microbiol. 2019, 2019, 5729568. [Google Scholar] [CrossRef] [PubMed]
- Karkee, P.; Dhital, D.; Madhup, S.K.; Sherchan, J.B. Catheter associated urinary tract infection: Prevalence, microbiological profile and antibiogram at a tertiary care hospital. Ann. Clin. Chem. Lab. Med. 2017, 3, 3–10. [Google Scholar] [CrossRef]
- Kaur, M.; Gupta, V.; Gombar, S.; Chander, J.; Sahoo, T. Incidence, risk factors, microbiology of venous catheter associated bloodstream infections--a prospective study from a tertiary care hospital. Indian J. Med. Microbiol. 2015, 33, 248–254. [Google Scholar] [CrossRef]
- Vincent, J.L.; Sakr, Y.; Singer, M.; Martin-Loeches, I.; Machado, F.R.; Marshall, J.C.; Finfer, S.; Pelosi, P.; Brazzi, L.; Aditianingsih, D.; et al. Prevalence and outcomes of infection among patients in intensive care units in 2017. JAMA 2020, 323, 1478–1487. [Google Scholar] [CrossRef]
- Jain, R.; Behrens, A.J.; Kaever, V.; Kazmierczak, B.I. Type IV pilus assembly in Pseudomonas aeruginosa over a broad range of cyclic di-GMP concentrations. J. Bacteriol. 2012, 194, 4285–4294. [Google Scholar] [CrossRef] [PubMed]
- Olejnickova, K.; Hola, V.; Ruzicka, F. Catheter-related infections caused by Pseudomonas aeruginosa: Virulence factors involved and their relationships. Pathog. Dis. 2014, 72, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Christopher, G.F. Role of flagella, type IV pili, biosurfactants, and extracellular polymeric substance polysaccharides on the formation of pellicles by Pseudomonas aeruginosa. Langmuir 2019, 35, 5294–5304. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, T.; Hébraud, M.; Alves, O.; Costa, E.; Maltez, L.; Pereira, J.E.; Martins, Â.; Igrejas, G.; Poeta, P. Study of antimicrobial resistance, biofilm formation, and motility of Pseudomonas aeruginosa derived from urine samples. Microorganisms 2023, 11, 1345. [Google Scholar] [CrossRef] [PubMed]
- Colvin, K.M.; Irie, Y.; Tart, C.S.; Urbano, R.; Whitney, J.C.; Ryder, C.; Howell, P.L.; Wozniak, D.J.; Parsek, M.R. The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ. Microbiol. 2012, 14, 1913–1928. [Google Scholar] [CrossRef] [PubMed]
- Mishra, M.; Byrd, M.S.; Sergeant, S.; Azad, A.K.; Parsek, M.R.; McPhail, L.; Schlesinger, L.S.; Wozniak, D.J. Pseudomonas aeruginosa Psl polysaccharide reduces neutrophil phagocytosis and the oxidative response by limiting complement-mediated opsonization. Cell. Microbiol. 2012, 14, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Cavallo, I.; Oliva, A.; Pages, R.; Sivori, F.; Truglio, M.; Fabrizio, G.; Pasqua, M.; Pimpinelli, F.; Di Domenico, E.G. Acinetobacter baumannii in the critically ill: Complex infections get complicated. Front. Microbiol. 2023, 14, 1196774. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.H.; Su, P.W.; Moi, S.H.; Chuang, L.Y. Biofilm formation in Acinetobacter Baumannii: Genotype-phenotype correlation. Molecules 2019, 24, 1849. [Google Scholar] [CrossRef] [PubMed]
- Zeighami, H.; Valadkhani, F.; Shapouri, R.; Samadi, E.; Haghi, F. Virulence characteristics of multidrug resistant biofilm forming Acinetobacter baumannii isolated from intensive care unit patients. BMC Infect Dis. 2019, 19, 629. [Google Scholar] [CrossRef] [PubMed]
- Ceparano, M.; Baccolini, V.; Migliara, G.; Isonne, C.; Renzi, E.; Tufi, D.; De Vito, C.; De Giusti, M.; Trancassini, M.; Alessandri, F.; et al. Acinetobacter baumannii Isolates from COVID-19 patients in a hospital intensive care unit: Molecular typing and risk factors. Microorganisms 2022, 10, 722. [Google Scholar] [CrossRef]
- Elbehiry, A.; Marzouk, E.; Moussa, I.; Mushayt, Y.; Algarni, A.A.; Alrashed, O.A.; Alghamdi, K.S.; Almutairi, N.A.; Anagreyyah, S.A.; Alzahrani, A.; et al. The Prevalence of Multidrug-Resistant Acinetobacter baumannii and Its Vaccination Status among Healthcare Providers. Vaccines 2023, 11, 1171. [Google Scholar] [CrossRef] [PubMed]
- Whiteway, C.; Breine, A.; Philippe, C.; Van der Henst, C. Acinetobacter baumannii. Trends Microbiol. 2022, 30, 199–200. [Google Scholar] [CrossRef] [PubMed]
- Pour, N.K.; Dusane, D.H.; Dhakephalkar, P.K.; Zamin, F.R.; Zinjarde, S.S.; Chopade, B.A. Biofilm formation by Acinetobacter baumannii strains isolated from urinary tract infection and urinary catheters. FEMS Immunol. Med. Microbiol. 2011, 62, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.F.; Lan, C.Y. Antimicrobial resistance in Acinetobacter baumannii: From bench to bedside. World J. Clin. Cases 2014, 2, 787. [Google Scholar] [CrossRef] [PubMed]
- Greene, C.; Vadlamudi, G.; Newton, D.; Foxman, B.; Xi, C. The influence of biofilm formation and multidrug resistance on environmental survival of clinical and environmental isolates of Acinetobacter baumannii. Am. J. Infect. Control. 2016, 44, e65–e71. [Google Scholar] [CrossRef]
- Blot, K.; Hammami, N.; Blot, S.; Vogelaers, D.; Lambert, M.-L. Seasonal variation of hospital-acquired bloodstream infections: A national cohort study. Infect. Control Hosp. Epidemiol. 2021, 12, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Cho, S.I.; Bang, J.H. Risk factors associated with bloodstream infection among patients colonized by multidrug-resistant Acinetobacter baumannii: A 7-year observational study in a general hospital. Am. J. Infect. Control. 2020, 48, 581–583. [Google Scholar] [CrossRef]
- Di Domenico, E.G.; Marchesi, F.; Cavallo, I.; Toma, L.; Sivori, F.; Papa, E.; Spadea, A.; Cafarella, G.; Terrenato, I.; Prignano, G. The impact of bacterial biofilms on end-organ disease and mortality in patients with hematologic malignancies developing a bloodstream infection. Microbiol. Spectr. 2021, 9, e0055021. [Google Scholar] [CrossRef] [PubMed]
- Asaad, A.M.; Ansari, S.; Ajlan, S.E.; Awad, S.M. Epidemiology of biofilm producing Acinetobacter baumannii nosocomial isolates from a tertiary care hospital in Egypt: A cross-sectional study. Infect. Drug. Resist. 2021, 14, 709–717. [Google Scholar] [CrossRef]
- Opoku-Asare, B.; Boima, V.; Ganu, V.J.; Aboagye, E.; Asafu-Adjaye, O.; Asare, A.A.; Kyeremateng, I.; Kwakyi, E.; Agyei, A.; Sampane-Donkor, E.; et al. Catheter-related bloodstream infections among patients on maintenance haemodialysis: A cross-sectional study at a tertiary hospital in Ghana. BMC Infect. Dis. 2023, 23, 664. [Google Scholar] [CrossRef]
- Azizi, O.; Shahcheraghi, F.; Salimizand, H.; Modarresi, F.; Shakibaie, M.R.; Mansouri, S.H.; Ramazanzadeh, R.; Badmasti, F.; Nikbin, V. Molecular Analysis and Expression of bap Gene in Biofilm-Forming Multi-Drug-Resistant Acinetobacter baumannii. Rep. Biochem. Mol. Biol. 2016, 5, 62–72. [Google Scholar] [PubMed]
- Thummeepak, R.; Kongthai, P.; Leungtongkam, U.; Sitthisak, S. Distribution of virulence genes involved in biofilm formation in multi-drug resistant Acinetobacter baumannii clinical isolates. Int. Microbiol. 2016, 19, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, E.; Ghalavand, Z.; Goudarzi, H.; Yeganeh, F.; Hashemi, A.; Dabiri, H.; Mirsamadi, E.S.; Foroumand, M. Phenotypic and genotypic investigation of biofilm formation in clinical and environmental isolates of Acinetobacter baumannii. Arch. Clin. Infect. Dis. 2018, 13, 12914. [Google Scholar] [CrossRef]
- Khoshnood, S.; Savari, M.; Abbasi Montazeri, E.; Farajzadeh Sheikh, A. Survey on genetic diversity, biofilm formation, and detection of colistin resistance genes in clinical isolates of Acinetobacter baumannii. Infect. Drug. Resist. 2020, 13, 1547–1558. [Google Scholar] [CrossRef]
- Li, Z.; Ding, Z.; Liu, Y.; Jin, X.; Xie, J.; Li, T.; Zeng, Z.; Wang, Z.; Liu, J. Phenotypic and genotypic characteristics of biofilm formation in clinical isolates of Acinetobacter baumannii. Infect. Drug. Resist. 2021, 14, 2613–2624. [Google Scholar] [CrossRef]
- Kasperski, T.; Romaniszyn, D.; Jachowicz-Matczak, E.; Pomorska-Wesołowska, M.; Wójkowska-Mach, J.; Chmielarczyk, A. Extensive drug resistance of strong biofilm-producing Acinetobacter baumannii strains isolated from infections and colonization hospitalized patients in Southern Poland. Pathogens 2023, 12, 975. [Google Scholar] [CrossRef]
- Reddy, P.N.; Srirama, K.; Dirisala, V.R. An update on clinical burden, diagnostic tools, and therapeutic options of Staphylococcus aureus. Infect. Dis. 2017, 10, 1179916117703999. [Google Scholar]
- Kong, C.; Chee, C.F.; Richter, K.; Thomas, N.; Abd Rahman, N.; Nathan, S. Suppression of Staphylococcus aureus biofilm formation and virulence by a benzimidazole derivative, UM-C162. Sci. Rep. 2018, 8, 2758. [Google Scholar] [CrossRef]
- Lee, A.S.; de Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers 2018, 4, 18033. [Google Scholar] [CrossRef] [PubMed]
- Graf, A.C.; Leonard, A.; Schäuble, M.; Rieckmann, L.M.; Hoyer, J.; Maass, S.; Lalk, M.; Becher, D.; Pané-Farré, J.; Riedel, K. Virulence factors produced by Staphylococcus aureus biofilms have a moonlighting function contributing to biofilm integrity. Mol. Cell. Proteomics 2019, 18, 1036–1053. [Google Scholar] [CrossRef]
- Kimmig, A.; Hagel, S.; Weis, S.; Bahrs, C.; Löffler, B.; Pletz, M.W. Management of Staphylococcus aureus bloodstream infections. Front. Med. 2021, 7, 616524. [Google Scholar] [CrossRef] [PubMed]
- Romero, L.C.; de Souza da Cunha, M.L.R. Insights into the epidemiology of community-associated methicillin-resistant Staphylococcus aureus in special populations and at the community-healthcare interface. Braz. J. Infect. Dis. 2021, 25, 101636. [Google Scholar] [CrossRef] [PubMed]
- Foster, T.J.; Geoghegan, J.A.; Ganesh, V.K.; Hook, M. Adhesion, invasion and evasion: The many functions of the surface proteins of Staphylococcus aureus. Nat. Rev. Microbiol. 2014, 12, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Pietrocola, G.; Nobile, G.; Rindi, S.; Speziale, P. Staphylococcus aureus manipulates innate immunity through own and host-expressed proteases. Front. Cell. Infect. Microbiol. 2017, 7, 166. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, K.; Furukawa, K. Staphylococcus aureus bacteremia due to central venous catheter infection: A clinical comparison of infections caused by methicillin-resistant and methicillin-susceptible strains. Cureus 2021, 13, e16607. [Google Scholar] [CrossRef] [PubMed]
- Mandolfo, S.; Anesi, A.; Maggio, M.; Rognoni, V.; Galli, F.; Forneris, G. High success rate in salvage of catheter-related bloodstream infections due to Staphylococcus aureus, on behalf of project group of Italian society of nephrology. J. Vasc. Access 2020, 21, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Bonnal, C.; Birgand, G.; Lolom, I.; Diamantis, S.; Dumortier, C.; L’Heriteau, F.; Armand-Lefevre, L.; Lucet, J.C. Staphylococcus aureus healthcare associated bacteraemia: An indicator of catheter related infections. Med. Mel. Infect. 2015, 45, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Pinto, M.; Borges, V.; Nascimento, M.; Martins, F.; Pessanha, M.A.; Faria, I.; Rodrigues, J.; Matias, R.; Gomes, J.P.; Jordao, L. Insights on catheter-related bloodstream infections: A prospective observational study on the catheter colonization and multidrug resistance. J. Hosp. Infect. 2022, 123, 43–51. [Google Scholar] [CrossRef]
- Cuervo, G.; Camoez, M.; Shaw, E.; Dominguez, M.Á.; Gasch, O.; Padilla, B.; Pintado, V.; Almirante, B.; Molina, J.; López-Medrano, F. Methicillin-resistant Staphylococcus aureus (MRSA) catheter-related bacteraemia in haemodialysis patients. BMC Infect. Dis. 2015, 15, 484. [Google Scholar] [CrossRef]
- Hogan, S.; Zapotoczna, M.; Stevens, N.T.; Humphreys, H.; O’Gara, J.P.; O’Neill, E. Eradication of Staphylococcus aureus catheter-related biofilm infections using ML:8 and citrox. Antimicrob. Agents Chemother. 2016, 60, 5968–5975. [Google Scholar] [CrossRef]
- Bolormaa, E.; Kang, C.; Choe, Y.J.; Heo, J.S.; Cho, H. Epidemiology of catheter-related bloodstream infections in neonatal intensive care units: A rapid systematic literature review. Korean J. Health. Assoc. Infect. Control Prev. 2023, 28, 113–125. [Google Scholar] [CrossRef]
