Asymptomatic Malaria Reservoirs in Honduras: A Challenge for Elimination
Abstract
:1. Background
2. Methods
2.1. Ethical Consideration
2.2. Study Site and Population
2.3. Sample Collection and RDT
2.4. DNA Extraction and PET-PCR
3. Results
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
PET-PCR | Photo-induced electron transfer PCR. |
API | Annual Parasite Index. |
CHAI | Clinton Health Access Initiative. |
RDT | Rapid Diagnostic Test. |
Ct | Cycle threshold. |
LM | Light Microscopy. |
nPCR | Nested Polymerase Chain Reaction. |
qPCR | Quantitative Polymerase Chain Reaction. |
ACD | Active Case Detection. |
MTTT | Mass Testing, Treatment and Tracking. |
MSAT | Mass Screening and Treatment. |
MDA | Mass Drug Administration. |
PAHO | Pan American Health Organization. |
WHO | World Health Organization. |
References
- World Health Organization. World Malaria Report 2023; WHO: Geneva, Switzerland, 2023; p. 62. [Google Scholar]
- World Health Organization. Global Technical Strategy for Malaria 2016-2030; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- World Health Organization. WHO Guidelines for Malaria. 16 October 2023. Available online: https://files.magicapp.org/guideline/3413afba-e74a-42e5-ba86-dde4818dcd3a/published_guideline_7661-7_1.pdf (accessed on 25 January 2024).
- Secretaría de Salud de Honduras. Boletín Epidemiológico Malaria; Secretaría de Salud de Honduras: Tegucigalpa, Honduras, 2024.
- Tadesse, F.G.; van den Hoogen, L.; Lanke, K.; Schildkraut, J.; Tetteh, K.; Aseffa, A.; Mamo, H.; Sauerwein, R.; Felger, I.; Drakeley, C.; et al. The shape of the iceberg: Quantification of submicroscopic Plasmodium falciparum and Plasmodium vivax parasitaemia and gametocytaemia in five low endemic settings in Ethiopia. Malar. J. 2017, 16, 99. [Google Scholar] [CrossRef]
- Matamoros, G.; Escobar, D.; Pinto, A.; Serrano, D.; Ksandrova, E.; Grimaldi, N.; Juarez-Fontecha, G.; Moncada, M.; Valdivia, H.O.; Fontecha, G. PET-PCR reveals low parasitaemia and submicroscopic malarial infections in Honduran Moskitia. Malar. J. 2023, 22, 110. [Google Scholar] [CrossRef] [PubMed]
- Lucchi, N.W.; Karell, M.A.; Journel, I.; Rogier, E.; Goldman, I.; Ljolje, D.; Huber, C.; Mace, K.E.; Jean, S.E.; Akom, E.E.; et al. PET-PCR method for the molecular detection of malaria parasites in a national malaria surveillance study in Haiti, 2011. Malar. J. 2014, 13, 462. [Google Scholar] [CrossRef]
- Agbana, H.B.; Rogier, E.; Lo, A.; Abukari, Z.; Jones, S.; Gyan, B.; Aidoo, M.; Amoah, L.E. Detecting asymptomatic carriage of Plasmodium falciparum in southern Ghana: Utility of molecular and serological diagnostic tools. Malar. J. 2022, 21, 57. [Google Scholar] [CrossRef]
- Badiane, A.S.; Ndiaye, T.; Thiaw, A.B.; Binta, D.A.; Diallo, M.A.; Seck, M.C.; Diongue, K.; Garba, M.N.; Ndiaye, M.; Ndiaye, D. High prevalence of asymptomatic Plasmodium infection in Bandafassi, South-East Senegal. Malar. J. 2021, 20, 218. [Google Scholar] [CrossRef]
- Mwenda, M.C.; Fola, A.A.; Ciubotariu, I.I.; Mulube, C.; Mambwe, B.; Kasaro, R.; Hawela, M.B.; Hamainza, B.; Miller, J.M.; Carpi, G.; et al. Performance evaluation of RDT, light microscopy, and PET-PCR for detecting Plasmodium falciparum malaria infections in the 2018 Zambia National Malaria Indicator Survey. Malar. J. 2021, 20, 386. [Google Scholar] [CrossRef] [PubMed]
