Role of Type 4B Secretion System Protein, IcmE, in the Pathogenesis of Coxiella burnetii
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation of C. burnetii
2.2. Mammalian Cell Culture
2.3. Generation of C. burnetii NMII Mutant Library and Identification of Mutant Clones
2.4. In Silico Analysis of Coxiella icmE Nucleotide and Protein Sequence
2.5. Complementation Assay
2.6. Intracellular Replication of Tn::icmE in THP-1 and Mouse BMDM by Immunofluorescence Microscopy
2.7. Intracellular Replication of Tn::icmE in THP-1 and Mouse BMDM by RT-qPCR
2.8. Cytokine Analysis in Mouse BMDM Culture Supernatant
2.9. Immunoblotting
2.10. Virulence Determination in SCID Mice
2.11. Quantitation of Cytokines in SCID Mouse Serum
2.12. Data Analysis
3. Results
3.1. Generation of an Arrayed Mutant Library of C. burnetii NMII and Identification of a Himar1 Transposon Insertion in icmE
3.2. In Silico Analysis of the icmE Nucleotide and Protein Sequences
3.3. Tn::icmE Exhibits an Intracellular Replication Defect in Both MBMDM and THP-1-Derived Human Macrophages
3.4. Cytokine Response in MBMDM Supernatant
3.5. Role of C. burnetii icmE in Basic Inflammasome Component Activation in THP-1 Macrophages
3.6. Disruption of the icmE Gene Attenuates C. burnetii NMII Virulence in SCID Mice
3.7. Cytokine Secretion in Serum Samples from WT NMII-, Tn::dotA- and Tn::icmE Complement Strain-Infected SCID Mice
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Schaik, E.J.; Case, E.D.; Martinez, E.; Bonazzi, M.; Samuel, J.E. The SCID Mouse Model for Identifying Virulence Determinants in Coxiella burnetii. Front. Cell Infect. Microbiol. 2017, 7, 25. [Google Scholar] [CrossRef] [PubMed]
- Maurin, M.; Raoult, D. Q Fever. Clin. Microbiol. Rev. 1999, 12, 518–553. [Google Scholar] [CrossRef]
- Raoult, D.; Marrie, T.J.; Mege, J.L. Natural history and pathophysiology of Q fever. Lancet Infect. Dis. 2005, 5, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Parker, N.R.; Barralet, J.H.; Bell, A.M. Q fever. Lancet 2006, 367, 679–688. [Google Scholar] [CrossRef] [PubMed]
- CDC. Q Fever; Centers for Disease Control and Prevention: Antlanta, GA, USA, 2019. Available online: https://www.cdc.gov/qfever/ (accessed on 25 June 2023).
- Raoult, D.; Houpikian, P.; Dupont, H.T.; Riss, J.M.; Arditi-Djiane, J.; Brouqui, P. Treatment of Q Fever Endocarditis: Comparison of 2 Regimens Containing Doxycycline and Ofloxacin or Hydroxychloroquine. Arch. Intern. Med. 1999, 159, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Brennan Robert, E.; Samuel James, E. Evaluation of Coxiella burnetii Antibiotic Susceptibilities by Real-Time PCR Assay. J. Clin. Microbiol. 2003, 41, 1869–1874. [Google Scholar] [CrossRef] [PubMed]
- de Rooij, M.M.T.; Schimmer, B.; Versteeg, B.; Schneeberger, P.; Berends, B.R.; Heederik, D.; van der Hoek, W.; Wouters, I.M. Risk Factors of Coxiella burnetii (Q Fever) Seropositivity in Veterinary Medicine Students. PLoS ONE 2012, 7, e32108. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.G. Assessing Q fever in a representative sample from the United States population: Identification of a potential occupational hazard. Epidemiol. Infect. 2012, 140, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Brooke, R.J.; Kretzschmar, M.E.E.; Mutters, N.T.; Teunis, P.F. Human dose response relation for airborne exposure to Coxiella burnetii. BMC Infec. Dis. 2013, 13, 488. [Google Scholar] [CrossRef]