- Weldetensae, M.K.; Weledegebriel, M.G.; Nigusse, A.T.; Berhe, E.; Gebrearegay, H. Catheter-related blood stream infections and associated factors among hemodialysis patients in a tertiary care hospital. Infect. Drug. Resist. 2023, 16, 3145–3156. [Google Scholar] [CrossRef] [PubMed]
- Mazuel, M.; Moulier, V.; Bourrel, A.S.; Guillier, C.; Tazi, A.; Jarreau, P.H.; Chollat, C. Systematic culture of central catheters and infections related to catheters in a neonatal intensive care unit: An observational study. Sci. Rep. 2024, 14, 8647. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.N.; Flores-Mireles, A.L.; Pinkner, C.L.; Schreiber, H.L.; Joens, M.S.; Park, A.M.; Potretzke, A.M.; Bauman, T.M.; Pinkner, J.S.; Fitzpatrick, J.A.J.; et al. Catheterization alters bladder ecology to potentiate Staphylococcus aureus infection of the urinary tract. Proc. Natl. Acad. Sci. USA 2017, 114, E8721–E8730. [Google Scholar] [CrossRef] [PubMed]
- Alshomrani, M.K.; Alharbi, A.A.; Alshehri, A.A.; Arshad, M.; Dolgum, S. Isolation of Staphylococcus aureus urinary tract infections at a community-based healthcare center in Riyadh. Cureus 2023, 15, e35140. [Google Scholar] [CrossRef]
- Mason, C.Y.; Sobti, A.; Goodman, A.L. Staphylococcus aureus bacteriuria: Implications and management. JAC Antimicrob. Resist. 2023, 5, dlac123. [Google Scholar] [CrossRef] [PubMed]
- Maharjan, G.; Khadka, P.; Siddhi Shilpakar, G.; Chapagain, G.; Dhungana, G.R. Catheter-Associated Urinary Tract Infection and Obstinate Biofilm Producers. Can. J. Infect. Dis. Med. Microbiol. 2018, 2018, 7624857. [Google Scholar] [CrossRef]
- Bagali, S.; Mantur, P.G. Bacteriological profile of catheter associated urinary tract infection and its antimicrobial susceptibility pattern in a Tertiary Care Hospital. Int. J. Health Clin. Res. 2021, 4, 268–271. [Google Scholar]
- Seng, R.; Kitti, T.; Thummeepak, R.; Kongtha, P.; Leungtongkam, U.; Wannalerdsakun, S. Biofilm formation of methicillin-resistant coagulase negative staphylococci (MR-CoNS) isolated from community and hospital environments. PLoS ONE 2017, 12, e184172. [Google Scholar] [CrossRef]
- Foster, C.E.; Kok, M.; Flores, A.R.; Minard, C.G.; Luna, R.A.; Lamberth, L.B.; Kaplan, S.L.; Hulten, K.G. Adhesin genes and biofilm formation among pediatric Staphylococcus aureus isolates from implant-associated infections. PLoS ONE 2020, 15, e0235115. [Google Scholar] [CrossRef]
- François, P.; Schrenzel, J.; Götz, F. Biology and Regulation of Staphylococcal Biofilm. Int. J. Mol. Sci. 2023, 24, 5218. [Google Scholar] [CrossRef]
- Mirzaee, M.; Najar-Peerayeh, S.H.; Behmanesh, M.; Forouzandeh, M.M.; Ghasemian, A.M. Detection of intercellular adhesion (ica) gene and biofilm formation Staphylococcus aureus isolates from clinical blood cultures. J. Med. Bacteriol. 2014, 3, 1–7. [Google Scholar]
- Torlak, E.; Korkut, E.; Uncu, A.T.; Şener, Y. Biofilm formation by Staphylococcus aureus isolates from a dental clinic in Konya, Turkey. J. Infect. Public Health 2017, 10, 809–813. [Google Scholar] [CrossRef] [PubMed]
- Manandhar, S.; Singh, A.; Varma, A.; Pandey, S.; Shrivastava, N. Evaluation of methods to detect in vitro biofilm formation by staphylococcal clinical isolates. BMC Res. Notes 2018, 11, 19. [Google Scholar] [CrossRef]
- Omidi, M.; Firoozeh, F.; Saffari, M.; Sedaghat, H.; Zibaei, M.; Khaledi, A. Ability of biofilm production and molecular analysis of spa and ica genes among clinical isolates of methicillin-resistant Staphylococcus aureus. BMC Res. Notes 2020, 13, 19. [Google Scholar] [CrossRef] [PubMed]
- Kot, B.; Sytykiewicz, H.; Sprawka, I. Expression of the Biofilm-Associated Genes in Methicillin-Resistant Staphylococcus aureus in Biofilm and Planktonic Conditions. Int. J. Mol. Sci. 2018, 19, 3487. [Google Scholar] [CrossRef] [PubMed]
- Uribe-García, A.; Paniagua-Contreras, G.L.; Monroy-Pérez, E.; Bustos-Martínez, J.; Hamdan-Partida, A.; Garzón, J.; Alanís, J.; Quezada, R.; Vaca-Paniagua, F.; Vaca, S. Frequency and expression of genes involved in adhesion and biofilm formation in Staphylococcus aureus strains isolated from periodontal lesions. J. Microbiol. Immunol. Infect. 2021, 54, 267–275. [Google Scholar] [CrossRef]
- Giulieri, S.G.; Holmes, N.E.; Stinear, T.P.; Howden, B.P. Use of bacterial whole-genome sequencing to understand and improve the management of invasive Staphylococcus aureus infections. Expert Rev. Anti Infect. Ther. 2016, 14, 1023–1036. [Google Scholar] [CrossRef] [PubMed]
- San-Juan, R.; Pérez-Montarelo, D.; Viedma, E.; Lalueza, A.; Fortún, J.; Loza, E.; Pujol, M.; Ardanuy, C.; Morales, I.; de Cueto, M.; et al. Pathogen-related factors affecting outcome of catheter-related bacteremia due to methicillin-susceptible Staphylococcus aureus in a Spanish multicenter study. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 1757–1765. [Google Scholar] [CrossRef]
- Pérez-Montarelo, D.; Viedma, E.; Larrosa, N.; Gómez-González, C.; Ruiz de Gopegui, E.; Muñoz-Gallego, I.; San Juan, R.; Fernández-Hidalgo, N.; Almirante, B.; Chaves, F. Molecular epidemiology of Staphylococcus aureus bacteremia: Association of molecular factors with the source of infection. Front. Microbiol. 2018, 9, 2210. [Google Scholar] [CrossRef]
- Spoto, M.; Riera Puma, J.P.; Fleming, E.; Guan, C.; OndouahNzutchi, Y.; Kim, D.; Oh, J. Large-scale CRISPRi and transcriptomics of Staphylococcus epidermidis identify genetic factors implicated in lifestyle versatility. mBio 2022, 13, e0263222. [Google Scholar] [CrossRef]
- Yogo, A.; Yamamoto, S.; Sumiyoshi, S.; Iwamoto, N.; Aoki, K.; Motobayashi, H.; Tochitani, K.; Shimizu, T.; Murashima, T.; Nishikawa, N.; et al. Two cases of pyelonephritis with bacteremia by Staphylococcus epidermidis in male patients with nephrolithiasis: Case reports and a literature review. J. Infect. Chemother. 2022, 28, 1189–1192. [Google Scholar] [CrossRef] [PubMed]
- Pouget, C.; Chatre, C.; Lavigne, J.-P.; Pantel, A.; Reynes, J.; Dunyach-Remy, C. Effect of antibiotic exposure on Staphylococcus epidermidis responsible for catheter-related bacteremia. Int. J. Mol. Sci. 2023, 24, 1547. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.M.; Kim, J.S.; Park, M.G.; Hwang, J.; Kim, W.Y.; Seo, D.W. Incidence and short-term outcomes of central line-related bloodstream infection in patients admitted to the emergency department: A single-center retrospective study. Sci. Rep. 2023, 13, 3867. [Google Scholar] [CrossRef] [PubMed]
- Lunnemar, P.; Taxbro, K.; Hammarskjöld, F. An analysis of central venous catheter-related bloodstream infections in patients treated in a Swedish Covid-19 intensive care unit. SAGE Open Med. 2024, 12, 20503121241233213. [Google Scholar] [CrossRef]
- Strasheim, W.; Kock, M.M.; Ueckermann, V.; Hoosien, E.; Dreyer, A.W.; Ehlers, M.M. Surveillance of catheter-related infections: The supplementary role of the microbiology laboratory. BMC Infect. Dis. 2015, 15, 5. [Google Scholar] [CrossRef]
- Ehlers, M.M.; Strasheim, W.; Lowe, M.; Ueckermann, V.; Kock, M.M. Molecular Epidemiology of Staphylococcus epidermidis Implicated in Catheter-Related Bloodstream Infections at an Academic Hospital in Pretoria, South Africa. Front. Microbiol. 2018, 9, 417. [Google Scholar] [CrossRef]
- de la Cruz-Hernández, I.; Cornejo-Juárez, P.; Tellez-Miranda, O.; Barrera-Pérez, L.; Sandoval-Hernández, S.; Vilar-Compte, D.; Velázquez-Acosta, C.; Volkow, P. Microbiology and prevalence of E2SKAPE-resistant strains in catheter-related bloodstream infections in patients with cancer. Am. J. Infect. Control 2020, 48, 40–45. [Google Scholar] [CrossRef]
- Kochanowicz, J.F.; Nowicka, A.; Al-Saad, S.R.; Karbowski, L.M.; Gadzinowski, J.; Szpecht, D. Catheter-related bloodstream infections in infants hospitalized in neonatal intensive care units: A single center study. Sci. Rep. 2022, 12, 13679. [Google Scholar] [CrossRef]
- Zaragoza Rodríguez, R.M.; Santos Flores, J.A.; Moreno Zaragoza, A.N. #3139 Prevalence of infections associated with the he-modialysis catheter in Mexico city. Nephrol. Dial. Transplant. 2023, 38, gfad063c_3139. [Google Scholar] [CrossRef]
- Cabrera-Contreras, R.; Santamaría, R.I.; Bustos, P.; Martínez-Flores, I.; Meléndez-Herrada, E.; Morelos-Ramírez, R.; Barbosa-Amezcua, M.; González-Covarrubias, V.; Silva-Herzog, E.; Soberón, X.; et al. Genomic diversity of prevalent Staphylococcus epidermidis multidrug-resistant strains isolated from a Children’s Hospital in México City in an eight-years survey. PeerJ 2019, 7, e8068. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lin, J.; Zhang, T.; He, S.; Li, Y.; Zhang, W.; Ye, X.; Yao, Z. Environmental contamination prevalence, antimicrobial resistance and molecular characteristics of methicillin-resistant Staphylococcus Aureus and Staphylococcus Epidermidis isolated from secondary schools in Guangzhou, China. Int. J. Environ. Res. Public Health 2020, 17, 623. [Google Scholar] [CrossRef]
- Xu, Z.; Cave, R.; Chen, L.; Yangkyi, T.; Liu, Y.; Li, K.; Meng, G.; Niu, K.; Zhang, W.; Tang, N.; et al. Antibiotic resistance and molecular characteristics of methicillin-resistant Staphylococcus epidermidis recovered from hospital personnel in China. J. Glob. Antimicrob. Resist. 2020, 22, 195–201. [Google Scholar] [CrossRef]
- Siciliano, V.; Passerotto, R.A.; Chiuchiarelli, M.; Leanza, G.M.; Ojetti, V. Difficult-to-treat pathogens: A review on the management of multidrug-resistant Staphylococcus epidermidis. Life 2023, 13, 1126. [Google Scholar] [CrossRef] [PubMed]
- Skovdal, S.M.; Jørgensen, N.P.; Meyer, R.L. JMM Profile: Staphylococcus epidermidis. J. Med. Microbiol. 2022, 71, 10–1099. [Google Scholar] [CrossRef]
- Ardon, C.B.; Prens, E.P.; Fuursted, K.; Ejaz, R.N.; Shailes, J.; Jenssen, H.; Jemec, G.B.E. Biofilm production and antibiotic susceptibility of Staphylococcus epidermidis strains from Hidradenitis Suppurativa lesions. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 170–177. [Google Scholar] [CrossRef]
- Ahmad, S.; Rahman, H.; Qasim, M.; Nawab, J.; Alzahrani, K.J.; Alsharif, K.F.; Alzahrani, F.M. Staphylococcus epidermidis Pathogenesis: Interplay of icaADBC Operon and MSCRAMMs in Biofilm Formation of Isolates from Pediatric Bacteremia in Peshawar, Pakistan. Medicina 2022, 58, 1510. [Google Scholar] [CrossRef] [PubMed]
- Cherifi, S.; Byl, B.; Deplano, A.; Nonhoff, C.; Denis, O.; Hallin, M. Comparative epidemiology of Staphylococcus epidermidis isolates from patients with catheter-related bacteremia and from healthy volunteers. J. Clin. Microbiol. 2013, 51, 1541–1547. [Google Scholar] [CrossRef]
- Dai, L.; Yang, L.; Parsons, C.; Findlay, V.J.; Molin, S.; Qin, Z. Staphylococcus epidermidis recovered from indwelling catheters exhibit enhanced biofilm dispersal and “self-renewal” through downregulation of agr. BMC Microbiol 2012, 12, 102. [Google Scholar] [CrossRef]
- García-Solache, M.; Rice, L.B. The Enterococcus: A model of adaptability to its environment. Clin. Microbiol. Rev. 2019, 32, e058-18. [Google Scholar] [CrossRef]
- Cui, P.; Feng, L.; Zhang, L.; He, J.; An, T.; Fu, X.; Li, C.; Zhao, X.; Zhai, Y.; Li, H.; et al. Antimicrobial resistance, virulence genes, and biofilm formation capacity among Enterococcus species from yaks in Aba Tibetan autonomous prefecture, China. Front. Microbiol. 2020, 11, 1250. [Google Scholar] [CrossRef] [PubMed]
- Top, J.; Sinnige, J.C.; Brouwer, E.C.; Werner, G.; Corander, J.; Severin, J.A.; Jansen, R.; Bathoorn, E.; Bonten, M.J.M.; Rossen, J.W.A.; et al. Identification of a novel genomic island associated with vanD-type vancomycin resistance in six dutch vancomycin-resistant Enterococcus faecium isolates. Antimicrob. Agents Chemother. 2018, 62, e01793-17. [Google Scholar] [CrossRef] [PubMed]
- Arshadi, M.; Mahmoudi, M.; Motahar, M.S.; Soltani, S.; Pourmand, M.R. Virulence determinants and antimicrobial resistance patterns of vancomycin-resistant Enterococcus faecium isolated from different sources in Southwest Iran. Iran J. Public Health 2018, 47, 264–272. [Google Scholar] [PubMed]