- Sitali, L.; Miller, J.M.; Mwenda, M.C.; Bridges, D.J.; Hawela, M.B.; Hamainza, B.; Chizema-Kawesha, E.; Eisele, T.P.; Chipeta, J.; Lindtjorn, B. Distribution of Plasmodium species and assessment of performance of diagnostic tools used during a malaria survey in Southern and Western Provinces of Zambia. Malar. J. 2019, 18, 130. [Google Scholar] [CrossRef] [PubMed]
- Talundzic, E.; Maganga, M.; Masanja, I.M.; Peterson, D.S.; Udhayakumar, V.; Lucchi, N.W. Field evaluation of the photo-induced electron transfer fluorogenic primers (PET) real-time PCR for the detection of Plasmodium falciparum in Tanzania. Malar. J. 2014, 13, 31. [Google Scholar] [CrossRef]
- Lindblade, K.A.; Steinhardt, L.; Samuels, A.; Kachur, S.P.; Slutsker, L. The silent threat: Asymptomatic parasitemia and malaria transmission. Expert Rev. Anti Infect. Ther. 2013, 11, 623–639. [Google Scholar] [CrossRef]
- World Health Organization. WHO Guidelines for Malaria, 13 July 2021; WHO: Geneva, Switzerland, 2021; p. 214. [Google Scholar]
- Lucchi, N.W.; Narayanan, J.; Karell, M.A.; Xayavong, M.; Kariuki, S.; DaSilva, A.J.; Hill, V.; Udhayakumar, V. Molecular diagnosis of malaria by photo-induced electron transfer fluorogenic primers: PET-PCR. PLoS ONE 2013, 8, e56677. [Google Scholar] [CrossRef]
- Kudyba, H.M.; Louzada, J.; Ljolje, D.; Kudyba, K.A.; Muralidharan, V.; Oliveira-Ferreira, J.; Lucchi, N.W. Field evaluation of malaria malachite green loop-mediated isothermal amplification in health posts in Roraima state, Brazil. Malar. J. 2019, 18, 98. [Google Scholar] [CrossRef] [PubMed]
- Thanapongpichat, S.; Khammanee, T.; Sawangjaroen, N.; Buncherd, H.; Tun, A.W. Genetic Diversity of Plasmodium vivax in Clinical Isolates from Southern Thailand using PvMSP1, PvMSP3 (PvMSP3alpha, PvMSP3beta) Genes and Eight Microsatellite Markers. Korean J. Parasitol. 2019, 57, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.C.; Ortiz, A.; Coello, J.; Sosa-Ochoa, W.; Torres, R.E.; Banegas, E.I.; Jovel, I.; Fontecha, G.A. Genetic diversity of Plasmodium vivax and Plasmodium falciparum in Honduras. Malar. J. 2012, 11, 391. [Google Scholar] [CrossRef] [PubMed]
- Schoepflin, S.; Valsangiacomo, F.; Lin, E.; Kiniboro, B.; Mueller, I.; Felger, I. Comparison of Plasmodium falciparum allelic frequency distribution in different endemic settings by high-resolution genotyping. Malar. J. 2009, 8, 250. [Google Scholar] [CrossRef] [PubMed]
- Kuesap, J.; Rungsihirunrat, K.; Chaijaroenkul, W.; Mungthin, M. Genetic Diversity of Plasmodium vivax Merozoite Surface Protein-3 Alpha and Beta from Diverse Geographic Areas of Thailand. Jpn. J. Infect. Dis. 2022, 75, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Searle, K.M.; Katowa, B.; Kobayashi, T.; Siame, M.N.S.; Mharakurwa, S.; Carpi, G.; Norris, D.E.; Stevenson, J.C.; Thuma, P.E.; Moss, W.J.; et al. Distinct parasite populations infect individuals identified through passive and active case detection in a region of declining malaria transmission in southern Zambia. Malar. J. 2017, 16, 154. [Google Scholar] [CrossRef] [PubMed]
- Doum, D.; McLver, D.J.; Hustedt, J.; Hii, J.; Sovannaroth, S.; Lek, D.; Richardson, J.H.; Tatarsky, A.; Lobo, N.F. An active and targeted survey reveals asymptomatic malaria infections among high-risk populations in Mondulkiri, Cambodia. Malar. J. 2023, 22, 193. [Google Scholar] [CrossRef] [PubMed]
- Andolina, C.; Rek, J.C.; Briggs, J.; Okoth, J.; Musiime, A.; Ramjith, J.; Teyssier, N.; Conrad, M.; Nankabirwa, J.I.; Lanke, K.; et al. Sources of persistent malaria transmission in a setting with effective malaria control in eastern Uganda: A longitudinal, observational cohort study. Lancet Infect. Dis. 2021, 21, 1568–1578. [Google Scholar] [CrossRef] [PubMed]
