Native Biocrust Cyanobacteria Strains Showing Antagonism against Three Soilborne Pathogenic Fungi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cyanobacterial Strains
2.2. Origin and Maintenance of Fungal and Oomycete Isolates
2.3. Cyanobacteria Culture Conditions and Post-Harvest Treatments
2.4. In Vitro Growth Inhibition Tests
2.5. In Planta Bioassays
2.6. Statistical Analysis
3. Results
3.1. In Vitro Growth Inhibition Tests
3.2. In Planta Bioassays
4. Discussion
4.1. In Vitro Growth Inhibition Tests
4.2. In Planta Bioassays
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CAPDER Anuario de Estadísticas Agrarias y Pesqueras; Junta de Andalucía: Seville, Spain, 2020.
- Marucci, A.; Monarca, D.; Cecchini, M.; Colantoni, A.; Manzo, A.; Cappuccini, A. The Semitransparent Photovoltaic Films for Mediterranean Greenhouse: A New Sustainable Technology. Math. Probl. Eng. 2012, 2012, 451934. [Google Scholar] [CrossRef]
- García, M.C.; Céspedes-López, A.J.; Pérez-Parra, J.J.; Lorenzo-Mínguez, P. El Sistema de Producción Hortícola Protegido de La Provincia de Almería; IFAPA: Seville, Spain, 2016. [Google Scholar]
- Valera, D.L.; Belmonte, L.J.; Molina-Aiz, F.D.; López, A.; Camacho, F. The Greenhouses of Almería, Spain: Technological Analysis and Profitability. Acta Hortic. 2017, 1170, 219–226. [Google Scholar] [CrossRef]
- FAOSTAT Database Crops and Livestock Products; FAO: Rome, Italy, 2022; Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 25 May 2024).
- De Cara, M.; Aguilera-Lirola, A.; Pérez-Hernández, A.; Espitia-Vázquez, I.; Gómez-Vázquez, J. Phytophthora capsici Emerging Simultaneously in Different Greenhouse Crops in Southeast Spain. Phytopathol. Med. 2017, 56, 290–291. [Google Scholar]
- De Cara, M.; Ayala-Doñas, A. First Report of Phytophthora capsici Causing Wilting and Crown and Root Rot on Eggplant (Solanum Melongena L.) in Southeastern Spain. Plant Dis. 2017, 102, 2044. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Tenorio, M.A.; Zanón, M.J.; de Cara, M.; Lupión, B.; Tello, J.C. Efficacy of Dimethyl Disulfide (DMDS) against Meloidogyne Sp. and Three Formae Speciales of Fusarium oxysporum under Controlled Conditions. Crop Prot. 2015, 78, 263–269. [Google Scholar] [CrossRef]
- Beckman, C.H. The Nature of Wilt Diseases of Plants; APS Press: St. Paul, MN, USA, 1987. [Google Scholar]
- Erwin, D.C.; Ribeiro, O.K. Phytophthora Diseases; APS Press: St. Paul, MN, USA, 1996. [Google Scholar]
- Plaats-Niterink, A.V.D. Monograph of the Genus Pythium. In Studies in Mycology; Centraalbureau voor Schimmelcultures: Baarn, The Netherlands, 1981; no. 21. [Google Scholar]
- Regulation (EU) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 on the Placing of Plant Protection Products on the Market; 2009. Available online: https://eur-lex.europa.eu/eli/reg/2009/1107/oj (accessed on 25 May 2024).