- Georges, M.; Odoyo, E.; Matano, D.; Tiria, F.; Kyany’a, C.; Mbwika, D.; Mutai, W.C.; Musila, L. Determination of Enterococcus faecalis and Enterococcus faecium antimicrobial resistance and virulence factors and their association with clinical and demographic factors in Kenya. J. Pathog. 2022, 2022, 3129439. [Google Scholar] [CrossRef] [PubMed]
- Aung, M.S.; Urushibara, N.; Kawaguchiya, M.; Ohashi, N.; Hirose, M.; Kudo, K.; Tsukamoto, N.; Ito, M.; Kobayashi, N. Antimicrobial resistance, virulence factors, and genotypes of Enterococcus faecalis and Enterococcus faecium clinical isolates in Northern Japan: Identification of optrA in ST480 E. faecalis. Antibiotics 2023, 12, 108. [Google Scholar] [CrossRef] [PubMed]
- Farman, M.; Yasir, M.; Al-Hindi, R.R.; Farraj, S.A.; Jiman-Fatani, A.A.; Alawi, M.; Azhar, E.I. Genomic analysis of multidrug-resistant clinical Enterococcus faecalis isolates for antimicrobial resistance genes and virulence factors from the western region of Saudi Arabia. Antimicrob. Resist. Infect. Control 2019, 8, 55. [Google Scholar] [CrossRef] [PubMed]
- Boccella, M.; Santella, B.; Pagliano, P.; De Filippis, A.; Casolaro, V.; Galdiero, M.; Borrelli, A.; Capunzo, M.; Boccia, G.; Franci, G. Prevalence and antimicrobial resistance of Enterococcus Species: A retrospective cohort study in Italy. Antibiotics 2021, 10, 1552. [Google Scholar] [CrossRef] [PubMed]
- Putta, S.; Gandhi, A.; Kulkarni, V.; Jangale, N.; Walawalkar, A. Prevalence of Vancomycin Resistant Enterococci (VRE) in catheter associated urinary tract infections (CAUTI) with special reference to biofilm formation. Int. J. Med. Microbiol. Trop. Dis. 2018, 4, 191–195. [Google Scholar] [CrossRef]
- Patel, C.; Shah, M.B.; Singh, S.; Modi, S.; Shah, P. Biofilm production and antimicrobial resistance in catheter associated urinary tract infection (CAUTI) pathogens isolated from ICU patients. Eur. J. Mol. Clin. Med. 2021, 8, 3. [Google Scholar]
- Bahuleyan, A.; Harshan, K.H.; Bhai, G. Identification and antibiogram of gram positive cocci from catheter associated urinary tract infection (CAUTI) in intensive care units of a tertiary care hospital. Indian J. Microbiol. Res. 2019, 6, 78–81. [Google Scholar] [CrossRef]
- Perdana, M.A.; Wahyuni, D.D.; Yunita, R. Characteristics and susceptibility pattern of catheter-associated urinary tract infections (CAUTI) bacteria in Indonesia: A study in a national reference hospital of Sumatra region 2020-2021. Narra J. 2023, 3, e436. [Google Scholar] [CrossRef] [PubMed]
- Gul, A.; Khan, M.; Ali, M.; Shuaib, S.L.; Sahar, S. Catheter associated urinary tract infection: Characterization of bacterial pathogens and their antimicrobial susceptibility pattern at two Major tertiary care hospitals. Int. J. Pathol. 2021, 19, 194–199. [Google Scholar]
- Singh, D.; Umrao, P.D.; Kaistha, S.D. Multiple antibiotic resistance and biofilm formation of catheter associated urinary tract infection (CAUTI) causing microorganisms. J. Bacteriol. Mycol. 2018, 6, 217–221. [Google Scholar] [CrossRef]
- Tomar, S.; Lodha, R.; Das, B.; Sood, S.; Kapil, A. Central line-associated bloodstream infections (CLABSI): Microbiology and antimicrobial resistance pattern of isolates from the Pediatric ICU of a tertiary care Indian hospital. Clin. Epidemiol. Glob. Health 2015, 3, 16–19. [Google Scholar] [CrossRef]
- Awadh, H.; Chaftari, A.M.; Khalil, M.; Fares, J.; Jiang, Y.; Deeba, R.; Ali, S.; Hachem, R.; Raad, I.I. Management of enterococcal central line-associated bloodstream infections in patients with cancer. BMC Infect. Dis. 2021, 21, 643. [Google Scholar] [CrossRef] [PubMed]
- Markwart, R.; Willrich, N.; Haller, S.; Noll, I.; Koppe, U.; Werner, G.; Eckmanns, T.; Reuss, A. The rise in vancomycin-resistant Enterococcus faecium in Germany: Data from the German Antimicrobial Resistance Surveillance (ARS). Antimicrob. Resist. Infect. Control 2019, 8, 147. [Google Scholar] [CrossRef]
- Ramos, S.; Silva, V.; Dapkevicius, M.d.L.E.; Igrejas, G.; Poeta, P. Enterococci, from harmless bacteria to a pathogen. Microorganisms 2020, 8, 1118. [Google Scholar] [CrossRef] [PubMed]
- Monteiro Marques, J.; Coelho, M.; Santana, A.R.; Pinto, D.; Semedo-Lemsaddek, T. Dissemination of Enterococcal genetic lineages: A one health perspective. Antibiotics 2023, 12, 1140. [Google Scholar] [CrossRef]
- Kresken, M.; Klare, I.; Wichelhaus, T.A.; Wohlfarth, E.; Layer-Nicolaou, F.; Neumann, B.; Werner, G.; Study Group ‘Antimicrobial Resistance’ of the Paul-Ehrlich-Society for Chemotherapy. Glycopeptide resistance in Enterococcus spp. and coagulase-negative staphylococci from hospitalised patients in Germany: Occurrence, characteristics and dalbavancin susceptibility. J. Glob. Antimicrob. Resist. 2022, 28, 102–107. [Google Scholar] [CrossRef]
- Smout, E.; Palanisamy, N.; Valappil, S.P. Prevalence of vancomycin-resistant Enterococci in India between 2000 and 2022: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2023, 12, 79. [Google Scholar] [CrossRef]
- Kim, M.A.; Rosa, V.; Min, K.S. Characterization of Enterococcus faecalis in different culture conditions. Sci Rep. 2020, 10, 21867. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.A.; Alorabi, J.A.; Al-Otaibi, L.M.; Ali, S.S.; Elsilk, S.E. Antibiotic resistance and biofilm formation in Enterococcus spp. isolated from urinary tract infections. Pathogens 2022, 12, 34. [Google Scholar] [CrossRef] [PubMed]
- Soares, R.O.; Fedi, A.C.; Reiter, K.C.; Caierão, J.; d’Azevedo, P.A. Correlation between biofilm formation and gelE, esp, and agg genes in Enterococcus spp. clinical isolates. Virulence 2014, 5, 634–637. [Google Scholar] [CrossRef]
- Kafil, H.S.; Mobarez, A.M. Assessment of biofilm formation by Enterococci isolates from urinary tract infections with different virulence profiles. J. King Saud Univ. Sci. 2015, 27, 312–317. [Google Scholar] [CrossRef]
- Flores-Mireles, A.L.; Pinkner, J.S.; Caparon, M.G.; Hultgren, S.J. EbpA vaccine antibodies block binding of Enterococcus faecalis to fibrinogen to prevent catheter-associated bladder infection in mice. Sci. Transl. Med. 2014, 6, 254ra127. [Google Scholar] [CrossRef] [PubMed]
- Flores-Mireles, A.L.; Walker, J.N.; Potretzke, A.; Schreiber, H.L.; Pinkner, J.S.; Bauman, T.M.; Park, A.M.; Desai, A.; Hultgren, S.J.; Caparon, M.G. Antibody-Based Therapy for Enterococcal Catheter-Associated Urinary Tract Infections. mBio 2016, 7, e01653-16. [Google Scholar] [CrossRef]
- Xu, W.; Flores-Mireles, A.L.; Cusumano, Z.T.; Takagi, E.; Hultgren, S.J.; Caparon, M.G. Host and bacterial proteases influence biofilm formation and virulence in a murine model of enterococcal catheter-associated urinary tract infection. npj Biofilms Microbiomes 2017, 3, 28. [Google Scholar] [CrossRef] [PubMed]
- Shahriar, A.; Rob Siddiquee, M.F.; Ahmed, H.; Mahmud, A.R.; Ahmed, T.; Mahmud, M.R.; Acharjee, M. Catheter-associated urinary tract infections: Etiological analysis, biofilm formation, antibiotic resistance, and a novel therapeutic era of phage. Int. J. One Health 2022, 8, 86–100. [Google Scholar] [CrossRef]
- Woitschach, F.; Kloss, M.; Schlodder, K.; Borck, A.; Grabow, N.; Reisinger, E.C.; Sombetzki, M. Bacterial adhesion and biofilm formation of Enterococcus faecalis on zwitterionic methylmethacrylat and polysulfones. Front. Cell. Infect. Microbiol. 2022, 12, 868338. [Google Scholar] [CrossRef]
- Neoh, K.G.; Li, M.; Kang, E.-T.; Chiong, E.; Tambyah, P.A. Surface modification strategies for combating catheter-related complications: Recent advances and challenges. J. Mater. Chem. B. 2017, 5, 2045–2067. [Google Scholar] [CrossRef]
- Rupp, M.E.; Karnatak, R. Intravascular catheter–related bloodstream infections. Infect. Dis. Clin. N. Am. 2018, 32, 765–787. [Google Scholar] [CrossRef] [PubMed]
- Soi, V.; Moore, C.L.; Kumbar, L.; Yee, J. Prevention of catheter-related bloodstream infections in patients on hemodialysis: Challenges and management strategies. Int. J. Nephrol. Renov. Dis. 2016, 9, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Lebeaux, D.; Ghigo, J.M.; Beloin, C. Biofilm-related infections: Bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol. Mol. Biol. Rev. 2014, 78, 510–543. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Jones, A.; McLean, A.; Sterner, M.; Robbins, C.; Cunningham, M.; Walters, M.; Doddapaneni, K.; Keitel, I.; Gallagher, C. Slippery liquid infused fluoropolymer coating for central lines to reduce catheter associated clotting and infections. Sci. Rep. 2020, 10, 14973. [Google Scholar] [CrossRef] [PubMed]
- Köves, B.; Magyar, A.; Tenke, P. Spectrum and antibiotic resistance of catheter-associated urinary tract infections. GMS Infect. Dis. 2017, 5, Doc06. [Google Scholar] [CrossRef] [PubMed]
- Flores-Mireles, A.L.; Walker, J.N.; Bauman, T.M.; Potretzke, A.M.; Schreiber, H.L.; Park, A.M.; Pinkner, J.S.; Caparon, M.G.; Hultgren, S.J.; Desai, A. Fibrinogen release and deposition on urinary catheters placed during urological procedures. J. Urol. 2016, 196, 416–421. [Google Scholar] [CrossRef]
- Pickering, A.C.; Vitry, P.; Prystopiuk, V.; Garcia, B.; Höök, M.; Schoenebeck, J.; Geoghegan, J.A.; Dufrêne, Y.F.; Fitzgerald, J.R. Host-specialized fibrinogen-binding by a bacterial surface protein promotes biofilm formation and innate immune evasion. PLoS Pathog. 2019, 15, e1007816. [Google Scholar] [CrossRef] [PubMed]
- Flores-Mireles, A.; Walker, J.; Caparon, M.; Hultgren, S.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef]
- O’Grady, N.P.; Alexander, M.; Burns, L.A.; Dellinger, E.P.; Garland, J.; Heard, S.O.; Lipsett, P.A.; Masur, H.; Mermel, L.A.; Pearson, M.L.; et al. Guidelines for the prevention of intravascular catheter-related infections. Clin. Infect. Dis. 2011, 52, e162–e193. [Google Scholar] [CrossRef]
- Chen, S.; Yao, J.; Chen, J.; Liu, L.; Miu, A.; Jiang, Y.; Chen, Y. Knowledge of “Guidelines for the prevention of intravascular catheter-related infections (2011)”: A survey of intensive care unit nursing staffs in China. Int. J. Nurs. Sci. 2015, 2, 383–388. [Google Scholar] [CrossRef]
- Böll, B.; Schalk, E.; Buchheidt, D.; Hasenkamp, J.; Kiehl, M.; Kiderlen, T.R.; Kochanek, M.; Koldehoff, M.; Kostrewa, P.; Claßen, A.Y.; et al. Central venous catheter-related infections in hematology and oncology: 2020 updated guidelines on diagnosis, management, and prevention by the infectious diseases working party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO). Ann. Hematol. 2021, 100, 239–259. [Google Scholar] [CrossRef] [PubMed]
- Inchingolo, R.; Pasciuto, G.; Magnini, D.; Cavalletti, M.; Scoppettuolo, G.; Montemurro, G.; Smargiassi, A.; Torelli, R.; Sanguinetti, M.; Spanu, T. Educational interventions alone and combined with port protector reduce the rate of central venous catheter infection and colonization in respiratory semi-intensive care unit. BMC Infect Dis. 2019, 19, 215. [Google Scholar] [CrossRef] [PubMed]
- Mimoz, O.; Lucet, J.-C.; Kerforne, T.; Pascal, J.; Souweine, B.; Goudet, V.; Mercat, A.; Bouadma, L.; Lasocki, S.; Alfandari, S. Skin antisepsis with chlorhexidine–alcohol versus povidone iodine–alcohol, with and without skin scrubbing, for prevention of intravascular-catheter-related infection (CLEAN): An open-label, multicentre, randomised, controlled, two-by-two factorial trial. Lancet 2015, 386, 2069–2077. [Google Scholar] [PubMed]
- Buetti, N.; Timsit, J.-F. Management and prevention of central venous catheter-related infections in the ICU. Semin. Respir. Crit. Care. Med. 2019, 40, 508–523. [Google Scholar] [CrossRef] [PubMed]
- Wichmann, D.; Belmar Campos, C.E.; Ehrhardt, S.; Kock, T.; Weber, C.; Rohde, H.; Kluge, S. Efficacy of introducing a checklist to reduce central venous line associated bloodstream infections in the ICU caring for adult patients. BMC Infect Dis. 2018, 18, 267. [Google Scholar] [CrossRef] [PubMed]
- Timsit, J.F.; Bouadma, L.; Mimoz, O.; Parienti, J.J.; Garrouste-Orgeas, M.; Alfandari, S.; Plantefeve, G.; Bronchard, R.; Troche, G.; Gauzit, R.; et al. Jugular versus femoral short-term catheterization and risk of infection in intensive care unit patients. Causal analysis of two randomized trials. Am. J. Respir. Crit. Care. Med. 2013, 188, 1232–1239. [Google Scholar] [CrossRef] [PubMed]