- Dragan Amanda, L.; Kurten Richard, C.; Voth Daniel, E. Characterization of Early Stages of Human Alveolar Infection by the Q Fever Agent Coxiella burnetii. Infect. Immun. 2019, 87, e00028-19. [Google Scholar] [CrossRef]
- Crabill, E.; Schofield, W.B.; Newton, H.J.; Goodman, A.L.; Roy, C.R. Dot/Icm-Translocated Proteins Important for Biogenesis of the Coxiella burnetii-Containing Vacuole Identified by Screening of an Effector Mutant Sublibrary. Infect. Immun. 2018, 86, e00758-17. [Google Scholar] [CrossRef] [PubMed]
- Moffatt, J.H.; Newton, P.; Newton, H.J. Coxiella burnetii: Turning hostility into a home. Cell Microbiol. 2015, 17, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Howe, D.; Melnicákova, J.; Barák, I.; Heinzen, R.A. Fusogenicity of the Coxiella burnetii parasitophorous vacuole. Ann. N. Y. Acad. Sci. 2003, 990, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Howe, D.; Melnicáková, J.; Barák, I.; Heinzen, R.A. Maturation of the Coxiella burnetii parasitophorous vacuole requires bacterial protein synthesis but not replication. Cell Microbiol. 2003, 5, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Voth, D.E.; Heinzen, R.A. Coxiella type IV secretion and cellular microbiology. Curr. Opin. Microbiol. 2009, 12, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Romano, P.S.; Gutierrez, M.G.; Berón, W.; Rabinovitch, M.; Colombo, M.I. The autophagic pathway is actively modulated by phase II Coxiella burnetii to efficiently replicate in the host cell. Cell Microbiol. 2007, 9, 891–909. [Google Scholar] [CrossRef]
- Campoy, E.M.; Zoppino, F.C.; Colombo, M.I. The early secretory pathway contributes to the growth of the Coxiella-replicative niche. Infect. Immun. 2011, 79, 402–413. [Google Scholar] [CrossRef] [PubMed]
- Sireci, G.; Badami, G.D.; Di Liberto, D.; Blanda, V.; Grippi, F.; Di Paola, L.; Guercio, A.; de la Fuente, J.; Torina, A. Recent Advances on the Innate Immune Response to Coxiella burnetii. Front. Cell. Infect. Microbiol. 2021, 11, 754455. [Google Scholar] [CrossRef]
- Carey, K.L.; Newton, H.J.; Lührmann, A.; Roy, C.R. The Coxiella burnetii Dot/Icm System Delivers a Unique Repertoire of Type IV Effectors into Host Cells and Is Required for Intracellular Replication. PLoS Pathog. 2011, 7, e1002056. [Google Scholar] [CrossRef]
- Martinez, E.; Cantet, F.; Fava, L.; Norville, I.; Bonazzi, M. Identification of OmpA, a Coxiella burnetii protein involved in host cell invasion, by multi-phenotypic high-content screening. PLoS Pathog. 2014, 10, e1004013. [Google Scholar] [CrossRef]
- Martinez, E.; Allombert, J.; Cantet, F.; Lakhani, A.; Yandrapalli, N.; Neyret, A.; Norville, I.H.; Favard, C.; Muriaux, D.; Bonazzi, M. Coxiella burnetii effector CvpB modulates phosphoinositide metabolism for optimal vacuole development. Proc. Natl. Acad. Sci. USA 2016, 113, E3260–E3269. [Google Scholar] [CrossRef] [PubMed]