- Biruksew, A.; Demeke, A.; Birhanu, Z.; Golassa, L.; Getnet, M.; Yewhalaw, D. Schoolchildren with asymptomatic malaria are potential hotspot for malaria reservoir in Ethiopia: Implications for malaria control and elimination efforts. Malar. J. 2023, 22, 311. [Google Scholar] [CrossRef]
- Okell, L.C.; Bousema, T.; Griffin, J.T.; Ouédraogo, A.L.; Ghani, A.C.; Drakeley, C.J. Factors determining the occurrence of submicroscopic malaria infections and their relevance for control. Nat. Commun. 2012, 3, 1237. [Google Scholar] [CrossRef]
- Carrasco-Escobar, G.; Miranda-Alban, J.; Fernandez-Minope, C.; Brouwer, K.C.; Torres, K.; Calderon, M.; Gamboa, D.; Llanos-Cuentas, A.; Vinetz, J.M. High prevalence of very-low Plasmodium falciparum and Plasmodium vivax parasitaemia carriers in the Peruvian Amazon: Insights into local and occupational mobility-related transmission. Malar. J. 2017, 16, 415. [Google Scholar] [CrossRef] [PubMed]
- Bjorkman, A.B. Asymptomatic low-density malaria infections: A parasite survival strategy? Lancet Infect Dis. 2018, 18, 485–486. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, N.; Krishna, S.; Bharti, P.K.; Gaur, D.; Chauhan, V.S.; Singh, N. Prevalence of afebrile parasitaemia due to Plasmodium falciparum & P. vivax in district Balaghat (Madhya Pradesh): Implication for malaria control. Indian J. Med. Res. 2017, 146, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Getachew, H.; Demissew, A.; Abossie, A.; Habtamu, K.; Wang, X.; Zhong, D.; Zhou, G.; Lee, M.C.; Hemming-Schroeder, E.; Bradley, L.; et al. Asymptomatic and submicroscopic malaria infections in sugar cane and rice development areas of Ethiopia. Malar. J. 2023, 22, 341. [Google Scholar] [CrossRef]
- Okell, L.C.; Ghani, A.C.; Lyons, E.; Drakeley, C.J. Submicroscopic infection in Plasmodium falciparum-endemic populations: A systematic review and meta-analysis. J. Infect. Dis. 2009, 200, 1509–1517. [Google Scholar] [CrossRef] [PubMed]
- Hofer, L.M.; Kweyamba, P.A.; Sayi, R.M.; Chabo, M.S.; Maitra, S.L.; Moore, S.J.; Tambwe, M.M. Malaria rapid diagnostic tests reliably detect asymptomatic Plasmodium falciparum infections in school-aged children that are infectious to mosquitoes. Parasit Vectors 2023, 16, 217. [Google Scholar] [CrossRef] [PubMed]
- Kumari, P.; Sinha, S.; Gahtori, R.; Yadav, C.P.; Pradhan, M.M.; Rahi, M.; Pande, V.; Anvikar, A.R. Prevalence of Asymptomatic Malaria Parasitemia in Odisha, India: A Challenge to Malaria Elimination. Am. J. Trop. Med. Hyg. 2020, 103, 1510–1516. [Google Scholar] [CrossRef]
- San, N.N.; Kien, N.X.; Manh, N.D.; Van Thanh, N.; Chavchich, M.; Binh, N.T.H.; Long, T.K.; Edgel, K.A.; Rovira-Vallbona, E.; Edstein, M.D.; et al. Cross-sectional study of asymptomatic malaria and seroepidemiological surveillance of seven districts in Gia Lai province, Vietnam. Malar. J. 2022, 21, 40. [Google Scholar] [CrossRef]
- Shamseddin, J.; Ghanbarnejad, A.; Zakeri, A.; Abedi, F.; Khojasteh, S.; Turki, H. Molecular Method Is Essential to Identify Asymptomatic Malaria Reservoirs: A Successful Experience in the Malaria Elimination Program in Iran. Diagnostics 2022, 12, 3025. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, F.G.; Pett, H.; Baidjoe, A.; Lanke, K.; Grignard, L.; Sutherland, C.; Hall, T.; Drakeley, C.; Bousema, T.; Mamo, H. Submicroscopic carriage of Plasmodium falciparum and Plasmodium vivax in a low endemic area in Ethiopia where no parasitaemia was detected by microscopy or rapid diagnostic test. Malar. J. 2015, 14, 303. [Google Scholar] [CrossRef]