- Parienti, J.J.; Mongardon, N.; Mégarbane, B.; Mira, J.P.; Kalfon, P.; Gros, A.; Marqué, S.; Thuong, M.; Pottier, V.; Ramakers, M.; et al. Intravascular complications of central venous catheterization by insertion site. N. Engl. J. Med. 2015, 373, 1220–1229. [Google Scholar] [CrossRef]
- Snarski, E.; Stringer, J.; Mikulska, M.; Gil, L.; Tridello, G.; Bosman, P.; Lippinkhof, A.; Hoek, J.; Karas, M.; Zver, S.; et al. Risk of infectious complications in adult patients after allogeneic hematopoietic stem cell transplantation depending on the site of central venous catheter insertion—Multicenter prospective observational study, from the IDWP EBMT and Nurses Group of EBMT. Bone Marrow Transplant. 2021, 56, 2929–2933. [Google Scholar] [CrossRef]
- Vassallo, M.; Dunais, B.; Roger, P.-M. Antimicrobial lock therapy in central-line associated bloodstream infections: A systematic review. Infection 2015, 43, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Norris, L.B.; Kablaoui, F.; Brilhart, M.K.; Bookstaver, P.B. Systematic review of antimicrobial lock therapy for prevention of central-line-associated bloodstream infections in adult and pediatric cancer patients. Int. J. Antimicrob. Agents 2017, 50, 308–317. [Google Scholar]
- Dang, F.; Li, H.; Tian, J.; Wang, R.; Ren, J. What is the best catheter lock solution in preventing catheter-related blood infections? A protocol for a Bayesian network meta-analysis of randomised controlled trials. BMJ Open 2019, 9, e030019. [Google Scholar] [CrossRef]
- López-Briz, E.; Ruiz Garcia, V.; Cabello, J.B.; Bort-Martí, S.; Carbonell Sanchis, R.; Burls, A. Heparin versus 0.9% sodium chloride locking for prevention of occlusion in central venous catheters in adults. Cochrane Database Syst. Rev. 2018, 7, CD008462. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Jiang, X.; Meng, L.B.; Di, C.Y.; Guo, P.; Qiu, Y.; Dai, Y.L.; Lv, X.Q.; Shi, C.J. Reducing catheter-associated complications using 4% sodium citrate versus sodium heparin as a catheter lock solution. J. Int. Med. Res. 2019, 47, 4204–4214. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Yang, J.W.; Boddu, S.H.; Jung, R.; Churchwell, M.D. Compatibility, stability, and efficacy of vancomycin combined with gentamicin or ethanol in sodium citrate as a catheter lock solution. Hosp. Pharm. 2017, 52, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Zhang, L.; Guo, X.; Sun, L. Vancomycin-lock therapy for prevention of catheter-related bloodstream infection in very low body weight infants. BMC Pediatr. 2021, 21, 3. [Google Scholar] [CrossRef]
- Quenot, J.P.; Helms, J.; Bourredjem, A.; Dargent, A.; Meziani, F.; Badie, J.; Blasco, G.; Piton, G.; Capellier, G.; Mezher, C.; et al. Trisodium citrate 4% versus heparin as a catheter lock for non-tunneled hemodialysis catheters in critically ill patients: A multicenter, randomized clinical trial. Ann. Intensive Care 2019, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, B.; Wang, J.; Yang, Q. Ethanol locks for the prevention of catheter-related infection in patients with central venous catheter: A systematic review and meta-analysis of randomized controlled trials. PLoS ONE 2019, 14, e0222408. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.K.; Roy-Chaudhury, P.; Mounts, P.; Hurlburt, E.; Pfaffle, A.; Poggio, E.C. Taurolidine/heparin lock solution and catheter-related bloodstream infection in hemodialysis: A randomized, double-blind, active-control, phase 3 study. Clin. J. Am. Soc. Nephrol. 2023, 18, 1446–1455. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Massoumi, H.; Chug, M.K.; Brisbois, E.J. S-Nitroso-N-Acetyl-l-Cysteine Ethyl Ester (SNACET) Catheter lock solution to reduce catheter-associated infections. ACS Appl. Mater. Interfaces 2021, 13, 25813–25824. [Google Scholar] [CrossRef]
- de Campos Pereira Silveira, R.C.; Dos Reis, P.E.D.; Ferreira, E.B.; Braga, F.T.M.M.; Galvão, C.M.; Clark, A.M. Dressings for the central venous catheter to prevent infection in patients undergoing hematopoietic stem cell transplantation: A systematic review and meta-analysis. Support. Care Cancer 2020, 28, 425–438. [Google Scholar] [CrossRef]
- Jones, A. Dressings for the management of catheter sites: A review. J. Assoc. Vasc. Acc. 2004, 9, 26–33. [Google Scholar] [CrossRef]
- Timsit, J.F.; Bouadma, L.; Ruckly, S.; Schwebel, C.; Garrouste-Orgeas, M.; Bronchard, R.; Calvino-Gunther, S.; Laupland, K.; Adrie, C.; Thuong, M.; et al. Dressing disruption is a major risk factor for catheter-related infections. Crit. Care. Med. 2012, 40, 1707–1714. [Google Scholar] [CrossRef] [PubMed]
- Ryder, M.; Duley, C. Evaluation of compatibility of a gum mastic liquid zdhesive and liquid adhesive remover with an alcoholic chlorhexidine gluconate skin preparation. J. Infus. Nurs. 2017, 40, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Safdar, N.; O’Horo, J.C.; Ghufran, A.; Bearden, A.; Didier, M.E.; Chateau, D.; Maki, D.G. Chlorhexidine-impregnated dressing for prevention of catheter-related bloodstream infection: A meta-analysis. Crit. Care Med. 2014, 42, 1703–1713. [Google Scholar] [CrossRef] [PubMed]
- Scheithauer, S.; Lewalter, K.; Schröder, J.; Koch, A.; Häfner, H.; Krizanovic, V.; Nowicki, K.; Hilgers, R.D.; Lemmen, S.W. Reduction of central venous line-associated bloodstream infection rates by using a chlorhexidine-containing dressing. Infection 2014, 42, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Puig-Asensio, M.; Marra, A.R.; Childs, C.A.; Kukla, M.E.; Perencevich, E.N.; Schweizer, M.L. Effectiveness of chlorhexidine dressings to prevent catheter-related bloodstream infections. Does one size fit all? a systematic literature review and meta-analysis. Infect. Control Hosp. Epidemiol. 2020, 41, 1388–1395. [Google Scholar] [CrossRef] [PubMed]
- Ullman, A.J.; Cooke, M.L.; Mitchell, M.; Lin, F.; New, K.; Long, D.A.; Mihala, G.; Rickard, C.M. Dressing and securement for central venous access devices (CVADs): A Cochrane systematic review. Int. J. Nurs. Stud. 2016, 59, 177–196. [Google Scholar] [PubMed]
- Ergul, A.B.; Gokcek, I.; Ozcan, A.; Cetin, S.; Gultekin, N.; Torun, Y.A. Use of a chlorhexidine-impregnated dressing reduced catheter-related bloodstream infections caused by Gram-positive microorganisms. Pak. J. Med. Sci. 2018, 34, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Pedrolo, E.; Danski, M.T.R.; Wiens, A.; Boostel, R. Cost effectiveness of dressing in the prevention of catheter-related infection in critically ill patients. J. Infect. Dev. Ctries. 2018, 12, 871–877. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Li, Y.; Li, X.; Bian, L.; Wen, Z.; Li, M. Chlorhexidine-impregnated dressing for the prophylaxis of central venous catheter-related complications: A systematic review and meta-analysis. BMC Infect Dis. 2019, 19, 429. [Google Scholar] [CrossRef]
- Hou, Y.; Griffin, L.; Bernatchez, S.F.; Hommes, J.; Kärpänen, T.; Palka-Santini, M. Comparative effectiveness of 2 chlorhexidine gluconate-containing dressings in reducing central line-associated bloodstream infections, hospital stay, and costs. Inquiry 2023, 60, 469580231214751. [Google Scholar] [CrossRef] [PubMed]
- Sylvia, C.J.J.R.; Wagel, M.A.; Giare-Patel, K.; Spangler, T.A.; Breznock, E.M.; Gupta, N. Chlorhexidine-coated peripherally inserted central catheters reduce fibroblastic sleeve formation in an in vivo ovine model. J. Vasc. Access 2018, 19, 644–650. [Google Scholar] [CrossRef]
- Faustino, C.M.C.; Lemos, S.M.C.; Monge, N.; Ribeiro, I.A.C. A scope at antifouling strategies to prevent catheter-associated infections. Adv. Colloid Interface Sci. 2020, 284, 102230. [Google Scholar] [CrossRef] [PubMed]
- Andersen, M.J.; Flores-Mireles, A.L. Urinary catheter coating modifications: The race against catheter-associated infections. Coatings 2020, 10, 23. [Google Scholar] [CrossRef]
- Kanti, S.P.Y.; Csóka, I.; Jójárt-Laczkovich, O.; Adalbert, L. Recent advances in antimicrobial coatings and material modification strategies for preventing urinary catheter-associated complications. Biomedicines 2022, 10, 2580. [Google Scholar] [CrossRef] [PubMed]
- Ricardo, S.I.C.; Anjos, I.I.L.; Monge, N.; Faustino, C.M.C.; Ribeiro, I.A.C. A glance at antimicrobial strategies to prevent catheter-associated medical infections. ACS Infect. Dis. 2020, 6, 3109–3130. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Tay, F.R.; Niu, L.N.; Chen, J.H. Advancing antimicrobial strategies for managing oral biofilm infections. Int. J. Oral Sci. 2019, 11, 28. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Zhang, L.; Bai, R.; Zhuang, Z.; Zhang, Y.; Yu, T.; Peng, L.; Xin, T.; Chen, S.; Han, B. Recent Progress in Antimicrobial Strategies for Resin-Based Restoratives. Polymers 2021, 13, 1590. [Google Scholar] [CrossRef]
- Lai, N.M.; Chaiyakunapruk, N.; Lai, N.A.; O’Riordan, E.; Pau, W.S.; Saint, S. Catheter impregnation, coating or bonding for reducing central venous catheter-related infections in adults. Cochrane Database Syst. Rev. 2016, 3, CD007878. [Google Scholar] [CrossRef]
- Bell, T.; O’Grady, N.P. Prevention of central line-associated bloodstream infections. Infect. Dis. Clin. N. Am. 2017, 31, 551–559. [Google Scholar] [CrossRef]
- Chong, H.Y.; Lai, N.M.; Apisarnthanarak, A.; Chaiyakunapruk, N. Comparative efficacy of antimicrobial central venous catheters in reducing catheter-related bloodstream infections in adults: Abridged cochrane systematic review and network meta-analysis. Clin. Infect. Dis. 2017, 64, S131–S140. [Google Scholar] [CrossRef] [PubMed]
- Abouleish, Y.Z.; Oldfield, E.C.; Marik, P.E. Comparison of central-line–associated bloodstream infections between central venous catheters lined by combined chlorhexidine and silver sulfadiazine versus silver ionotrophes alone: A before–after–before retrospective study. Infect. Control Hosp. Epidemiol. 2021, 42, 225–227. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Shukla, S.; Vera-González, N.; Tharmalingam, N.; Mylonakis, E.; Fuchs, B.B.; Shukla, A. Auranofin releasing antibacterial and antibiofilm polyurethane intravascular catheter coatings. Front. Cell. Infect. Microbiol. 2019, 9, 37. [Google Scholar] [CrossRef] [PubMed]
- Felix, L.; Whitely, C.; Tharmalingam, N.; Mishra, B.; Vera-Gonzalez, N.; Mylonakis, E.; Shukla, A.; Fuchs, B.B. Auranofin coated catheters inhibit bacterial and fungal biofilms in a murine subcutaneous model. Front. Cell. Infect. Microbiol. 2023, 13, 1135942. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Liu, L.; Yang, H.; Zhou, R.; Che, C.; Li, X.; Li, C.; Luan, S.; Yin, J.; Shi, H. Water-insoluble polymeric guanidine derivative and application in the preparation of antibacterial coating of catheter. ACS Appl. Mater. Interfaces 2018, 10, 39257–39267. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Liu, L.; Li, X.; Zhou, R.; Yan, S.; Li, C.; Luan, S.; Yin, J.; Shi, H. Fabrication of polylysine based antibacterial coating for catheters by facile electrostatic interaction. Chem. Eng. J. 2019, 360, 1030–1041. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhao, Y.Q.; Zhang, Y.; Wang, A.; Ding, X.; Li, Y.; Duan, S.; Ding, X.; Xu, F.J. Antimicrobial peptide-conjugated hierarchical antifouling polymer brushes for functionalized catheter surfaces. Biomacromolecules 2019, 20, 4171–4179. [Google Scholar] [CrossRef]
- Naga, V.; Nehate, S.D.; Saikumar, A.K.; Sundaram, K.B. Boron carbon nitride (BCN) nano-coatings of central venous catheters inhibits bacterial colonization. ECS J. Solid State Sci. Technol. 2020, 9, 115018. [Google Scholar] [CrossRef]
- Pant, J.; Goudie, M.J.; Chaji, S.M.; Johnson, B.W.; Handa, H. Nitric oxide releasing vascular catheters for eradicating bacterial infection. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 2849–2857. [Google Scholar] [CrossRef]
- Maharubin, S.; Nayak, C.; Phatak, O.; Kurhade, A.; Singh, M.; Zhou, Y.; Tan, G. Polyvinylchloride coated with silver nanoparticles and zinc oxide nanowires for antimicrobial applications. Mater. Lett. 2019, 249, 108–111. [Google Scholar] [CrossRef]