- Pechstein, J.; Schulze-Luehrmann, J.; Bisle, S.; Cantet, F.; Beare, P.A.; Ölke, M.; Bonazzi, M.; Berens, C.; Lührmann, A. The Coxiella burnetii T4SS Effector AnkF Is Important for Intracellular Replication. Front. Cell. Infect. Microbiol. 2020, 10, 559915. [Google Scholar] [CrossRef]
- Cunha, L.D.; Ribeiro, J.M.; Fernandes, T.D.; Massis, L.M.; Khoo, C.A.; Moffatt, J.H.; Newton, H.J.; Roy, C.R.; Zamboni, D.S. Inhibition of inflammasome activation by Coxiella burnetii type IV secretion system effector IcaA. Nat. Commun. 2015, 6, 10205. [Google Scholar] [CrossRef]
- Beare Paul, A.; Gilk Stacey, D.; Larson Charles, L.; Hill, J.; Stead Christopher, M.; Omsland, A.; Cockrell Diane, C.; Howe, D.; Voth Daniel, E.; Heinzen Robert, A. Dot/Icm Type IVB Secretion System Requirements for Coxiella burnetii Growth in Human Macrophages. mBio 2011, 2, 10.1128/mbio.00175-00111. [Google Scholar] [CrossRef] [PubMed]
- Omsland, A.; Beare, P.A.; Hill, J.; Cockrell, D.C.; Howe, D.; Hansen, B.; Samuel, J.E.; Heinzen, R.A. Isolation from animal tissue and genetic transformation of Coxiella burnetii are facilitated by an improved axenic growth medium. Appl. Environ. Microbiol. 2011, 77, 3720–3725. [Google Scholar] [CrossRef]
- Kumaresan, V.; Wang, J.; Zhang, W.; Zhang, Y.; Xu, D.; Zhang, G. Coxiella burnetii Virulent Phase I and Avirulent Phase II Variants Differentially Manipulate Autophagy Pathway in Neutrophils. Infect. Immun. 2022, 90, e00534-21. [Google Scholar] [CrossRef] [PubMed]
- Cockrell, D.C.; Long, C.M.; Robertson, S.J.; Shannon, J.G.; Miller, H.E.; Myers, L.; Larson, C.L.; Starr, T.; Beare, P.A.; Heinzen, R.A. Robust growth of avirulent phase II Coxiella burnetii in bone marrow-derived murine macrophages. PLoS ONE 2017, 12, e0173528. [Google Scholar] [CrossRef]
- Voth, D.E.; Howe, D.; Heinzen, R.A. Coxiella burnetii inhibits apoptosis in human THP-1 cells and monkey primary alveolar macrophages. Infect. Immun. 2007, 75, 4263–4271. [Google Scholar] [CrossRef]
- Cherla, R.; Zhang, Y.; Ledbetter, L.; Zhang, G. Coxiella burnetii Inhibits Neutrophil Apoptosis by Exploiting Survival Pathways and Antiapoptotic Protein Mcl-1. Infect. Immun. 2018, 86, e00504-17. [Google Scholar] [CrossRef]
- Schoenlaub, L.; Cherla, R.; Zhang, Y.; Zhang, G. Coxiella burnetii Avirulent Nine Mile Phase II Induces Caspase-1-Dependent Pyroptosis in Murine Peritoneal B1a B Cells. Infect. Immun. 2016, 84, 3638–3654. [Google Scholar] [CrossRef]
- Beare, P.A.; Sandoz, K.M.; Omsland, A.; Rockey, D.D.; Heinzen, R.A. Advances in genetic manipulation of obligate intracellular bacterial pathogens. Front. Microbiol. 2011, 2, 97. [Google Scholar] [CrossRef] [PubMed]
- Martinez, E.; Cantet, F.; Bonazzi, M. Generation and Multi-phenotypic High-content Screening of Coxiella burnetii Transposon Mutants. JoVE 2015, 99, e52851. [Google Scholar] [CrossRef] [PubMed]