- Valdivia, H.O.; Thota, P.; Braga, G.; Ricopa, L.; Barazorda, K.; Salas, C.; Bishop, D.K.; Joya, C.A. Field validation of a magneto-optical detection device (Gazelle) for portable point-of-care Plasmodium vivax diagnosis. PLoS ONE 2021, 16, e0253232. [Google Scholar] [CrossRef] [PubMed]
- Lawpoolsri, S.; Chavez, I.F.; Yimsamran, S.; Puangsa-Art, S.; Thanyavanich, N.; Maneeboonyang, W.; Chaimungkun, W.; Singhasivanon, P.; Maguire, J.H.; Hungerford, L.L. The impact of human reservoir of malaria at a community-level on individual malaria occurrence in a low malaria transmission setting along the Thai-Myanmar border. Malar. J. 2010, 9, 143. [Google Scholar] [CrossRef] [PubMed]
- Sturrock, H.J.; Hsiang, M.S.; Cohen, J.M.; Smith, D.L.; Greenhouse, B.; Bousema, T.; Gosling, R.D. Targeting asymptomatic malaria infections: Active surveillance in control and elimination. PLoS Med. 2013, 10, e1001467. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Escobar, G.; Gamboa, D.; Castro, M.C.; Bangdiwala, S.I.; Rodriguez, H.; Contreras-Mancilla, J.; Alava, F.; Speybroeck, N.; Lescano, A.G.; Vinetz, J.M.; et al. Micro-epidemiology and spatial heterogeneity of P. vivax parasitaemia in riverine communities of the Peruvian Amazon: A multilevel analysis. Sci. Rep. 2017, 7, 8082. [Google Scholar] [CrossRef] [PubMed]
- Stratil, A.S.; Vernaeve, L.; Lopes, S.; Bourny, Y.; Mannion, K.; Hamade, P.; Roca-Feltrer, A.; Tibenderana, J.K.; Sovannaroth, S.; Debackere, M. Eliminating Plasmodium falciparum malaria: Results from tailoring active case detection approaches to remote populations in forested border areas in north-eastern Cambodia. Malar. J. 2021, 20, 108. [Google Scholar] [CrossRef] [PubMed]
- Wickremasinghe, R.; Fernando, S.D.; Thillekaratne, J.; Wijeyaratne, P.M.; Wickremasinghe, A.R. Importance of active case detection in a malaria elimination programme. Malar. J. 2014, 13, 186. [Google Scholar] [CrossRef] [PubMed]
- Han, K.T.; Han, Z.Y.; Zainabadi, K. Developing Molecular Surveillance Capacity for Asymptomatic and Drug-Resistant Malaria in a Resource-Limited Setting-Experiences and Lessons Learned. Am. J. Trop. Med. Hyg. 2022, 107, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Gutierrez, D.; Llanos-Cuentas, A.; Luis Barboza, J.; Contreras-Mancilla, J.; Gamboa, D.; Rodriguez, H.; Carrasco-Escobar, G.; Boreux, R.; Hayette, M.P.; Beutels, P.; et al. Effectiveness of a Malaria Surveillance Strategy Based on Active Case Detection during High Transmission Season in the Peruvian Amazon. Int. J. Environ. Res. Public Health 2018, 15, 2670. [Google Scholar] [CrossRef] [PubMed]
- Ndong, I.C.; Okyere, D.; Enos, J.Y.; Mensah, B.A.; Nyarko, A.; Abuaku, B.; Amambua-Ngwa, A.; Merle, C.S.C.; Koram, K.A.; Ahorlu, C.S. Prevalence of asymptomatic malaria parasitaemia following mass testing and treatment in Pakro sub-district of Ghana. BMC Public Health 2019, 19, 1622. [Google Scholar] [CrossRef]
- Crowell, V.; Briet, O.J.; Hardy, D.; Chitnis, N.; Maire, N.; Di Pasquale, A.; Smith, T.A. Modelling the cost-effectiveness of mass screening and treatment for reducing Plasmodium falciparum malaria burden. Malar. J. 2013, 12, 4. [Google Scholar] [CrossRef]
