First Detection of Alphacoronavirus in Bats from the World’s Largest Wetland, the Pantanal, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bat Capture and Sample Collection
2.2. Genetic Extraction and RT-Nested-PCR for Orthocoronavirinae Detection
2.3. Nucleotide Sequencing and Phylogenetic Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tazerji, S.S.; Nardini, R.; Safdar, M.; Shehata, A.A.; Duarte, P.M. An Overview of Anthropogenic Actions as Drivers for Emerging and Re-Emerging Zoonotic Diseases. Pathogens 2022, 11, 1376. [Google Scholar] [CrossRef] [PubMed]
- Ellwanger, J.H.; Fearnside, P.M.; Ziliotto, M.; Valverde-Villegas, J.M.; Veiga, A.B.G.D.; Vieira, G.F.; Bach, E.; Cardoso, J.C.; Müller, N.F.D.; Lopes, G.; et al. Synthesizing the Connections between Environmental Disturbances and Zoonotic Spillover. Acad. Bras. Cienc. 2022, 94, e20211530. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Pulido, D.; Ouma, W.Z.; Kenney, S.P. Differing Coronavirus Genres Alter Shared Host Signaling Pathways upon Viral Infection. Sci. Rep. 2022, 12, 9744. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.N.; da Silva, M.S. Corona- and Paramyxoviruses in Bats from Brazil: A Matter of Concern? Animals 2023, 14, 88. [Google Scholar] [CrossRef] [PubMed]
- Sikkema, R.S.; Koopmans, M.P.G. Preparing for Emerging Zoonotic Viruses. Encycl. Virol. 2021, 5, 256–266. [Google Scholar] [CrossRef]
- Barbosa, C.M.; Durigon, E.L.; Thomazelli, L.M.; Ometto, T.; Marcatti, R.; Nardi, M.S.; de Aguiar, D.M.; Pinho, J.B.; Petry, M.V.; Neto, I.S.; et al. Divergent Coronaviruses Detected in Wild Birds in Brazil, Including a Central Park in São Paulo. Braz. J. Microbiol. 2019, 50, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Marchenko, V.; Danilenko, A.; Kolosova, N.; Bragina, M.; Molchanova, M.; Bulanovich, Y.; Gorodov, V.; Leonov, S.; Gudymo, A.; Onkhonova, G.; et al. Diversity of Gammacoronaviruses and Deltacoronaviruses in Wild Birds and Poultry in Russia. Sci. Rep. 2022, 12, 19412. [Google Scholar] [CrossRef]
- Caraballo, D.A. Cross-Species Transmission of Bat Coronaviruses in the Americas: Contrasting Patterns between Alphacoronavirus and Betacoronavirus. Microbiol. Spectr. 2022, 10, e0141122. [Google Scholar] [CrossRef] [PubMed]
- Arteaga, F.L.; Miragaya, M.; Molina, N.; Mondino, M.A.; Bracamonte, J.C.; Capitelli, G.M.; Mundo, S.; Bratanich, A.C. Circulation of Coronavirus in Bats from Northern and Central Argentina: Preliminary Study. Int. J. Infect. Dis. 2022, 116, S76–S77. [Google Scholar] [CrossRef]
- Letko, M.; Seifert, S.N.; Olival, K.J.; Plowright, R.K.; Munster, V.J. Bat-Borne Virus Diversity, Spillover and Emergence. Nat. Rev. Microbiol. 2020, 18, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Asano, K.M.; Hora, A.S.; Scheffer, K.C.; Fahl, W.O.; Iamamoto, K.; Mori, E.; Brandão, P.E. Alphacoronavirus in Urban Molossidae and Phyllostomidae Bats, Brazil. Virol. J. 2016, 13, 110. [Google Scholar] [CrossRef] [PubMed]