- Newton, H.J.; Kohler, L.J.; McDonough, J.A.; Temoche-Diaz, M.; Crabill, E.; Hartland, E.L.; Roy, C.R. A Screen of Coxiella burnetii Mutants Reveals Important Roles for Dot/Icm Effectors and Host Autophagy in Vacuole Biogenesis. PLoS Pathog. 2014, 10, e1004286. [Google Scholar] [CrossRef]
- Arockiaraj, J.; Palanisamy, R.; Bhatt, P.; Kumaresan, V.; Gnanam, A.J.; Pasupuleti, M.; Kasi, M. A novel murrel Channa striatus mitochondrial manganese superoxide dismutase: Gene silencing, SOD activity, superoxide anion production and expression. Fish Physiol. Biochem. 2014, 40, 1937–1955. [Google Scholar] [CrossRef] [PubMed]
- Palanisamy, R.; Bhatt, P.; Kumaresan, V.; Chaurasia, M.K.; Gnanam, A.J.; Pasupuleti, M.; Kasi, M.; Arockiaraj, J. A redox active site containing murrel cytosolic thioredoxin: Analysis of immunological properties. Fish Shellfish Immunol. 2014, 36, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Larson, C.L.; Beare, P.A.; Heinzen, R.A. Dependency of Coxiella burnetii Type 4B Secretion on the Chaperone IcmS. J. Bacteriol. 2019, 201, 00431-19. [Google Scholar] [CrossRef] [PubMed]
- Kumaresan, V.; Alam, S.; Zhang, Y.; Zhang, G. The Feasibility of Using Coxiella burnetii Avirulent Nine Mile Phase II Viable Bacteria as a Live Attenuated Vaccine Against Q fever. Front. Immunol. 2021, 12, 754690. [Google Scholar] [CrossRef] [PubMed]
- Mulherkar, R.; Karabudak, A.; Ginwala, R.; Huang, X.; Rowan, A.; Philip, R.; Murphy, E.L.; Clements, D.; Ndhlovu, L.C.; Khan, Z.K.; et al. In vivo and in vitro immunogenicity of novel MHC class I presented epitopes to confer protective immunity against chronic HTLV-1 infection. Vaccine 2018, 36, 5046–5057. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Katki, K.; Arisi, G.M.; Foresti, M.L.; Shapiro, L.A. Early TBI-Induced Cytokine Alterations are Similarly Detected by Two Distinct Methods of Multiplex Assay. Front. Mol. Neurosci. 2011, 4, 21. [Google Scholar] [CrossRef]
- Ledbetter, L.; Cherla, R.; Chambers, C.; Zhang, Y.; Mitchell, W.J.; Zhang, G.; Palmer, G.H. Major Histocompatibility Complex Class II-Restricted, CD4 T Cell-Dependent and -Independent Mechanisms Are Required for Vaccine-Induced Protective Immunity against Coxiella burnetii. Infect. Immun. 2020, 88, e00824-19. [Google Scholar] [CrossRef]
- Andoh, M.; Zhang, G.; Russell-Lodrigue, K.E.; Shive, H.R.; Weeks, B.R.; Samuel, J.E. T Cells Are Essential for Bacterial Clearance, and Gamma Interferon, Tumor Necrosis Factor Alpha, and B Cells Are Crucial for Disease Development in Coxiella burneti Infection in Mice. Infect. Immun. 2007, 75, 3245–3255. [Google Scholar] [CrossRef] [PubMed]
- Elliott, A.; Peng, Y.; Zhang, G. Coxiella burnetii interaction with neutrophils and macrophages in vitro and in SCID mice following aerosol infection. Infect. Immun. 2013, 81, 4604–4614. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.; Lockhart, M.; Stenos, J.; Graves, S. The attenuated nine mile phase II clone 4/RSA439 strain of Coxiella burnetii is highly virulent for severe combined immunodeficient (SCID) mice. Am. J. Trop. Med. Hyg. 2013, 89, 800–803. [Google Scholar] [CrossRef]
- Segal, G.; Feldman, M.; Zusman, T. The Icm/Dot type-IV secretion systems of Legionella pneumophila and Coxiella burnetii. FEMS Microbiol. Rev. 2005, 29, 65–81. [Google Scholar] [CrossRef]