- Lotlikar, S.R.; Gallaway, E.; Grant, T.; Popis, S.; Whited, M.; Guragain, M.; Rogers, R.; Hamilton, S.; Gerasimchuk, N.G.; Patrauchan, M.A. Polymeric composites with silver (I) cyanoximates inhibit biofilm formation of gram-positive and gram-negative bacteria. Polymers 2019, 11, 1018. [Google Scholar] [CrossRef] [PubMed]
- Zander, Z.K.; Chen, P.; Hsu, Y.H.; Dreger, N.Z.; Savariau, L.; McRoy, W.C.; Cerchiari, A.E.; Chambers, S.D.; Barton, H.A.; Becker, M.L. Post-fabrication QAC-functionalized thermoplastic polyurethane for contact-killing catheter applications. Biomaterials 2018, 178, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Gomes, R.N.; Borges, I.; Pereira, A.T.; Maia, A.F.; Pestana, M.; Magalhães, F.D.; Pinto, A.M.; Gonçalves, I.C. Antimicrobial graphene nanoplatelets coatings for silicone catheters. Carbon N. Y. 2018, 139, 635–647. [Google Scholar] [CrossRef]
- Dong, J.J.; Muszanska, A.; Xiang, F.; Falkenberg, R.; van de Belt-Gritter, B.; Loontjens, T. Contact killing of Gram-positive and Gram-negative bacteria on PDMS provided with immobilized hyperbranched antibacterial coatings. Langmuir 2019, 35, 14108–14116. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Ding, X.; Zhu, Y.; Wu, S.; Ding, X.; Li, Y.; Yu, B.; Xu, F.-J. Facile surface multi-functionalization of biomedical catheters with dual-microcrystalline broad-spectrum antibacterial drugs and antifouling poly(ethylene glycol) for effective inhibition of bacterial infections. ACS Appl. Bio Mater. 2019, 2, 1348–1356. [Google Scholar] [PubMed]
- Zhang, W.; Du, J.; Zhu, T.; Wang, R. SiO2 nanosphere coated tough catheter with superhydrophobic surface for improving the antibacterial and hemocompatibility. Front. Bioeng. Biotechnol. 2023, 10, 1067139. [Google Scholar] [CrossRef] [PubMed]
- Yeh, S.L.; Deval, P.; Tsai, W.B. Fabrication of transparent PEGylated antifouling coatings via one-step pyrogallol deposition. Polymers 2023, 15, 2731. [Google Scholar] [CrossRef] [PubMed]
- Kovach, K.M.; Capadona, J.R.; Sen Gupta, A.; Potkay, J.A. The effects of PEG-based surface modification of PDMS microchannels on long-term hemocompatibility. J. Biomed. Mater. Res. A 2014, 102, 4195–4205. [Google Scholar] [CrossRef] [PubMed]
- Atkins, L.; Sallis, A.; Chadborn, T.; Shaw, K.; Schneider, A.; Hopkins, S.; Bunten, A.; Michie, S.; Lorencatto, F. Reducing catheter-associated urinary tract infections: A systematic review of barriers and facilitators and strategic behavioural analysis of interventions. Implementation Sci. 2020, 15, 44. [Google Scholar] [CrossRef]
- Chenoweth, C.E.; Gould, C.V.; Saint, S. Diagnosis, management, and prevention of catheter-associated urinary tract infections. Infect. Dis. Clin. N. Am. 2014, 28, 105–119. [Google Scholar] [CrossRef]
- Nicolle, L.E. Catheter associated urinary tract infections. Antimicrob. Resist. Infect. Control 2014, 3, 23. [Google Scholar] [CrossRef] [PubMed]
- Meddings, J.; Rogers, M.A.; Krein, S.L.; Fakih, M.G.; Olmsted, R.N.; Saint, S. Reducing unnecessary urinary catheter use and other strategies to prevent catheter-associated urinary tract infection: An integrative review. BMJ Qual. Saf. 2014, 23, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Gould, C.V.; Umscheid, C.A.; Agarwal, R.K.; Kuntz, G.; Pegues, D.A.; The Healthcare Infection Control Practices Advisory Committee (HICPAC). Guideline for Prevention of Catheter-Associated Urinary Tract Infections 2009. 2019. Available online: https://www.cdc.gov/infectioncontrol/guidelines/cauti/ (accessed on 18 April 2024).
- Assadi, F. Strategies for preventing catheter-associated urinary tract infections. Int. J. Prev. Med. 2018, 9, 50. [Google Scholar] [CrossRef] [PubMed]
- Lo, J.; Lange, D.; Chew, B.H. Ureteral stents and foley catheters-associated urinary tract infections: The role of coatings and materials in infection prevention. Antibiotics 2014, 3, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, S.; Keatch, R.; Corner, G.; Nabi, G.; Murdoch, S.; Davidson, F.; Zhao, Q. In vitro antibacterial and anti-encrustation performance of silver-polytetrafluoroethylene nanocomposite coated urinary catheters. J. Hosp. Infect. 2019, 103, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Rajaramon, S.; Shanmugam, K.; Dandela, R.; Solomon, A.P. Emerging evidence-based innovative approaches to control catheter-associated urinary tract infection: A review. Front. Cell. Infect. Microbiol. 2023, 13, 1134433. [Google Scholar] [CrossRef] [PubMed]
- Rigo, S.; Cai, C.; Gunkel-Grabole, G.; Maurizi, L.; Zhang, X.; Xu, J.; Palivan, C.G. Nanoscience-based strategies to engineer antimicrobial surfaces. Adv Sci. 2018, 8, 1700892. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Zhang, D.; Gu, Q.; Miao, J.; Cen, X.; Golodok, R.P.; Savich, V.V.; Ilyushchenko, A.P.; Zhou, Z.; Wang, R. One-step coordination of metal-phenolic networks as antibacterial coatings with sustainable and controllable copper release for urinary catheter applications. RSC Adv. 2022, 12, 15685–15693. [Google Scholar] [CrossRef] [PubMed]
- Mandakhalikar, K.D.; Wang, R.; Rahmat, J.N.; Chiong, E.; Neoh, K.G.; Tambyah, P.A. Restriction of in vivo infection by antifouling coating on urinary catheter with controllable and sustained silver release: A proof of concept study. BMC Infect. Dis. 2018, 18, 370. [Google Scholar] [CrossRef]
- Shalom, Y.; Perelshtein, I.; Perkas, N.; Gedanken, A.; Banin, E. Catheters coated with Zn-doped CuO nanoparticles delay the onset of catheter-associated urinary tract infections. Nano Res. 2017, 10, 520–533. [Google Scholar] [CrossRef]
- Ivanova, A.; Ivanova, K.; Perelshtein, I.; Gedanken, A.; Todorova, K.; Milcheva, R.; Dimitrov, P.; Popova, T.; Tzanov, T. Sonochemically engineered nano-enabled zinc oxide/amylase coatings prevent the occurrence of catheter-associated urinary tract infections. Mater. Sci. Eng. C 2021, 131, 112518. [Google Scholar] [CrossRef] [PubMed]
- Srisang, S.; Nasongkla, N. Spray coating of foley urinary catheter by chlorhexidine-loadedpoly(epsilon-caprolactone) nanospheres: Effect of lyoprotectants, characteristics, and antibacterial activity evaluation. Pharm. Dev. Technol. 2019, 24, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Anjum, S.; Surabhi, S.; Lepoittevin, B.; Philippe, R.; Manoj, P.; Bhuvanesh, G. Biomodification strategies for the development of antimicrobial urinary catheters: Overview and advances. Glob. Chall. 2018, 2, 1700068. [Google Scholar] [CrossRef] [PubMed]
- Kowalczuk, D.; Ginalska, G.; Piersiak, T.; Miazga-Karska, M. Prevention of biofilm formation on urinary catheters: Comparison of the sparfloxacin-treated long-term antimicrobial catheters with silver-coated ones. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100, 1874–1882. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Lo, J.C.; Yan, M.; Yang, X.; Brooks, D.E.; Hancock, R.E.; Lange, D.; Kizhakkedathu, J.N. Anti-adhesive antimicrobial peptide coating prevents catheter associated infection in a mouse urinary infection model. Biomaterials 2017, 116, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.; Costa, F.; Pirttila, A.M.; Tejesvi, M.V.; Martins, M.C.L. Prevention of urinary catheter-associated infections by coating antimicrobial peptides from crowberry endophytes. Sci. Rep. 2019, 9, 10753. [Google Scholar] [CrossRef] [PubMed]
- Mishra, B.; Basu, A.; Chua, R.R.Y.; Saravanan, R.; Tambyah, P.A.; Ho, B.; Chang, M.W.; Leong, S.S.J. Site specific immobilization of a potent antimicrobial peptide onto silicone catheters: Evaluation against urinary tract infection pathogens. J. Mater. Chem. B 2014, 2, 1706. [Google Scholar] [CrossRef]
- Regev-Shoshani, G.; Ko, M.; Miller, C.; Av-Gay, Y. Slow release of nitric oxide from charged catheters and its effect on biofilm formation by Escherichia coli. Antimicrob. Agents Chemother. 2010, 54, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Lehman, S.M.; Donlan, R.M. Bacteriophage-mediated control of a two-species biofilm formed by microorganisms causing catheter-associated urinary tract infections in an in vitro urinary catheter model. Antimicrob. Agents Chemother. 2015, 59, 1127–1137. [Google Scholar] [CrossRef]
- Szell, T.; Dressler, F.F.; Goelz, H.; Bluemel, B.; Miernik, A.; Brandstetter, T.; Scherag, F.; Schoeb, D.S. In vitro effects of a novel coating agent on bacterial biofilm development on ureteral stents. J. Endourol. 2019, 33, 225–231. [Google Scholar] [CrossRef]
- Yong, Y.; Qiao, M.; Chiu, A.; Fuchs, S.; Liu, Q.; Pardo, Y.; Worobo, R.; Liu, Z.; Ma, M. Conformal hydrogel coatings on catheters to reduce biofouling. Langmuir 2019, 35, 1927–1934. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Alzahrani, A.; Khoddami, S.; Ferreira, D.; Scotland, K.B.; Cheng, J.T.J.; Yazdani-Ahmadabadi, H.; Mei, Y.; Gill, A.; Takeuchi, L.E.; et al. Self-limiting mussel inspired thin antifouling coating with broad-spectrum resistance to biofilm formation to prevent catheter-associated infection in mouse and porcine models. Adv. Healthc. Mater. 2021, 10, e2001573. [Google Scholar] [CrossRef] [PubMed]
- Tailly, T.; MacPhee, R.A.; Cadieux, P.; Burton, J.P.; Dalsin, J.; Wattengel, C.; Koepsel, J.; Razvi, H. Evaluation of polyethylene glycol-based antimicrobial coatings on urinary catheters in the prevention of Escherichia coli infections in a rabbit model. J. Endourol. 2021, 35, 116–121. [Google Scholar] [CrossRef]
- Diaz Blanco, C.; Ortner, A.; Dimitrov, R.; Navarro, A.; Mendoza, E.; Tzanov, T. Building an antifouling zwitterionic coating on urinary catheters using an enzymatically triggered bottom-up approach. ACS Appl. Mater. Interfaces 2014, 6, 11385–11393. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, L.; Liang, X.; Vorstius, J.; Keatch, R.; Corner, G.; Nabi, G.; Davidson, F.; Gadd, G.M.; Zhao, Q. Enhanced antibacterial and antiadhesive activities of silver-PTFE nanocomposite coating for urinary catheters. ACS Biomater. Sci. Eng. 2019, 5, 2804–2814. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, K.; Fernandes, M.M.; Mendoza, E.; Tzanov, T. Enzyme multilayer coatings inhibit Pseudomonas aeruginosa biofilm formation on urinary catheters. Appl. Microbiol. Biotechnol. 2015, 99, 4373–4385. [Google Scholar] [CrossRef] [PubMed]
- Catto, C.; Secundo, F.; James, G.; Villa, F.; Cappitelli, F. Alpha-chymotrypsin immobilized on a low-Density polyethylene surface successfully weakens Escherichia coli biofilm formation. Int. J. Mol. Sci. 2018, 19, 4003. [Google Scholar] [CrossRef]
- Asker, D.; Awad, T.S.; Baker, P.; Howell, P.L.; Hatton, B.D. Non-eluting, surface-bound enzymes disrupt surface attachment of bacteria by continuous biofilm polysaccharide degradation. Biomaterials 2018, 167, 168–176. [Google Scholar] [CrossRef]
- Thallinger, B.; Brandauer, M.; Burger, P.; Sygmund, C.; Ludwig, R.; Ivanova, K.; Kun, J.; Scaini, D.; Burnet, M.; Tzanov, T.; et al. Cellobiose dehydrogenase functionalized urinary catheter as novel antibiofilm system. J. Biomed. Mater. Res. B Appl. Biomater. 2016, 104, 1448–1456. [Google Scholar] [CrossRef]
- Domingues, B.; Silva, J.M.; Aroso, I.M.; Lima, E.; Barros, A.A.; Reis, R.L. Coatings for Urinary Stents: Current State and Future Directions. In Urinary Stents; Soria, F., Rako, D., de Graaf, P., Eds.; Springer: Cham, Switzerland, 2022; pp. 209–223. [Google Scholar] [CrossRef]
- Leuck, A.M.; Johnson, J.R.; Hunt, M.A.; Dhody, K.; Kazempour, K.; Ferrieri, P.; Kline, S. Safety and efficacy of a novel silver-impregnated urinary catheter system for preventing catheter-associated bacteriuria: A pilot randomized clinical trial. Am. J. Infect. Control. 2015, 43, 260–265. [Google Scholar] [CrossRef]
- Chung, P.H.; Wong, C.W.; Lai, C.K.; Siu, H.K.; Tsang, D.N.; Yeung, K.Y.; Ip, D.K.; Tam, P.K. A prospective interventional study to examine the effect of a silver alloy and hydrogel-coated catheter on the incidence of catheter-associated urinary tract infection. Hong Kong Med. J. 2017, 23, 239–245. [Google Scholar] [CrossRef]
- Francolini, I.; Vuotto, C.; Piozzi, A.; Donelli, G. Antifouling and antimicrobial biomaterials: An overview. APMIS 2017, 125, 392–417. [Google Scholar] [CrossRef]