- Newby, G.; Hwang, J.; Koita, K.; Chen, I.; Greenwood, B.; von Seidlein, L.; Shanks, G.D.; Slutsker, L.; Kachur, S.P.; Wegbreit, J.; et al. Review of mass drug administration for malaria and its operational challenges. Am. J. Trop. Med. Hyg. 2015, 93, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Poirot, E.; Skarbinski, J.; Sinclair, D.; Kachur, S.P.; Slutsker, L.; Hwang, J. Mass drug administration for malaria. Cochrane Database Syst. Rev. 2013, 2013, CD008846. [Google Scholar] [CrossRef] [PubMed]
- Brady, O.J.; Slater, H.C.; Pemberton-Ross, P.; Wenger, E.; Maude, R.J.; Ghani, A.C.; Penny, M.A.; Gerardin, J.; White, L.J.; Chitnis, N.; et al. Role of mass drug administration in elimination of Plasmodium falciparum malaria: A consensus modelling study. Lancet Glob. Health 2017, 5, e680–e687. [Google Scholar] [CrossRef] [PubMed]
Method and Target | Primer Name | Sequence (5′-3′) | References |
---|---|---|---|
PET-PCR for genus Plasmodium | Genus forward | GGC CTA ACA TGG CTA TGA CG | [6,15] |
Genus reverse | 6FAM-agg cgc ata gcg cct gg CTG CCT TCC TTA GAT GTG GTA GCT | ||
PET-PCR for P. falciparum | Falciparum forward | ACC CCT CGC CTG GTG TTT TT | [15] |
Falciparum reverse | HEX-agg cgc ata gcg cct gg TCG GGC CCC AAA AAT AGG AA | ||
PET-PCR for P. vivax | Vivax forward | ACT GAC ACT GAT GAT TTA GAA CCC ATT T | [16] |
Vivax reverse | HEX-agg cgc ata gcg cct ggT GGA GAG ATC TTT CCA TCC TAA ACC T | ||
Nested PCR for P. vivax msp3α (1st round) | Pvmsp-3a P1 | CAG CAG ACA CCA TTT AAG G | [17] |
Pvmsp-3a P2 | CCG TTT GTT GAT TAG TTG C | ||
Nested PCR for P. vivax msp3α (2nd round) | Pvmsp-3a N1 | GAC CAG TGT GAT ACC ATT AAC C | |
Pvmsp-3a N2 | ATA CTG GTT CTT CGT CTT CAG G | ||
Nested PCR for P. vivax msp3ß (1st round) | Pvmsp-3b P1 | GTA TTC TTC GCA ACA CTC | [17] |
Pvmsp-3b P2 | CTT CTG ATG TTA TTT CCA G | ||
Nested PCR for P. vivax msp3ß (2nd round) | Pvmsp-3b N1 | CGA GGG GCG AAA TTG TAA ACC | |
Pvmsp-3b N2 | GCT GCT TCT TTT GCA AAG G | ||
Nested PCR for P. falciparum msp1 (1st round) | MIOF | CTA GAA GCT TTA GAA GAT GCA GTA TTG | [18,19] |
MIOR | CTT AAA TAG ATT CTA ATT CAA GTG GAT CA | ||
Nested PCR for P. falciparum msp1 (2nd round) | K1F | AAA TGA AGA AGA AAT TAC TAC AAA AGG TGC | |
K1R | GCT TGC ATC AGC TGG AGG GCT TGC ACC AG | ||
MAD20F | AAA TGA AGG AAC AAG TGG AAC AGC TGT TAC | ||
MAD20R | ATC TGA AGG ATT TGT ACG TCT TGA ATT ACC | ||
RO33F | TAA AGG ATG GAG CAA ATA CTC AAG TTG TTG | ||
RO33R | CAA GTA ATT TTG AAC TCT ATG TTT TAA ATC AGC GTA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banegas, S.; Escobar, D.; Pinto, A.; Moncada, M.; Matamoros, G.; Valdivia, H.O.; Reyes, A.; Fontecha, G. Asymptomatic Malaria Reservoirs in Honduras: A Challenge for Elimination. Pathogens 2024, 13, 541. https://doi.org/10.3390/pathogens13070541
Banegas S, Escobar D, Pinto A, Moncada M, Matamoros G, Valdivia HO, Reyes A, Fontecha G. Asymptomatic Malaria Reservoirs in Honduras: A Challenge for Elimination. Pathogens. 2024; 13(7):541. https://doi.org/10.3390/pathogens13070541
Chicago/Turabian StyleBanegas, Sharon, Denis Escobar, Alejandra Pinto, Marcela Moncada, Gabriela Matamoros, Hugo O. Valdivia, Allan Reyes, and Gustavo Fontecha. 2024. "Asymptomatic Malaria Reservoirs in Honduras: A Challenge for Elimination" Pathogens 13, no. 7: 541. https://doi.org/10.3390/pathogens13070541
APA StyleBanegas, S., Escobar, D., Pinto, A., Moncada, M., Matamoros, G., Valdivia, H. O., Reyes, A., & Fontecha, G. (2024). Asymptomatic Malaria Reservoirs in Honduras: A Challenge for Elimination. Pathogens, 13(7), 541. https://doi.org/10.3390/pathogens13070541