- Delaney, M.A.; Hartigh, A.D.; Carpentier, S.J.; Birkland, T.P.; Knowles, D.P.; Cookson, B.T.; Frevert, C.W. Avoidance of the NLRP3 Inflammasome by the Stealth Pathogen, Coxiella burnetii. Vet. Pathol. 2021, 58, 624–642. [Google Scholar] [CrossRef]
- Li, P.L.; Hwang, I.; Miyagi, H.; True, H.; Farrand, S.K. Essential components of the Ti plasmid trb system, a type IV macromolecular transporter. J. Bacteriol. 1999, 181, 5033–5041. [Google Scholar] [CrossRef]
- Ghosal, D.; Chang, Y.-W.; Jeong, K.C.; Vogel, J.P.; Jensen, G.J. Molecular architecture of the Legionella Dot/Icm type IV secretion system. bioRxiv 2018, 10, 312009. [Google Scholar] [CrossRef]
- Case, E.D.R.; Mahapatra, S.; Hoffpauir, C.T.; Konganti, K.; Hillhouse, A.E.; Samuel, J.E.; Schaik, E.J.V. Primary Murine Macrophages as a Tool for Virulence Factor Discovery in Coxiella burnetii. Microbiol. Spect. 2022, 10, e02484-21. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, M.; Osbron, C.A.; Koehler, H.S.; Goodman, A.G. STING dependent BAX-IRF3 signaling results in apoptosis during late-stage Coxiella burnetii infection. Cell Death Dis. 2024, 15, 195. [Google Scholar] [CrossRef]
- Schoffelen, T.; Textoris, J.; Bleeker-Rovers, C.P.; Ben Amara, A.; van der Meer, J.W.; Netea, M.G.; Mege, J.L.; van Deuren, M.; van de Vosse, E. Intact interferon-γ response against Coxiella burnetii by peripheral blood mononuclear cells in chronic Q fever. Clin. Microbiol. Infect. 2017, 23, 209.e9–209.e15. [Google Scholar] [CrossRef]
- Raijmakers, R.P.H.; Koeken, V.; Jansen, A.F.M.; Keijmel, S.P.; Roerink, M.E.; Joosten, L.A.B.; Netea, M.G.; van der Meer, J.W.M.; Bleeker-Rovers, C.P. Cytokine profiles in patients with Q fever fatigue syndrome. J. Infect. 2019, 78, 349–357. [Google Scholar] [CrossRef]
- Keijmel, S.P.; Raijmakers, R.P.; Bleeker-Rovers, C.P.; van der Meer, J.W.; Netea, M.G.; Schoffelen, T.; van Deuren, M. Altered interferon-γ response in patients with Q-fever fatigue syndrome. J. Infect. 2016, 72, 478–485. [Google Scholar] [CrossRef]
- Shin, S.; Case, C.L.; Archer, K.A.; Nogueira, C.V.; Kobayashi, K.S.; Flavell, R.A.; Roy, C.R.; Zamboni, D.S. Type IV Secretion-Dependent Activation of Host MAP Kinases Induces an Increased Proinflammatory Cytokine Response to Legionella pneumophila. PLoS Pathog. 2008, 4, e1000220. [Google Scholar] [CrossRef] [PubMed]
- Krakauer, T. Inflammasomes, Autophagy, and Cell Death: The Trinity of Innate Host Defense against Intracellular Bacteria. Mediat. Inflamm. 2019, 2019, 2471215. [Google Scholar] [CrossRef] [PubMed]
- Toman, R.; Skultety, L.; Ihnatko, R. Coxiella burnetii glycomics and proteomics--tools for linking structure to function. Ann. N. Y. Acad. Sci. 2009, 1166, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Dellacasagrande, J.; Ghigo, E.; Capo, C.; Raoult, D.; Mege, J.L. Coxiella burnetii survives in monocytes from patients with Q fever endocarditis: Involvement of tumor necrosis factor. Infect. Immun. 2000, 68, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Capo, C.; Amirayan, N.; Ghigo, E.; Raoult, D.; Mege, J. Circulating cytokine balance and activation markers of leucocytes in Q fever. Clin. Exp. Immunol. 1999, 115, 120–123. [Google Scholar] [CrossRef]