- Ogilvie, A.T.; Brisson, B.A.; Gow, W.R.; Wainberg, S.; Singh, A.; Weese, J.S. Effects of the use of silver-coated urinary catheters on the incidence of catheter-associated bacteriuria and urinary tract infection in dogs. J. Am. Vet. Med. Assoc. 2018, 253, 1289–1293. [Google Scholar] [CrossRef]
- Sun, Y.; Ren, P.; Long, X. Role of noble metal-coated catheters for short-term urinary catheterization of adults: A meta-analysis. PLoS ONE 2020, 15, e0233215. [Google Scholar] [CrossRef]
- Wang, R.; Neoh, K.G.; Kang, E.T.; Tambyah, P.A.; Chiong, E. Antifouling coating with controllable and sustained silver release for long-term inhibition of infection and encrustation in urinary catheters. J. Biomed. Mater. Res. B. Appl. Biomater. 2015, 103, 519–528. [Google Scholar] [CrossRef]
- Burdușel, A.-C.; Gherasim, O.; Grumezescu, A.M.; Mogoantă, L.; Ficai, A.; Andronescu, E. Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials 2018, 8, 681. [Google Scholar] [CrossRef]
- Kędziora, A.; Speruda, M.; Krzy, E.; Rybka, J.; Łukowiak, A.; Bugla-Płoskónska, G. Molecular sciences similarities and differences between silver ions and silver in nanoforms as antibacterial agents. Int. J. Mol. Sci. 2018, 19, 444. [Google Scholar] [CrossRef]
- Yassin, M.A.; Elkhooly, T.A.; Elsherbiny, S.M.; Reicha, F.M.; Shokeir, A.A. Facile coating of urinary catheter with bio–inspired antibacterial coating. Heliyon 2019, 5, e02986. [Google Scholar] [CrossRef]
- Rahuman, H.B.H.; Dhandapani, R.; Palanivel, V.; Thangavelu, S.; Paramasivam, R.; Muthupandian, S. Bioengineered phytomolecules-capped silver nanoparticles using carissa carandas leaf extract to embed on to urinary catheter to combat UTI pathogens. PLoS ONE 2021, 16, e0256748. [Google Scholar] [CrossRef]
- Goda, R.M.; El-Baz, A.M.; Khalaf, E.M.; Alharbi, N.K.; Elkhooly, T.A.; Shohayeb, M.M. Combating bacterial biofilm formation in urinary catheter by green silver nanoparticle. Antibiotics 2022, 11, 495. [Google Scholar] [CrossRef]
- Arunachalam, K.D.; Annamalai, S.K.; Arunachalam, A.M.; Raghavendra, R.S.; Kennedy, S. One step green synthesis of phytochemicals mediated gold nanoparticles from Aegle marmales for the prevention of urinary catheter infection. Int. J. Pharm. Pharm. Sci. 2014, 6, 700–706. [Google Scholar]
- Rtimi, S.; Sanjines, R.; Pulgarin, C.; Kiwi, J. Quasi-instantaneous bacterial inactivation on Cu-Ag nanoparticulate 3D catheters in the dark and under light: Mechanism and dynamics. ACS Appl. Mater. Interfaces 2016, 8, 47–55. [Google Scholar] [CrossRef]
- Agarwala, M.; Choudhury, B.; Yadav, R.N. Comparative study of antibiofilm activity of copper oxide and iron oxide nanoparticles against multidrug resistant biofilm forming uropathogens. Indian J. Microbiol. 2014, 54, 365–368. [Google Scholar] [CrossRef]
- Singha, P.; Locklin, J.; Handa, H. A review of the recent advances in antimicrobial coatings for urinary catheters. Acta Biomater. 2017, 50, 20–40. [Google Scholar] [CrossRef]
- Lam, T.B.; Omar, M.I.; Fisher, E.; Gillies, K.; MacLennan, S. Types of indwelling urethral catheters for short-term catheterisation in hospitalised adults. Cochrane Database Syst. Rev. 2014, CD004013. [Google Scholar] [CrossRef]
- Kart, D.; Kustimur, A.S.; Sağıroğlu, M.; Kalkancı, A. Evaluation of antimicrobial durability and anti-Biofilm effects in urinary catheters against Enterococcus faecalis clinical isolates and reference strains. Balk. Med. J. 2017, 34, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Menezes, F.G.; Correa, L.; Medina-Pestana, J.O.; Aguiar, W.F.; Camargo, L.F.A. A randomized clinical trial comparing Nitrofurazone-coated and uncoated urinary catheters in kidney transplant recipients: Results from a pilot study. Transpl. Infect. Dis. 2019, 21, e13031. [Google Scholar] [CrossRef]
- Rafienia, M.; Zarinmehr, B.; Poursamar, S.A.; Bonakdar, S.; Ghavami, M.; Janmaleki, M. Coated urinary catheter by PEG/PVA/gentamicin with drug delivery capability against hospital infection. Iranian Polymer J. 2013, 22, 75–83. [Google Scholar] [CrossRef]
- Mitchell, B.G.; Fasugba, O.; Cheng, A.C.; Gregory, V.; Koerner, J.; Collignon, P.; Gardner, A.; Graves, N. Chlorhexidine versus saline in reducing the risk of catheter associated urinary tract infection: A cost-effectiveness analysis. Int. J. Nurs. Stud. 2019, 97, 1–6. [Google Scholar] [CrossRef]
- Saini, H.; Vadekeetil, A.; Chhibber, S.; Harjai, K. Azithromycin-ciprofloxacin-impregnated urinary catheters avert bacterial colonization, biofilm formation, and inflammation in a murine model of foreign-body-associated urinary tract infections caused by Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2017, 61, 10–1128. [Google Scholar] [CrossRef]
- Saini, H.; Chhibber, S.; Harjai, K. Antimicrobial and antifouling efficacy of urinary catheters impregnated with a combination of macrolide and fluoroquinolone antibiotics against Pseudomonas aeruginosa. Biofouling 2016, 32, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Yueh, M.-F.; Tukey, R.H. Triclosan: A widespread environmental toxicant with many biological effects. Annu. Rev. Pharmacol. Toxicol. 2016, 56, 251–272. [Google Scholar] [CrossRef] [PubMed]
- Westfall, C.; Flores-Mireles, A.L.; Robinson, J.I.; Lynch, A.J.L.; Hultgren, S.; Henderson, J.P.; Levin, P.A. The Widely used antimicrobial triclosan induces high levels of antibiotic tolerance in vitro and reduces antibiotic efficacy up to 100-fold in vivo. Antimicrob. Agents Chemother. 2019, 63, e02312-18. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.; Panda, A.K.; De Mandal, S.; Shakeel, M.; Bisht, S.S.; Khan, J. Natural anti-biofilm agents: Strategies to control biofilm-forming pathogens. Front. Microbiol. 2020, 11, 566325. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Z.; Yang, P.; Lei, J.; Zhao, J. Biological function of antimicrobial peptides on suppressing pathogens and improving host immunity. Antibiotics 2023, 12, 1037. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, P.; Saravanan, R.; Basu, A.; Mishra, B.; Lim, S.H.; Su, X.; Tambyah, P.A.; Leong, S.S. Antimicrobial functionalization of silicone surfaces with engineered short peptides having broad spectrum antimicrobial and salt-resistant properties. Acta Biomater. 2014, 10, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.; Chua, R.R.; Bow, H.; Tambyah, P.A.; Hadinoto, K.; Leong, S.S. Development of a catheter functionalized by a polydopamine peptide coating with antimicrobial and antibiofilm properties. Acta Biomater. 2015, 15, 127–138. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Q.; Tian, Y.; Jian, Z.; Li, H.; Wang, K. Biodegradable hydrophilic polyurethane PEGU25 loading antimicrobial peptide Bmap-28: A sustained-release membrane able to inhibit bacterial biofilm formation in vitro. Sci Rep. 2015, 5, 8634. [Google Scholar] [CrossRef] [PubMed]
- Margel, D.; Mizrahi, M.; Regev-Shoshani, G.; Ko, M.; Moshe, M.; Ozalvo, R.; Shavit-Grievink, L.; Baniel, J.; Kedar, D.; Yossepowitch, O.; et al. Nitric oxide charged catheters as a potential strategy for prevention of hospital acquired infections. PLoS ONE 2017, 12, e0174443. [Google Scholar] [CrossRef]
- Homeyer, K.H.; Goudie, M.J.; Singha, P.; Handa, H. Liquid-infused nitric-oxide-releasing silicone foley urinary catheters for prevention of catheter-associated urinary tract infections. ACS Biomater. Sci. Eng. 2019, 5, 2021–2029. [Google Scholar] [CrossRef]
- Chug, M.K.; Brisbois, E.J. Smartphone compatible nitric oxide releasing insert to prevent catheter-associated infections. J. Control. Release 2022, 349, 227–240. [Google Scholar] [CrossRef]
- Yao, Q.; Wu, C.; Yu, X.; Chen, X.; Pan, G.; Chen, B. Current material engineering strategies to prevent catheter encrustation in urinary tracts. Mater. Today Bio. 2022, 16, 100413. [Google Scholar] [CrossRef] [PubMed]
- Townsend, E.M.; Moat, J.; Jameson, E. CAUTI’s next top model—Model dependent Klebsiella biofilm inhibition by bacteriophages and antimicrobials. Biofilm 2020, 2, 100038. [Google Scholar] [CrossRef] [PubMed]
- Bseikri, H.; Michniewski, S.; Serrano, E.G.; Jameson, E. Phages prevent biofilm formation on catheters under flow. bioRxiv 2023, 7, 550655. [Google Scholar] [CrossRef]
- Liao, K.S.; Lehman, S.M.; Tweardy, D.J.; Donlan, R.M.; Trautner, B.W. Bacteriophages are synergistic with bacterial interference for the prevention of Pseudomonas aeruginosa biofilm formation on urinary catheters. J. Appl. Microbiol. 2012, 113, 1530–1539. [Google Scholar] [CrossRef]
- Maszewska, A.; Zygmunt, M.; Grzejdziak, I.; Różalski, A. Use of polyvalent bacteriophages to combat biofilm of Proteus mirabilis causing catheter-associated urinary tract infections. J. Appl. Microbiol. 2018, 125, 1253–1265. [Google Scholar] [CrossRef] [PubMed]
- Ujmajuridze, A.; Chanishvili, N.; Goderdzishvili, M.; Leitner, L.; Mehnert, U.; Chkhotua, A.; Kessler, T.M.; Sybesma, W. Adapted bacteriophages for treating urinary tract infections. Front. Microbiol. 2018, 9, 1832. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, A.; Wagemans, J.; Esfahani, B.N.; Lavigne, R.; Moghim, S. A phage cocktail to control surface colonization by proteus mirabilis in catheter-associated urinary tract infections. Microbiol. Spectr. 2022, 10, e02092-22. [Google Scholar] [CrossRef] [PubMed]
- Teixeira-Santos, R.; Gomes, L.C.; Mergulhão, F.J.M. Recent advances in antimicrobial surfaces for urinary catheters. Curr. Opin. Biomed. Eng. 2022, 22, 100394. [Google Scholar] [CrossRef]
- Mosayyebi, A.; Manes, C.; Carugo, D. Somani. B.K. Advances in ureteral stent design and materials. Curr. Urol. Rep. 2018, 19, 35. [Google Scholar] [CrossRef]
- Dai, S.; Gao, Y.; Duan, L. Recent advances in hydrogel coatings for urinary catheters. J. Appl. Polym. Sci. 2023, 140, e53701. [Google Scholar] [CrossRef]
- Grigore, N.; Pirvut, V.; Mihai, I.; Hasegan, A.; Mitariu, S.I.C. Side-effects of polyurethane ureteral stents with or without hydrogel coating in urologic pathology. Mater. Plast. 2017, 54, 517–519. [Google Scholar] [CrossRef]
- Yang, K.; Kim, K.; Lee, E.A.; Liu, S.S.; Kabli, S.; Alsudir, S.A.; Albrahim, S.; Zhou, A.; Park, T.G.; Lee, H. Robust low friction antibiotic coating of urethral catheters using a catechol-functionalized polymeric hydrogel film. Front. Materials 2019, 6, 2019. [Google Scholar] [CrossRef]
- Tarawneh, O.; Abu Mahfouz, H.; Hamadneh, L.; Deeb, A.A.; Al-Sheikh, I.; Alwahsh, W.; Abed, A.F. Assessment of persistent antimicrobial and anti-biofilm activity of p-HEMA hydrogel loaded with rifampicin and cefixime. Sci. Rep. 2022, 12, 3900. [Google Scholar] [CrossRef]
- Kazmierska, K.A.; Thompson, R.; Morris, N.; Long, A.; Ciach, T. In vitro multicompartmental bladder model for assessing blockage of urinary catheters: Effect of hydrogel coating on dynamics of Proteus mirabilis growth. Urology 2010, 76, 515.e15–515.e20. [Google Scholar] [CrossRef] [PubMed]
- Pickard, R.; Lam, T.; MacLennan, G.; Starr, K.; Kilonzo, M.; McPherson, G.; Gillies, K.; McDonald, A.; Walton, K.; Buckley, B. Antimicrobial catheters for reduction of symptomatic urinary tract infection in adults requiring short-term catheterisation in hospital: A multicentre randomised controlled trial. Lancet 2012, 380, 1927–1935. [Google Scholar] [CrossRef] [PubMed]
- Kilonzo, M.; Vale, L.; Pickard, R.; Lam, T.; N’Dow, J.; Catheter Trial Group. Cost effectiveness of antimicrobial catheters for adults requiring short-term catheterisation in hospital. Eur. Urol. 2014, 66, 615–618. [Google Scholar] [CrossRef]
- Wang, X.-w.; Wang, J.; Yu, Y.; Yu, L.; Wang, Y.-x.; Ren, K.-f.; Ji, J. A polyzwitterion-based antifouling and flexible bilayer hydrogel coating. Compos. B Eng. 2022, 244, 110164. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Q.; Han, Y.; Sun, Y.; Zhang, Y.; Zhang, H. Bioinspired surface functionalization of titanium alloy for enhanced lubrication and bacterial resistance. Langmuir 2019, 35, 13189–13195. [Google Scholar] [CrossRef]