- Shah, S.T.; Basit, A.; Ullah, I.; Mohamed, H.I. Cyanobacteria and Algae as Biocontrol Agents against Fungal and Bacterial Plant Pathogens. In Plant Growth-Promoting Microbes for Sustainable Biotic and Abiotic Stress Management; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 1–23. [Google Scholar]
- Dukare, A.S.; Prasanna, R.; Chandra Dubey, S.; Nain, L.; Chaudhary, V.; Singh, R.; Saxena, A.K. Evaluating Novel Microbe Amended Composts as Biocontrol Agents in Tomato. Crop Prot. 2011, 30, 436–442. [Google Scholar] [CrossRef]
- Manjunath, M.; Prasanna, R.; Nain, L.; Dureja, P.; Singh, R.; Kumar, A.; Jaggi, S.; Kaushik, B.D. Biocontrol Potential of Cyanobacterial Metabolites against Damping off Disease Caused by Pythium aphanidermatum in Solanaceous Vegetables. Arch. Phytopathol. Plant Prot. 2010, 43, 666–677. [Google Scholar] [CrossRef]
- Najdenski, H.M.; Gigova, L.G.; Iliev, I.I.; Pilarski, P.S.; Lukavský, J.; Tsvetkova, I.V.; Ninova, M.S.; Kussovski, V.K. Antibacterial and Antifungal Activities of Selected Microalgae and Cyanobacteria. Int. J. Food Sci. Technol. 2013, 48, 1533–1540. [Google Scholar] [CrossRef]
- Senousy, H.H.; El-Sheekh, M.M.; Saber, A.A.; Khairy, H.M.; Said, H.A.; Alhoqail, W.A.; Abu-Elsaoud, A.M. Biochemical Analyses of Ten Cyanobacterial and Microalgal Strains Isolated from Egyptian Habitats, and Screening for Their Potential against Some Selected Phytopathogenic Fungal Strains. Agronomy 2022, 12, 1340. [Google Scholar] [CrossRef]
- Righini, H.; Francioso, O.; Martel Quintana, A.; Roberti, R. Cyanobacteria: A Natural Source for Controlling Agricultural Plant Diseases Caused by Fungi and Oomycetes and Improving Plant Growth. Horticulturae 2022, 8, 58. [Google Scholar] [CrossRef]
- El-Bestawy, E.A.; El-Salam, A.Z.A.; Mansy, A.E.R.H. Potential Use of Environmental Cyanobacterial Species in Bioremediation of Lindane-Contaminated Effluents. Int. Biodeterior. Biodegrad. 2007, 59, 180–192. [Google Scholar] [CrossRef]
- Ramakrishnan, B.; Maddela, N.R.; Venkateswarlu, K.; Megharaj, M. Potential of Microalgae and Cyanobacteria to Improve Soil Health and Agricultural Productivity: A Critical View. Environ. Sci. Adv. 2023, 2, 586–611. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J. Screening of Cyanobacteria (Blue-Green Algae) from Rice Paddy Soil for Antifungal Activity against Plant Pathogenic Fungi. Mycobiology 2018, 34, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Khairy, H.M.; El-Kassas, H.Y. Active substance from some blue green algal species used as antimicrobial agents. AJB 2010, 9, 19. [Google Scholar]
- Zhou, Y.; Bao, J.; Zhang, D.; Li, Y.; Li, H.; He, H. Effect of Heterocystous Nitrogen-Fixing Cyanobacteria against Rice Sheath Blight and the Underlying Mechanism. Appl. Soil. Ecol. 2020, 153, 103580. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.D. Inhibitory Effect of Algal Extracts on Mycelial Growth of the Tomato-Wilt Pathogen, Fusarium oxysporum f. sp. lycopersici. Mycobiology 2008, 36, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Perveen, K.; Alwathnani, H.A. Antifungal Activity of Methanol, Acetone and Diethyl Ether Extracts of Cyanobacteria against Plant Pathogenic Fungi. Asian J. Chem. 2013, 25, 7531–7534. [Google Scholar] [CrossRef]