- Osbron, C.A.; Lawson, C.; Hanna, N.; Koehler, H.S.; Goodman, A.G. Caspase-8 activity mediates TNFα production and restricts Coxiella burnetii replication during murine macrophage infection. bioRxiv 2024, 3.2024.02.02.578698. [Google Scholar] [CrossRef] [PubMed]
- Zamboni, D.S. Genetic Control of Natural Resistance of Mouse Macrophages to Coxiella burnetii Infection In Vitro: Macrophages from Restrictive Strains Control Parasitophorous Vacuole Maturation. Infect. Immun. 2004, 72, 2395–2399. [Google Scholar] [CrossRef]
- Zamboni, D.S.; Mortara, R.A.; Freymuller, E.; Rabinovitch, M. Mouse resident peritoneal macrophages partially control in vitro infection with Coxiella burnetii phase II. Microbes Infect. 2002, 4, 591–598. [Google Scholar] [CrossRef]
- Man, S.M.; Karki, R.; Malireddi, R.K.S.; Neale, G.; Vogel, P.; Yamamoto, M.; Lamkanfi, M.; Kanneganti, T.-D. The transcription factor IRF1 and guanylate-binding proteins target activation of the AIM2 inflammasome by Francisella infection. Nat. Immuno. 2015, 16, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Gong, Y.-N.; Xu, Y.; Shao, F. Preventing bacterial DNA release and absent in melanoma 2 inflammasome activation by a Legionella effector functioning in membrane trafficking. Proc. Natl. Acad. Sci. USA 2012, 109, 6193–6198. [Google Scholar] [CrossRef] [PubMed]
- Andoh, M.; Naganawa, T.; Hotta, A.; Yamaguchi, T.; Fukushi, H.; Masegi, T.; Hirai, K. SCID Mouse Model for Lethal Q Fever. Infect. Immun. 2003, 71, 4717–4723. [Google Scholar] [CrossRef] [PubMed]
RSA439 NMII Random Library | Number of Mutant Clones |
---|---|
Total mutants obtained | 364 |
Mutants with transposon insertion | 248 |
Mutants with single transposon insertion | 146 |
Transposon insertion in genes with signal peptide | 21 |
Transposon insertion in Dot/Icm system genes | 9 |
Treatments | CCV Percentage (%) in Mouse BMDM | CCV Percentage (%) in THP-1 |
---|---|---|
WT NMII | 79 | 78.5 |
Tn::dotA | 22.5 | 28 |
Tn::icmE | 31.5 | 44 |
Tn::icmE complement | 69 | 69.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palanisamy, R.; Zhang, Y.; Zhang, G. Role of Type 4B Secretion System Protein, IcmE, in the Pathogenesis of Coxiella burnetii. Pathogens 2024, 13, 405. https://doi.org/10.3390/pathogens13050405
Palanisamy R, Zhang Y, Zhang G. Role of Type 4B Secretion System Protein, IcmE, in the Pathogenesis of Coxiella burnetii. Pathogens. 2024; 13(5):405. https://doi.org/10.3390/pathogens13050405
Chicago/Turabian StylePalanisamy, Rajesh, Yan Zhang, and Guoquan Zhang. 2024. "Role of Type 4B Secretion System Protein, IcmE, in the Pathogenesis of Coxiella burnetii" Pathogens 13, no. 5: 405. https://doi.org/10.3390/pathogens13050405
APA StylePalanisamy, R., Zhang, Y., & Zhang, G. (2024). Role of Type 4B Secretion System Protein, IcmE, in the Pathogenesis of Coxiella burnetii. Pathogens, 13(5), 405. https://doi.org/10.3390/pathogens13050405