- Bittar, C.; Machado, R.R.G.; Comelis, M.T.; Bueno, L.M.; Beguelini, M.R.; Morielle-Versute, E.; Nogueira, M.L.; Rahal, P. Alphacoronavirus Detection in Lungs, Liver, and Intestines of Bats from Brazil. Microb. Ecol. 2020, 79, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Bueno, L.M.; Rizotto, L.S.; de Oliveira Viana, A.; Silva, L.M.N.; de Moraes, M.V.D.S.; Benassi, J.C.; Scagion, G.P.; Dorlass, E.G.; Lopes, B.L.T.; Cunha, I.N.; et al. High Genetic Diversity of Alphacoronaviruses in Bat Species (Mammalia: Chiroptera) from the Atlantic Forest in Brazil. Transbound. Emerg. Dis. 2022, 69, e2863–e2875. [Google Scholar] [CrossRef]
- Góes, L.G.B.; de Almeida Campos, A.C.; de Carvalho, C.; Ambar, G.; Queiroz, L.H.; Cruz-Neto, A.P.; Munir, M.; Durigon, E.L. Genetic Diversity of Bats Coronaviruses in the Atlantic Forest Hotspot Biome, Brazil. Infect. Genet. Evol. 2016, 44, 510–513. [Google Scholar] [CrossRef] [PubMed]
- Abreu, E.F.; Casali, D.; Costa-Araújo, R.; Garbino, G.S.T.; Libardi, G.S.; Loretto, D.; Loss, A.C.; Marmontel, M.; Moras, L.M.; Nascimento, M.C.; et al. Lista de Mamíferos do Brasil; Zenodo: Genève, Switzerland, 2023. [Google Scholar]
- Garbino, G.S.T.; Cláudio, V.C.; Gregorin, R.; Lima, I.P.; Loureiro, L.O.; Moras, L.M.; Moratelli, R.; do Nascimento, M.C.; Nogueira, M.R.; Novaes, R.L.M.; et al. Updated Checklist of Bats (Mammalia: Chiroptera) from Brazil. Zoologia 2024, 41, e23073. [Google Scholar] [CrossRef]
- Reis, N.R.D.; Peracchi, A.L.; Pedro, W.A.; Lima, I.P. De Morcegos Do Brasil; Reis: Londrina, Brasil, 2007; ISBN 978-85-906395-1-0. [Google Scholar]
- Chu, D.K.W.; Leung, C.Y.H.; Gilbert, M.; Joyner, P.H.; Ng, E.M.; Tse, T.M.; Guan, Y.; Peiris, J.S.M.; Poon, L.L.M. Avian Coronavirus in Wild Aquatic Birds. J. Virol. 2011, 85, 12815. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Larsson, A. AliView: A Fast and Lightweight Alignment Viewer and Editor for Large Datasets. Bioinformatics 2014, 30, 3276–3278. [Google Scholar] [CrossRef] [PubMed]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Simas, P.V.M.; de Souza Barnabé, A.C.; Durães-Carvalho, R.; de Lima Neto, D.F.; Caserta, L.C.; Artacho, L.; Jacomassa, F.A.F.; Martini, M.C.; dos Santos, M.M.A.B.; Felippe, P.A.N.; et al. Bat Coronavirus in Brazil Related to Appalachian Ridge and Porcine Epidemic Diarrhea Viruses. Emerg. Infect. Dis. 2015, 21, 729. [Google Scholar] [CrossRef] [PubMed]
- Góes, L.G.B.; Ruvalcaba, S.G.; Campos, A.A.; Queiroz, L.H.; de Carvalho, C.; Jerez, J.A.; Durigon, E.L.; Dávalos, L.I.I.; Dominguez, S.R. Novel Bat Coronaviruses, Brazil and Mexico. Emerg. Infect. Dis. 2013, 19, 1711. [Google Scholar] [CrossRef] [PubMed]
- Wacharapluesadee, S.; Thippamom, N.; Hirunpatrawong, P.; Rattanatumhi, K.; Sterling, S.L.; Khunnawutmanotham, W.; Noradechanon, K.; Maneeorn, P.; Buathong, R.; Paitoonpong, L.; et al. Comparative Performance in the Detection of Four Coronavirus Genera from Human, Animal, and Environmental Specimens. Viruses 2024, 16, 534. [Google Scholar] [CrossRef]
- Arzi, Y.; Segoli, M.; Schäckermann, J.; Korine, C. Providing Water Sources to Insectivorous Bats for Conservation Biological Control in Arid Date Plantations. Biol. Control 2023, 187, 105374. [Google Scholar] [CrossRef]
- de Souza Laurindo, R.; Vizentin-Bugoni, J.; Tavares, D.C.; Mancini, M.C.S.; de Macêdo Mello, R.; Gregorin, R. Drivers of Bat Roles in Neotropical Seed Dispersal Networks: Abundance Is More Important than Functional Traits. Oecologia 2020, 193, 189–198. [Google Scholar] [CrossRef]