- Li, S.; Huang, P.; Ye, Z.; Wang, Y.; Wang, W.; Kong, D.; Zhang, J.; Deng, L.; Dong, A. Layer-by-layer zwitterionic modification of diverse substrates with durable anti-corrosion and anti-fouling properties. J. Mater. Chem. B 2019, 7, 6024–6034. [Google Scholar] [CrossRef]
- Leigh, B.L.; Cheng, E.; Xu, L.; Derk, A.; Hansen, M.R.; Guymon, C.A. Antifouling photograftable zwitterionic coatings on PDMS substrates. Langmuir 2019, 35, 1100–1110. [Google Scholar] [CrossRef]
- Buchholz, N.; de Graaf, P.; de la Cruz, J.E.; Kram, W.; Skovorodkin, I.; Soaria, F.; Vainio, S. Preventing biofilm formation and encrustation on urinary implants: (bio)coatings and tissue engineering. In Urinary Stents; Soria, F., Rako, D., de Graaf, P., Eds.; Springer: Cham, Switzerland, 2022; pp. 427–435. [Google Scholar] [CrossRef]
Pathogen | Virulence Factor | Characteristics and Function | Reference |
---|---|---|---|
E. coli | Type I fimbriae | Encoded by fim operon located on the chromosome of UPEC isolates; Binding specifically to D-mannose which is found on the glycoproteins of the epithelial cells; Represents 95% of the virulence factors of E. coli; A major adhesin in colonization of UCs and biofilm formation during CA-UTIs. | [94,97,98,103,104,105] |
P fimbriae | Pyelonephritis-associated pili (Pap); The second important adhesin expressed by UPEC and coded by the pap operon; Binding to di-galactoside moiety present in the urinary tract epithelium. | [100,106,107] | |
Curli Csg A | Key components of the extracellular biofilm matrix of E. coli in which CsgA is the major subunit of curli; Bacterial binding with fibronectin, laminin, plasminogen; Aggregation, adhesion to surfaces, and biofilm development. | [108,109] | |
PGA (Poly-β-1,6-N-acetyl-D-glucosamine) | Encoded by pgaABCDoperon; A primary component of the biofilm matrix; Attachment of E. coli to surfaces and autoagregation of cells. | [82,89] | |
Ag 43 (Antigen 43 adhesin) | One of the major auto-transporter in E. coli encoded by the gene flu; Translocation to the outer membrane; Adhesion and auto-aggregation (cell-to-cell) facilitating the formation of the biofilm. | [89] | |
Hemolysin F | Encoded by the gene hlyF; Over-expression of hlyF promotes the biosynthesis of the outer membrane vesicles (OMVs) which release toxins involved in virulence. | [110,111] | |
α-hemolysin | Encoded by the gene hlyA; A pore-forming cytotoxin, responsible for lysis of the cell membrane of hosts (leukocytes, erythrocytes, and endothelial cells). | [112] | |
Siderophores | Survival and colonization in iron-deficient sites. | [78] | |
CNF-1 (cytotoxic necrotizing factor 1) | Responsible for the apoptosis of urothelial cells then increase bacterial entry to the bladder. | [89] | |
LPS (Lipopolysacharide) | An endotoxin that induces septic shock caused by over-expression of pro-inflammatory cytokines. | [113] | |
Capsule | Adherence to host cells; Biofilm formation; Binding to C4 binding protein (C4BP) and inhibits complement cascade; Bacterial protection from phagocytosis; Binding to catioinc antimicrobial agents; Bacterial protection from macrophage recognition. | [114] | |
Quorum sensing | Main quorum sensing systems: LuxS and SdiA, producers of autoinducer-2 molecules; Cell-to-cell communication; Role in bacterial behaviour coordination and regulation of virulence genes. | [115] | |
K. pneumoniae | Types 1 fimbriae | Encoded by fimAICDFGHK operon; Adhesion mediation to mannose-containing structures present on host tissue and extracellular matrix; A major role in biofilm formation on UCs, invasion and colonization of host cells, and persistence in catheters-associated infections. | [116,117] |
Types 3 fimbriae | Encoded by mrkABCD operon; Adhesion to different structures in kidney, lung tissue, endothelial and bladder epithelial cells; A major role in biofilm formation on UCs, invasion and colonization of host cells, and persistence in catheter-associated infections. | ||
PGA (poly-β-1,6-N-acetyl-D-glucosamine) | Encoded by pgaABCD operon; Cell-cell communication; Intercellular adhesion; Adhesion to abiotic surfaces. | [118] | |
Capsule polysaccharides (magA, k2A and wcaG) | Resistance to phagocytosis; Complement-mediated lysis inhibition and opsonization; Host defense escape. | [119,120] | |
Lipopolysaccharides (wabG, uge, ycfM) | Inhibition of complement pathway; Inactivation of the seditious response; Block the effect of peptides via lipid A; Host defence escape. | ||
Siderophores (iutA, iroN, entB) | Acquisition of iron from host iron-chelating proteins for survival and growth during infections; Biofilm formation; Host defence escape. | ||
Quorum sensing | QS regulator systems: Type 2 quorum sensing luxS; Cell–cell communication; Intercellular adhesion and adhesion to abiotic surfaces; Bacterial behaviour coordination; Regulation of virulence genes. | [118,121] | |
P. mirabilis | MR/P (Mannose resistant Proteus-like fimbriae) | Binding to uroepithelial cells; Attachment to urinary catheters; Biofilm formation. | [33,122,123] |
PMP (P. mirabilis P-like pili) | |||
PMF (P. mirabilisfimbriae) | |||
ATF (Ambient-temperature fimbriae) | |||
UCA (Uroepithelial cell adhesin) | |||
Flagella | A major role in swarming; Migration of pathogenic strains to the upper urinary tract, causing pyelonephritis; Dispersion of biofilm from urinary catheters to the urinary tract. | [33,124,125] | |
Hemolysin HpmA | Ability to lyse erythrocytes, bladder epithelial cells, and monocytes; High cytotoxicity towards human renal proximal tubular epithelial cells (HRPTECs); Dessimination of P. mirabilis into the kidneys and development of pyelonephritis. | [122,126,127] | |
Proteus toxigenin Pta | An autotransporter which promotes autoaggregation of the bacteria. Mediates lysis of bladder epithelial cells. | ||
ZaPA(zinc metalloproteinases) | Degradation of immunoglobulins IgA and IgG, human β-defensin 1, and other celluar components (fibronectin, collagen); Escape immune responses during infection. | ||
LPS (Lipopolysccharides) | Mediation of the induction of proinflammatory cytokine responses; Induction of apoptosis; Septic shock. | ||
Iron acquisition system | Production of iron carriers to take iron from the host and use it for its survival during urinary infections. | ||
Urease (a nickel-dependent metalloenzyme) | Degradation of urea into carbon dioxide and ammonia, increasing the urine pH up to 8.2; Formation of crystals, struvite (ammonium and magnesium phosphate) and apatite (calcium phosphate); Causing the obstruction of urinary catheters; Causing pyelonephritis and increasing the risk of sepsis. | [128,129] | |
Quorum sensing | QS system regulator: luxS/luxR system; Autoinducer-1 molecules controlled by the luxR genes and autoinducer-2 molecules controlled by the luxS genes; Role in swarmingcoordination; Regulation of biofilm formation and virulence genes expression. | [125] | |
P. aeruginosa | Flagella Type IV pili | Important role swimming, twitching, and swarming motility; Adhesion to host epithelial cells; Attachment to surfaces and biofilm formation. | [130] |
LPS (Lipopolysccharides) | Antibiotic tolerance, tissue damage, and biofilm formation; The complement system induction; Activation of inflammatory cytokines TNF-α and IL-1β; Induction of immune responses via Toll-like receptor 4 (TLR4) and cystic fibrosis transmembrane conductance regulator (CFTR); Induction of phagocytosis; Neutrophil activation for neutrophil extracellular trap (NET) releasing which contain pathogens. | [131,132] | |
Exopolysaccharides (alginate, PEL and PSL) | Crucial role in initial attachment to surface; Biofilm formation, its stability and maintenance; Bacterial protection from phagocytosis and opsonization, Biofilm maturation, and prevention of antibiotic diffusion. | [133] | |
OMVs (Outer membrane vesicles) | Expression of 26 OMPs of which the porin OprF is the most abundant; Transport of molecules (e.g.,toluene, siderophores, nitrates, and nitrites); Bacterial adhesion and biofilm formation; Implication in drug resistance; Protection from macrophage clearance during chronic infections; Remove of competing bacteria from the environment during infections. | [134,135] | |
Siderophores (Pyoverdine and Pyochelin) | Iron chelation from transferrin and lactoferrin needed during growth and virulence. | [131,136] | |
Elastase A [LasA] and B [LasB] | Degradation of elastin; Host tissues damage. | ||
Protease IV | Degradation ofcomplement components, immunoglobulins, and surfactant protein; Raising of bacterial infection via fibrinogen, lactoferrin, transferrin degradation; Host tissues damage. | ||
toxins (Pyocyanin; T3SS effectors [ExoS, ExoT, ExoU and ExoY]; Exolysin [ExlA]; Exotoxin A [PEA]; Lipase A [LipA] and Leukocidin) | Pyocyanin: induction of oxidative stress for the host to avoid bacterial elimination; T3SS effectors: inhibition of phagocytosis and bacterial elimination, disruption of the host actin cytoskeleton, and apoptosis induction; ExlA: induction of membrane permeabilization and cell death through its cytolysin activity; PEA: inhibition of host protein synthesis by ADP ribosylation activity and stimulatation of programmed cell death; Lipase A: degradation of lipid dipalmitoylphosphatidylcholine (lung surfactant) and drug resistance mediation by interacting with alginate; Leukocidin: leukocytes swelling by increased permeability of their membrane. | ||
Quorum sensing | MainQSsystems: Las, Rhl, Pqs and Iqs; Regulationof biofilm formation and other virulence factors; Coordination of bacterial behaviour and persistance during infection. | [137,138] | |
A. baumannii | Csu (Chaperone-usher pili) | Encoded by csuA/BABCDE operon; Involved in the initial ahesion onto abiotic surfaces but not biotic surfaces. | [139,140] |
OmpA (Outer membrane protein A) | A β-barrel porin, one of the most abundant porins in the outer membrane of A. baumannii. Role in the virulence of A. baumannii, including interaction with the host, cytotoxicity, apoptosis, and biofilm formation. | [139,141,142,143] | |
Bap (Biofilm-associated protein) | Formation of water channels; Maitainingthe structure and integrety of biofilm; Biofilm formation on abiotic and biotic surfaces. | [139,144] | |
PNAG (Poly-N-acetyl β-1-6 glucosamine) | Major component of the A. baumannii biofilm matrix and encoded by the pgaABCD operon; Role in the integrity of the biofilm; Tolerance to desiccation stress; Incredible persistence in natural environments and care facilities. | [144,145] | |
Type V secretion systems | Transport exoproteins; Transport mobile genetic elements; Role in bacterial competition; Biofilm formation on abiotic and biotic surfaces. | ||
Phospholipases C and D | Hydrolytic activity towards phosphatidylcholine; Hemolytic activity against erythrocytes. | ||
Capsule | A protection barrier. Resistance to some antibiotics. Regulation of the K locus genes for exopolysaccharides production, important for biofilm formation. | ||
Iron-chelator proteins | Uptake of iron from host environnement in iron deficiency conditions. | [140] | |
Quorum sensing | Two-component regulatory system: AbaI/AbaR system Regulation of several virulence factors such as biofilm formation and motility. | [139] | |
S. aureus | PIA (Intracellular adhesion polysaccharide) or PNAG (o poly-N-acetyl β-1-6 glucosamine). | Encoded by the icaADBC operon; Important in cell-to-cell adhesion, adhesion to surfaces, biofilm formation; Antimicrobial resistance; Immune evasion; Bacterial protection from phagocytosis. | [146,147,148] |
FnBPA and FnBPB (Fibronectin-binding proteins) | Categorised as “microbial surface component recognising adhesive matrix molecules (MSCRAMM)”; Implication in binding host matrix components (fibronectin, fibrinogen, collagen, elastin, laminin); Initial cell attachment and/or biofilm formation; Implication in colonization; Immune evasion. | [146,149,150] | |
ClfA and ClfB (Clumping factors) | |||
Can (Collagen adhesin) | |||
EbpS (Elastin binding protein) | |||
Fib (Fibrinogen binding protein) | |||
Eno (Laminin-binding protein) | |||