- Shukla, J.; Gulia, U.; Gupta, H.; Gupta, K.; Gogoi, R.; Kumar, A.; Mahawar, H.; Nishanth, S.; Saxena, G.; Singh, A.K.; et al. Harnessing Cyanobacterium-Fungal Interactions to Develop Potting Mixes for Disease-Free Tomato Nursery. Phytoparasitica 2023, 51, 703–716. [Google Scholar] [CrossRef]
- Weber, B.; Belnap, J.; Büdel, B.; Antoninka, A.J.; Barger, N.N.; Chaudhary, V.B.; Darrouzet-Nardi, A.; Eldridge, D.J.; Faist, A.M.; Ferrenberg, S.; et al. What is a biocrust? A refined, contemporary definition for a broadening research community. Biol. Rev. Camb. Philos. Soc. 2022, 97, 1768–1785. [Google Scholar] [CrossRef]
- Roncero-Ramos, B.; Muñoz-Martín, M.Á.; Chamizo, S.; Fernández-Valbuena, L.; Mendoza, D.; Perona, E.; Cantón, Y.; Mateo, P. Polyphasic Evaluation of Key Cyanobacteria in Biocrusts from the Most Arid Region in Europe. PeerJ 2019, 7, e6169. [Google Scholar] [CrossRef]
- Rossi, F.; Li, H.; Liu, Y.; De Philippis, R. Cyanobacterial Inoculation (Cyanobacterisation): Perspectives for the Development of a Standardized Multifunctional Technology for Soil Fertilization and Desertification Reversal. Earth Sci. Rev. 2017, 171, 28–43. [Google Scholar] [CrossRef]
- Maggioli, L.; Chamizo, S.; Román, R.; Asensio-Grima, C.; Cantón, Y. Coupling sewage sludge amendment with cyanobacterial inoculation to enhance stability and carbon gain in dryland degraded soils. Agriculture 2022, 12, 1993. [Google Scholar] [CrossRef]
- Abdel Hameed, M.S.; Hassan, S.H.; Mohammed, R.; Gamal, R. Isolation and Characterization of Antimicrobial Active Compounds from the Cyanobacterium Nostoc commune. J. Pure Appl. Microbiol. 2013, 7, 109–116. [Google Scholar]
- Moheimani, N.R.; Borowitzka, M.A. The Long-Term Culture of the Coccolithophore Pleurochrysis Carterae (Haptophyta) in Outdoor Raceway Ponds. J. Appl. Phycol. 2006, 18, 703–712. [Google Scholar] [CrossRef]
- Lincoln, R.A.; Strupinski, K.; Walker, J.M. The Use of Artemia Nauplii (Brine Shrimp Larvae) to Detect Toxic Compounds from Microalgal Cultures. Pharm. Biol. 1996, 34, 384–389. [Google Scholar] [CrossRef]
- Volk, R.B.; Mundt, S. Cytotoxic and Non-Cytotoxic Exometabolites of the Cyanobacterium Nostoc insulare. J. Appl. Phycol. 2007, 19, 55–62. [Google Scholar] [CrossRef]
- Karseno; Harada, K.; Bamba, T.; Dwi, S.; Mahakhant, A.; Yoshikawa, T.; Hirata, K. Extracellular Phycoerythrin-like Protein Released by Freshwater Cyanobacteria Oscillatoria and Scytonema sp. Biotechnol. Lett. 2009, 31, 999–1003. [Google Scholar] [CrossRef] [PubMed]
- Arora, N.K. Plant Microbe Symbiosis: Fundamentals and Advances; Springer: New Delhi, India, 2013; ISBN 9788132212874. [Google Scholar]
- Righini, H.; Francioso, O.; Di Foggia, M.; Quintana, A.M.; Roberti, R. Assessing the Potential of the Terrestrial Cyanobacterium Anabaena Minutissima for Controlling Botrytis Cinerea on Tomato Fruits. Horticulturae 2021, 7, 210. [Google Scholar] [CrossRef]
- Righini, H.; Francioso, O.; Di Foggia, M.; Prodi, A.; Quintana, A.M.; Roberti, R. Tomato Seed Biopriming with Water Extracts from Anabaena Minutissima, Ecklonia Maxima and Jania Adhaerens as a New Agro-Ecological Option against Rhizoctonia Solani. Sci. Hortic. 2021, 281, 109921. [Google Scholar] [CrossRef]