- Hernández-Aguilar, I.; Lorenzo, C.; Santos-Moreno, A.; Naranjo, E.J.; Navarrete-Gutiérrez, D. Coronaviruses in Bats: A Review for the Americas. Viruses 2021, 13, 1226. [Google Scholar] [CrossRef]
- Ruiz-Aravena, M.; McKee, C.; Gamble, A.; Lunn, T.; Morris, A.; Snedden, C.E.; Yinda, C.K.; Port, J.R.; Buchholz, D.W.; Yeo, Y.Y.; et al. Ecology, evolution and spillover of coronaviruses from bats. Nat. Rev. Microbiol. 2021, 20, 299. [Google Scholar] [CrossRef] [PubMed]
- Marques, J.F.; Alves, M.B.; Silveira, C.F.; Amaral e Silva, A.; Silva, T.A.; dos Santos, V.J.; Calijuri, M.L. Fires Dynamics in the Pantanal: Impacts of Anthropogenic Activities and Climate Change. J. Environ. Manag. 2021, 299, 113586. [Google Scholar] [CrossRef] [PubMed]
- Tomas, W.M.; Berlinck, C.N.; Chiaravalloti, R.M.; Faggioni, G.P.; Strüssmann, C.; Libonati, R.; Abrahão, C.R.; do Valle Alvarenga, G.; de Faria Bacellar, A.E.; de Queiroz Batista, F.R.; et al. Distance Sampling Surveys Reveal 17 Million Vertebrates Directly Killed by the 2020’s Wildfires in the Pantanal, Brazil. Sci. Rep. 2021, 11, 23547. [Google Scholar] [CrossRef] [PubMed]
- Libonati, R.; DaCamara, C.C.; Peres, L.F.; de Carvalho, L.A.S.; Garcia, L.C. Rescue Brazil’s Burning Pantanal Wetlands. Nature 2020, 588, 217–219. [Google Scholar] [CrossRef] [PubMed]
- Eby, P.; Peel, A.J.; Hoegh, A.; Madden, W.; Giles, J.R.; Hudson, P.J.; Plowright, R.K. Pathogen Spillover Driven by Rapid Changes in Bat Ecology. Nature 2023, 613, 340–344. [Google Scholar] [CrossRef]
- Festa, F.; Ancillotto, L.; Santini, L.; Pacifici, M.; Rocha, R.; Toshkova, N.; Amorim, F.; Benítez-López, A.; Domer, A.; Hamidović, D.; et al. Bat Responses to Climate Change: A Systematic Review. Biol. Rev. 2023, 98, 19–33. [Google Scholar] [CrossRef]
Municipality | Location | Geographic Coordinates |
---|---|---|
Cuiabá | 1 Coxipó do ouro | −15°27′25″; −056°03′50″ |
2 INPP | −15°36′23″; −056°03′45″ | |
3 Urban area NDL | −15°36′36″; −056°07′28″ | |
4 CK Equine medicine | −15°37′25″; −056°02′36″ | |
Nobres | 5 Pé-de-serra ranch | −14°37′48″; −056°09′27″ |
Poconé | 6 São João ranch | −16°56′40″; −056°38′15″ |
7 Porto Cercado | −16°30′43″; −056°24′57″ | |
8 São Pedro ranch | −16°06′55″; −057°03′47″ | |
9 Pouso Alegre | −16°30′11″; −056°44′44″ | |
10 Rio Claro | −16°37′07″; −056°44′13″ | |
Santo Antônio do Leverger | 11 Recanto AME+ | −15°48′22″; −056°04′53″ |
12 Mimoso | −16°11′42″; −055°48′25″ | |
13 Mimoso | −16°12′40″; −055°48′26″ | |
14 Mimoso | −16°14′15″; −055°46′45″ | |
15 Memorial do Rondon | −16°15′14″; −055°47′12″ | |
16 Baía de Chacororé | −16°15′49″; −055°51′32″ | |
17 Mimoso | −16°16′04″, −055°47′46″ | |
18 Baía de Sinhá Mariana | −16°20′24″; −055°53′57″ | |
19 Baía São João | −16°44′31″; −055°33′05″ | |
20 Tamanduá | −16°45′03″; −055°40′36″ | |
21 São Lourenço | −16°45′16″; −055°34′02″ |
Forward 1 | CHU1F: 5′ GGKTGGGAYTAYCCKAARTG 3′ |
Reverse 1 | CHU1R: 5′ TGYTGTSWRCARAAYTCRTG 3′ |
Forward 2 | CHU2F: 5′ GGTTGGGACTATCCTAAGTGTGA 3′ |
Reverse 2 | CHU2R: 5′ CCATCATCAGATAGAATCATCAT 3’ |
Family | Species | Abundance (n°) |
---|---|---|
Phyllostomidae | Glossophaga soricina | 110 |
Carollia perspicillata | 80 | |
Artibeus planirostris | 33 | |
Artibeus obscurus | 25 | |
Platyrrhinus lineatus | 22 | |
Phyllostomus hastatus | 19 | |
Desmodus rotundus | 15 | |