SdrC, SdrD, SdrE (Serine aspartate repeat proteins C, D, and E) | |||
Atl (Autolysin) | Primary attachment through non-specific hydrophobic interactions with uncoated surfaces; Bindin to host extracellular matrix proteins and involvment in cell separation during cell division. | [151,152] | |
Bap (Biofilm-associated protein) | Contributionin initial adhesion to abiotic surfaces; Induction of strong intercellular adhesion. | [153,154] | |
Quorum sensing | Global regulatory systems [accessory gene regulator (agr), staphylococcal accessory element (sae), the staphylococcal accessory regulator A (sarA)]; Regulation of the expression of virulence factor secretion and biofilm formation. | [155] | |
S. epidermidis | PIA (Intracellular adhesion polysaccharide) | Adhesion and biofilm accumulation. | [156] |
AtlE (Autolysin E) | Attachment to plastic surfaces. | [157] | |
Bap homolog protein Bhp | Adherence to a polystyrene surface, intercellular adhesion, and biofilm formation. | ||
Ssp-1,Ssp-2 (Staphylococcal surface proteins 1 and 2) | Cell-to-cell adhesion; Biofilm formation. | ||
Serine-aspartate repeat protein G (SdrG/Fbe) binding to fibrinogen | Adhesion to the host proteins (fibrinogen, collagen, fibronectin); Adhesion to abiotic surfaces. | [158] | |
SdrF (Serine-aspartate repeat protein F) binding to collagen | |||
Extracellular matrix-binding protein (Embp) | |||
Phenol-soluble modulins (PSMα, PSMδ, PSMε, δ-toxin [PSMγ], and PSMβ [PSMβ1, PSMβ2]) | Acquisition of the characteristic three-dimensional structure-like mushrooms; Role in biofilmdispersion. | [157,159] | |
Homolog of the SspB | Role in the degradation/dispersion of the biofilm. | [157] | |
Homolog of SspA V8 | |||
Metalloprotease SepA | |||
Nucleases | |||
Quorum sensing | Two key systems: the agr and the sar regulators; Expression/repression of virulence genes in a coordinated manner during infection. | [160] | |
En. faecalis | Esp (Enterococcal surface protein) | Primary adhesion in UTIs; Colonization of the urinary tract. | [161,162] |
Asa1 (Aggregation substance) | Adhesion to host cells and bacterial aggregation. | ||
Collagen binding protein (Ace) | Adhesion to extracellular matrix and type 1 collagen. | ||
EfaA(En. faecalis endocarditis antigen A) | Adhesion to biotic and abiotic surfaces. | ||
Epa (Enterococcal polysaccharide antigen) | Colonization, translocation through epithelial cells, bacterial adhesion, biofilm formation, and antibiotic resistance. | [163] | |
Ebp A,B,C (Endocarditis and Biofilm-Associated Pili) | Important in initial attachment, biofilm formation, and endocarditis. | [164,165] | |
CylA (Cytolysin A) | Killing other bacteria (especially Gram-negative bacteria) and eukaryotic cells (red blood cells); Biofilm formation. | [162,165,166] | |
Hyl (Hyaluronidase) | Degradation of hyaluronic acid to permeabilize host tissues; Induction of autoimmune diseases. | ||
GelE (Gelatinase) | Degradation of the collagen adhesion protein (Ace) which contributes in colonization and biofilm formation; Degradation of gelatin, collagen, fibrin, fibrinogen, hemoglobin, and complement components (C3, C3a, C5a); Cell lysis. | ||
SprE (Serine protease) | Degradation of casein; Release of eDNA. | ||
Quorum sensing | Regulator system: the Fsr (fecal streptococci regulator) quorum-sensing system, encoded by fsrA, fsrB and fsrC genes; Regulation of communication through peptide pheromones cpd, cob, and ccf; Control of biofilm formation via regulation of gelatinase production. | [167] |
Strategy | Agent Used | Approach Used for Coating VC | Microorganism | Reference |
---|---|---|---|---|
Release killing | Antirhumatic | |||
Auranofin | Auranofin-coated polyurethane catheter. | MRSA | [386] | |
Release killing | Auranofin | Auranofin-coated polyurethane catheter. | S. aureus | [387] |
Release killing | Guanidine derivated | |||
poly(hexamethylene biguanide) hydrochloride–sodium stearate (PHMB–SS) | Coating developed using electrostatic interaction based on polyelectrolyte. | E. coli S. aureus | [388] | |
Antimicrobial peptides | ||||
Contact killing | ε-Poly-ʟ-lysine | Electrostatic interaction between cation PL and anion surfactant, 1,4-bis(2-ethylhexyl) sodium sulfosuccinate (AOT). | E. coli S. aureus | [389] |
Contact killing | Poly(methacrylic acid) (PMAA) | Polyurethane surface-initiated atom-transfer radical polymerization (SI-ATRP) | E. coli S. aureus | [390] |
Nitrix oxide | ||||
Release killing | Boron carbon nitride (BCN) | Boron carbon nitride nano-coating using RF magnetron sputtering technique. | E. coli | [391] |
Release killing | S-nitroso-N-acetyl-penicillamine (SNAP) | Incorporation of a nitric oxide (NO) donor molecule, S-nitroso-N-acetyl-penicillamine (SNAP) in a hydrophobic medical grade polymer, Elasteon-E2As and coated with fibronogen. | E. coli S. aureus | [392] |
Metal | ||||
Release killing | Silver nanoparticles (AgNP) Zinc oxide (ZnO) | Incorporation of silver nanoparticles (AgNP) and ZnO nanowires with polyvinylchloride(PVC). | S. aureus | [393] |
Release killing | Silver | Synthesized novel silver(I) cyanoximates Ag(ACO), Ag(BCO), Ag(CCO), Ag(ECO), Ag(PiCO), Ag(PICO) (yellow and red polymorphs), Ag(BIHCO), Ag(BIMCO), Ag(BOCO), Ag(BTCO), Ag(MCO) and Ag(PiPCO). | P. aeruginosa S. aureus | [394] |
Quaternary ammonium compounds | ||||
Contact killing | Quaternary ammonium thiol compound (Q8-SH) | Grafting a quaternary ammonium thiol compound (Q8-SH) to a thermoplastic polyurethane containing allyl ether (allyl-TPU) side-chain functionality. | E. coli P. aeruginosa S. aureus | [395] |
Graphene derivated | ||||
Contact killing | Graphene oxide | Immobilization of oxidized graphene nanoplatelets (GNP-M5ox) on the surface of silicone rubber by dip and spray coating. | S. epidermidis | [396] |
Other compounds | ||||
Contact killing | poly(dimethylsiloxane) (PDMS) | Hydrophobic hyperbranched coating resin was covalently attached to PDMS. | E. coli P. mirabilis S. aureus S. epidermidis | [397] |
Hydrophilic polymer | ||||
Surface modification | Poly(ethylene glycol) PEG | Microcrystalline sulfamethoxazole (SMZ) and trimethoprim (TMP) were immobilized with PEG. | E. coli S. aureus | [398] |
Surface modification | Fluoropolymer | A commercially polyurethane PICC catheter was modified by a three-step lamination process, with thin fluoropolymer layers to yield fluoropolymer–polyurethane–fluoropolymer composite structure before applying the liquid perfluorocarbon (LP) | S. aureus S. epidermidis | [337] |
Hydrophobic polymer | ||||
Surface modification | Polytetrafluroethylene (PTFE) | SiO2 nanosphere was coated on PTFE catheter. | E. coli S. aureus | [399] |
Strategy | Composite Used | Approach Used for Coating VC | Tested Microorganism | Reference |
---|---|---|---|---|
Release killing | Metal | |||
Silver (Ag) | Silver–polytetrafluoroethylene (Ag-PTFE) nanocomposite coated UCs. | E. coli P. mirabilis | [409] | |
Release killing | copper ions (Cu) | Copper ions (Cu) and a polyphenol tannic acid (TA) were coated on urinary catheters (TA-Cu coated urinary catheters) using using one-step coordination method. | E. coli P. mirabilis S. aureus | [412] |
Release killing | Nanoparticles | |||
Silver (Ag-NPs) | Silver nanoparticles–polydopamine (AgNPs-PDA) coated catheters were designed. | E. coli | [413] | |
Release killing | Copper oxide (CuO-NPs) | Zn-doped CuO-NPs were coated on urinary catheters by sonochemical method. | E. coli P. mirabilis S. aureus | [414] |
Release killing | Zinc oxide (ZnO NPs) | Zinc oxide nanoparticles (ZnO NPs) were decorated with amylase (biofilm matrix-degrading enzyme) by sonochemical method. | E. coli S. aureus | [415] |
Release killing | Antibiotics | |||
Chlorhexidine | Chlorhexidine-loaded poly(ε-caprolactone) nanospheres (CHX-NS) spray-adhered on urinary catheters. | E. coli S. aureus | [416] | |
Release killing | Chlorhexidine Triclosan | Chlorhexidine/Triclosan impregnated on silicone catheters. | E. coli K. pneumoniae P. mirabilis E. feacalis | [417] |
Release killing | Sparfloxacin | Sparfloxacin-coated latex catheters using two immobilization methods. | E. coli S. aureus | [418] |
Antimicrobial peptides | ||||
Contact killing | E6 (RRWRIVVIRVRRC) | A cysteine labeled peptide E6-coated polyurethane catheter was designed by covalent immobilization. | P. aeruginosa S. aureus | [419] |
Contact killing | Chain201D (KWIVWRWRFKR) (from crowberry endophytes) | Chain201D coated on silicone surface model was designed by covalent immobilization. | E. coli S. aureus | [420] |
Contact killing | Cys Lasio-III | Cys Lasio-III was immobilized on a commercial silicone catheter via a combination of AGE brush and PEG based chemical coupling. | E. coli P. aeruginosa S. aureus En. faecalis | [421] |
Nitric oxide | ||||
Release killing | Nitrix oxide (NO) | NO-impregnated catheters were designed. | E. coli | [422] |
Bacteriophages | ||||
Contact killing | The anti-Pseudomonas phage cocktail: ΦPaer4, ΦPaer14, M4, 109, ΦE2005-A, and ΦE2005-C The anti-Proteus phage cocktail: ΦPmir1, ΦPmir32, ΦPmir34, and ΦPmir37 | Hydrogel-coated catheters were pretreated with phages. | P. mirabilis P. aeruginosa | [423] |
Contact killing | The phage cocktail (podovirus vB_PmiP_5460 and myovirus vB_PmiM_5461) | Urinary catheters treated with phage cocktail were performed. | P. mirabilis | [33] |
Hydrophilic polymer | ||||
Surface modification | Poly(N,N-dimethylacrylamide) (PDMAA) | The poly(N,N-dimethylacrylamide) (PDMAA) hydrogel coated on polyurethane ureteral stents. | E. coli | [424] |
Surface modification | Poly(N,N-dimethylacrylamide) (PDMAA) | The hydrogel coating layer was formed using UV-crosslinking and swell-peeling methods. | S. aureus | [425] |
Surface modification | Polydopamine/poly(N,N-dimethylacrylamide) | Polydopamine/poly(N,N-dimethylacrylamide)-coated silicone catheters (PDA/uhPDMA) using dip coating approach. | P. aeruginosa | [426] |
Surface modification | Polyethylene glycol PEG | Silver-polyethylene glycol (mPEG-DOPA3) coated urinary catheters by cross-linking approach. | E.coli | [427] |
Surface modification | Sulfobetaine methacrylate (SBMA) | Sulfobetaine methacrylate (SBMA) was grafted on silicone catheters using enzymatic approach. | P. aeruginosa S. aureus | [428] |
Surface modification | Polytetrafluoroethylene PTFE | Silver- polytetrafluoroethylene (Ag-PTFE) nanocomposite grafted catheters were developed via a facile wet chemistry method. | E. coli S. aureus | [429] |
Enzymes | ||||
Surface modification | Acylase | The immobilization of the enzyme on urinary catheters was done by layer-by-layer deposition technique. | P. aeruginosa | [430] |
Surface modification | α-chymotrypsin (α-CT) | α-chymotrypsin (α-CT) covalently immobilized on low-density polyethylene surfaces (LDPE-α-CT). | E. coli | [431] |
Surface modification | Glycoside hydrolases (Ghs) | PslGh modified surfaces using amine functionalization (APTMS) and glutaraldehyde (GDA)7 Linking. | P. aeruginosa | [432] |
Surface modification | Cellobiose deshydrogenase (CDH) | CDH was covalently grafted onto plasma-activated urinary polydimethylsiloxane (PDMS) catheter surfaces. | S. aureus | [433] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouhrour, N.; Nibbering, P.H.; Bendali, F. Medical Device-Associated Biofilm Infections and Multidrug-Resistant Pathogens. Pathogens 2024, 13, 393. https://doi.org/10.3390/pathogens13050393
Bouhrour N, Nibbering PH, Bendali F. Medical Device-Associated Biofilm Infections and Multidrug-Resistant Pathogens. Pathogens. 2024; 13(5):393. https://doi.org/10.3390/pathogens13050393
Chicago/Turabian StyleBouhrour, Nesrine, Peter H. Nibbering, and Farida Bendali. 2024. "Medical Device-Associated Biofilm Infections and Multidrug-Resistant Pathogens" Pathogens 13, no. 5: 393. https://doi.org/10.3390/pathogens13050393
APA StyleBouhrour, N., Nibbering, P. H., & Bendali, F. (2024). Medical Device-Associated Biofilm Infections and Multidrug-Resistant Pathogens. Pathogens, 13(5), 393. https://doi.org/10.3390/pathogens13050393