- Prasanna, R.; Chaudhary, V.; Gupta, V.; Babu, S.; Kumar, A.; Singh, R.; Shivay, Y.S.; Nain, L. Cyanobacteria Mediated Plant Growth Promotion and Bioprotection against Fusarium Wilt in Tomato. Eur. J. Plant Pathol. 2013, 136, 337–353. [Google Scholar] [CrossRef]
- Roberti, R.; Galletti, S.; Burzi, P.L.; Righini, H.; Cetrullo, S.; Perez, C. Induction of defence responses in zucchini (Cucurbita pepo) by Anabaena sp. water extract. Biol. Control Theory Appl. Pest Manag. 2015, 82, 61–68. [Google Scholar] [CrossRef]
- Abdel-Hafez, S.I.I.; Abo-Elyousr, K.A.M.; Abdel-Rahim, I.R. Fungicidal activity of extracellular products of cyanobacteria against Alternaria porri. Eur. J. Phycol. 2015, 50, 239–245. [Google Scholar] [CrossRef]
- Toribio, A.J.; Jurado, M.M.; Suárez-Estrella, F.; López, M.J.; López-González, J.A.; Moreno, J. Seed Biopriming with Cyanobacterial Extracts as an Eco-Friendly Strategy to Control Damping off Caused by Pythium ultimum in Seedbeds. Microbiol. Res. 2021, 248, 126766. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Pichel, F.; Bebout, B.M. Penetration of Ultraviolet Radiation into Shallow Water Sediments: High Exposure for Photosynthetic Communities. Mar. Ecol. Prog. Ser. 1996, 131, 257–262. [Google Scholar] [CrossRef]
- Luna, L.; Miralles, I.; Andrenelli, M.C.; Gispert, M.; Pellegrini, S.; Vignozzi, N.; Solé-Benet, A. Restoration Techniques Affect Soil Organic Carbon, Glomalin and Aggregate Stability in Degraded Soils of a Semiarid Mediterranean Region. Catena 2016, 143, 256–264. [Google Scholar] [CrossRef]
- Chamizo, S.; Cantón, Y.; Miralles, I.; Domingo, F. Biological Soil Crust Development Affects Physicochemical Characteristics of Soil Surface in Semiarid Ecosystems. Soil. Biol. Biochem. 2012, 49, 96–105. [Google Scholar] [CrossRef]
- Rippka, R.; Deruelles, J.; Waterbury, J.B. Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. J. Gen. Microbiol. 1979, 111, 1–61. [Google Scholar] [CrossRef]
- Silva-Stenico, M.E.; Neto, R.C.; Alves, I.R.; Moraes, L.A.B.; Shishidoa, T.K.; Fiore, M.F. Hepatotoxin Microcystin-LR Extraction Optimization. J. Braz. Chem. Soc. 2009, 20, 535–542. [Google Scholar] [CrossRef]
- Tello, J.C.; Vares, F.; Lacasa, A. Análisis de Muestras. In Manual de Laboratorio. Diagnóstico de Hongos, Bacterias y Nematodos Fitopatógenos; MAPA: Madrid, Spain, 1991. [Google Scholar]
- Jeffers, S.N. Comparison of Two Media Selective for Phytophthora and Pythium species. Plant Dis. 1986, 70, 1038. [Google Scholar] [CrossRef]
- Simko, I.; Piepho, H. Analytical and Theoretical Plant Pathology e–X Tra * The Area Under the Disease Progress Stairs: Calculation, Advantage, and Application. Phytopathology 2012, 102, 381–389. [Google Scholar] [CrossRef]
- De Cara, M.; Pérez-Vargas, M.; Santos-Hernández, M.; Tello-Marquina, J.C.; Palmero, D.; Gómez-Vázquez, J. Inoculum Sources and Preservation in Soils of Phytophthora parasitica from Cherry Tomato in Continental Crop Areas in Southeast Spain. Acta Hortic. 2011, 914, 105–108. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2022. [Google Scholar]