Macrophyllum macrophyllum | 14 | |
Trachops cirrhosus | 9 | |
Lophostoma silvicola | 2 | |
Lophostoma brasiliense | 1 | |
Sturnira lilium | 1 | |
Carollia sp. | 1 | |
Molossidae | Molossops temminckii | 6 |
Molossus molossus | 5 | |
Molossus rufus | 5 | |
Cynomops planirostris | 2 | |
Molossus sp. | 1 | |
Vespertilionidae | Myotis cf. nigricans | 29 |
Eptesicus sp. | 2 | |
Myotis sp. | 1 | |
Rhogeessa io | 1 | |
Noctilionidae | Noctilio albiventris | 24 |
Noctilio leporinus | 1 | |
Emballonuridae | Rhynchonycteris naso | 6 |
Mormoopidae | Pteronotus sp. | 4 |
Family | Species (%) | Locality | Number |
---|---|---|---|
Phyllostomidae | Artibeus planirostris (3%) | Coxipó do ouro | 1 |
Carollia perspicillata (23.7%) | Baía de São João | 9 | |
Baía de Sinhá Mariana | 1 | ||
Tamanduá | 5 | ||
Mimoso | 3 | ||
Rio Claro | 1 | ||
Desmodus rotundus (6.6%) | Rio Claro | 1 | |
Glossophaga soricina (16%) | Baia de São João | 6 | |
Coxipó do ouro | 2 | ||
Mimoso | 8 | ||
Pouso Alegre | 2 | ||
Phyllostomus hastatus (42.1%) | Mimoso | 2 | |
Recanto AME+ | 1 | ||
Baía de São João | 5 | ||
Platyrrhinus lineatus (7.7%) | Baía de Sinhá Mariana | 1 | |
Molossidae | Cynomops planirostris (100%) | Baía de Sinhá Mariana | 2 |
Molossus molossus (20%) | Baía de Sinhá Mariana | 1 | |
Molossus rufus (20%) | Recanto AME+ | 1 | |
Molossus sp. (20%) | Coxipó do Ouro | 1 | |
Mormoopidae | Pteronotus sp. (75%) | Coxipó do Ouro | 3 |
Noctilionidae | Noctilio albiventris (25%) | Baía de Sinhá Mariana Mimoso | 5 1 |
Vespertilionidae | Myotis cf. nigricans (100%) | Baía de Sinhá Mariana | 1 |
Baía de São João | 6 | ||
Mimoso | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magalhães, T.B.S.; Viana, A.d.O.; Semedo, T.B.F.; Saldanha, J.S.; Reis, N.A.d.; Pereira, N.d.A.; Barros, R.V.P.d.; Miranda, H.R.; Almeida, G.C.; Ozaki, D.Y.S.R.; et al. First Detection of Alphacoronavirus in Bats from the World’s Largest Wetland, the Pantanal, Brazil. Pathogens 2025, 14, 58. https://doi.org/10.3390/pathogens14010058
Magalhães TBS, Viana AdO, Semedo TBF, Saldanha JS, Reis NAd, Pereira NdA, Barros RVPd, Miranda HR, Almeida GC, Ozaki DYSR, et al. First Detection of Alphacoronavirus in Bats from the World’s Largest Wetland, the Pantanal, Brazil. Pathogens. 2025; 14(1):58. https://doi.org/10.3390/pathogens14010058
Chicago/Turabian StyleMagalhães, Tayane B. S., Amanda de O. Viana, Thiago B. F. Semedo, Juliane S. Saldanha, Nicole A. dos Reis, Nathalia de A. Pereira, Rachel V. P. de Barros, Hannah R. Miranda, Gabriella C. Almeida, Desyrée Y. S. R. Ozaki, and et al. 2025. "First Detection of Alphacoronavirus in Bats from the World’s Largest Wetland, the Pantanal, Brazil" Pathogens 14, no. 1: 58. https://doi.org/10.3390/pathogens14010058
APA StyleMagalhães, T. B. S., Viana, A. d. O., Semedo, T. B. F., Saldanha, J. S., Reis, N. A. d., Pereira, N. d. A., Barros, R. V. P. d., Miranda, H. R., Almeida, G. C., Ozaki, D. Y. S. R., Caleiro, G. S., Fenner, G. O., Vizu, F. P., Kraiser, T., Carvalho, T. P., Thomazelli, L. M., Dorlass, E. G., Arns, C. W., Ferreira, H. L., ... Aguiar, D. M. d. (2025). First Detection of Alphacoronavirus in Bats from the World’s Largest Wetland, the Pantanal, Brazil. Pathogens, 14(1), 58. https://doi.org/10.3390/pathogens14010058