- Prasanna, R.; Nain, L.; Tripathi, R.; Gupta, V.; Chaudhary, V.; Middha, S.; Joshi, M.; Ancha, R.; Kaushik, B.D. Evaluation of Fungicidal Activity of Extracellular Filtrates of Cyanobacteria-Possible Role of Hydrolytic Enzymes. J. Basic Microbiol. 2008, 48, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Fukamizo, T.; Ohkawa, T.; Sonoda, K.; Toyoda, H.; Nishiguchi, T.; Ouchi, S.; Goto, S. Chitinous components of the cell wall of Fusarium oxysporum. Biosci. Biotechnol. Biochem. 1992, 56, 1632–1636. [Google Scholar] [CrossRef] [PubMed]
- Clavaud, C.; Aimanianda, V.; Latge, J.P. Organization of Fungal, Oomycete and Lichen (1,3)-β-Glucans. In Chemistry, Biochemistry, and Biology of 1-3 Beta Glucans and Related Polysaccharides; Academic Press: Cambridge, MA, USA, 2009; pp. 387–424. [Google Scholar] [CrossRef]
- Schoffelmeer, E.A.M.; Klis, F.M.; Sietsma, J.H.; Cornelissen, B.J.C. The Cell Wall of Fusarium Oxysporum; Elsevier: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Mélida, H.; Sandoval-Sierra, J.V.; Diéguez-Uribeondo, J.; Bulone, V. Analyses of Extracellular Carbohydrates in Oomycetes Unveil the Existence of Three Different Cell Wall Types. Eukaryot. Cell 2013, 12, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Schrader, K.K.; Nagle, D.G.; Wedge, D.E. Algal and Cyanobacterial Metabolites as Agents for Pest Management. In Advances in Microbial Toxin Research and Its Biotechnological Exploitation; Springer: Boston, MA, USA, 2002; pp. 171–195. ISBN 9781441933843. [Google Scholar]
- Blagojević, D.; Babić, O.; Rašeta, M.; Šibul, F.; Janjušević, L.; Simeunović, J. Antioxidant Activity and Phenolic Profile in Filamentous Cyanobacteria: The Impact of Nitrogen. J. Appl. Phycol. 2018, 30, 2337–2346. [Google Scholar] [CrossRef]
- Qi, R.; Wang, T.; Zhao, W.; Li, P.; Ding, J.; Gao, Z. Activity of Ten Fungicides against Phytophthora capsici Isolates Resistant to Metalaxyl. J. Phytopathol. 2012, 160, 717–722. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Chen, P.C.; Tsay, T.T. The Biocontrol Efficacy and Antibiotic Activity of Streptomyces Plicatus on the Oomycete Phytophthora capsici. Biol. Control 2016, 98, 34–42. [Google Scholar] [CrossRef]
- Roncero-Ramos, B.; Román, J.R.; Gómez-Serrano, C.; Cantón, Y.; Acién, F.G. Production of a Biocrust-Cyanobacteria Strain (Nostoc commune) for Large-Scale Restoration of Dryland Soils. J. Appl. Phycol. 2019, 31, 2217–2230. [Google Scholar] [CrossRef]
- Agrios, G.N. Fitopatologia; Academic Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Kulik, M.M. The Potential for Using Cyanobacteria (Blue-Green Algae) and Algae in the Biological Control of Plant Pathogenic Bacteria and Fungi. Eur. J. Plant Pathol. 1995, 101, 585–599. [Google Scholar] [CrossRef]
- Elnahal, A.S.; El-Saadony, M.T.; Saad, A.M.; Desoky ES, M.; El-Tahan, A.M.; Rady, M.M.; El-Tarabily, K.A. The Use of Microbial Inoculants for Biological Control, Plant Growth Promotion, and Sustainable Agriculture: A Review. Eur. J. Plant Pathol. 2022, 162, 759–792. [Google Scholar] [CrossRef]
- Yadav, P.; Singh, R.P.; Hashem, A.; Abd Allah, E.F.; Santoyo, G.; Kumar, A.; Gupta, R.K. Enhancing biocrust development and plant growth through inoculation of desiccation-tolerant Cyanobacteria in different textured soils. Microorganisms 2023, 11, 2507. [Google Scholar] [CrossRef] [PubMed]
Cyanobacterium | Phytopathogen | Plant | References |
---|---|---|---|
Anabaena laxa RPAN8 | Fusarium solani ITCC 6731 Rhizoctonia solani ITCC6180 | Tomato | [26] |
Anabaena minutissima BEA0300B | Botrytis cinerea 06 Rhizoctonia solani DAFS3001 | Tomato | [37,38] |
RPAN8 A. laxa RPAN59 A. variabilis. | Fusarium oxysporum f. sp. lycopersici (ITCC 4998) Fusarium moniliforme (ITCC 4223) | Tomato | [39] |
Anabaena sp. BEA0300B. | Podosphaera xanthii | Zucchini | [40] |
Anabaena oryzae, Arthrospira sp., Nostoc minutum, Nostoc muscorum Oscillatoria sp. | Alternaria porri | Onion | [41] |
Tolypothrix sp. SAB-M465 Anabaena sp. SAB-B912 | Pythium ultimum CECT 2365 | Cucumber | [42] |
Factor 1: Cyanobacterium Strain | Factor 2: Growth Phase | Factor 3: Product Treatment |
---|---|---|
Nostoc commune | Stationary | Raw ‘living’ cultures |
Scytonema hyalinum | Logarithmic | Filtrated cultures |
Tolypothrix distorta | Sonicated cultures |
Cyanobacteria Strain | |||
---|---|---|---|
Target Phytopathogen | N. commune | S. hyalinum | T. distorta |
P. capsici | 71 ± 7 | 61 ± 7 | 57 ± 16 |
F. oxysporum | 41 ± 9 | 13 ± 9 | 11 ± 4 |
P. aphanidermatum | 32 ± 9 | 3 ± 20 | 7 ± 14 |
Factor | P. capsici | F. oxysporum | P. aphanidermatum |
---|---|---|---|
Cyanobacterium strain | <2 × 10−16 * | <2 × 10−16 * | 4.38 × 10−10 * |
Growth phase | <2 × 10−16 * | <2 × 10−16 * | 0.807 |
Treatment | <2 × 10−16 * | 2.05 × 10−6 * | 0.001 * |
Cyanobacterium strain * Growth phase | <2 × 10−16 * | 3.73 × 10−13 * | 1.39 × 10−05 * |
Cyanobacterium strain * Treatment | 8.86 × 10−12 * | 4.18 × 10−06 * | 0.208 |
Growth phase * Treatment | 5.50 × 10−13 * | 3.60 × 10−06 * | 0.031 * |
Growth phase * Cyanobacterium strain * Treatment | <2 × 10−16 * | <2 × 10−16 * | 0.208 |
Treatment | Growth Phase | Pathogen | %Symptomatic Plants | a AUDPS (Symptoms) | % Dead Plants | b AUDPS (Death) | c DSI |
---|---|---|---|---|---|---|---|
raw culture | logarithmic | yes | 100.0 | 29.88 | 16.7 | 1.92 | 1.83 |
extract | logarithmic | yes | 83.3 | 35.46 | 25.0 | 6.21 | 2.33 |
raw culture | stationary | yes | 91.7 | 47.54 | 33.3 | 7.67 | 2.67 |
extract | stationary | yes | 100.0 | 51.83 | 50.0 | 13.75 | 2.42 |
reference | yes | 100.0 | 45.21 | 33.3 | 8.38 | 2.17 | |
p-value | 0.4842 | 0.2017 | 0.6483 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Águila-Carricondo, P.; Román, R.; Marín-Guirao, J.I.; Cantón, Y.; de Cara, M. Native Biocrust Cyanobacteria Strains Showing Antagonism against Three Soilborne Pathogenic Fungi. Pathogens 2024, 13, 579. https://doi.org/10.3390/pathogens13070579
Águila-Carricondo P, Román R, Marín-Guirao JI, Cantón Y, de Cara M. Native Biocrust Cyanobacteria Strains Showing Antagonism against Three Soilborne Pathogenic Fungi. Pathogens. 2024; 13(7):579. https://doi.org/10.3390/pathogens13070579
Chicago/Turabian StyleÁguila-Carricondo, Pilar, Raúl Román, José Ignacio Marín-Guirao, Yolanda Cantón, and Miguel de Cara. 2024. "Native Biocrust Cyanobacteria Strains Showing Antagonism against Three Soilborne Pathogenic Fungi" Pathogens 13, no. 7: 579. https://doi.org/10.3390/pathogens13070579
APA StyleÁguila-Carricondo, P., Román, R., Marín-Guirao, J. I., Cantón, Y., & de Cara, M. (2024). Native Biocrust Cyanobacteria Strains Showing Antagonism against Three Soilborne Pathogenic Fungi. Pathogens, 13(7), 579. https://doi.org/10.3390/pathogens13070579