Genomic and Drug Resistance Profile of Bovine Multidrug-Resistant Escherichia coli Isolated in Kazakhstan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection, Isolation, and Identification of E. coli
2.2. DNA Extraction, Genome Sequencing, Assembly, and Annotation
2.3. Antimicrobial Susceptibility Testing
3. Results
3.1. Overview of E. coli Strain 35 Draft Genome Assembly
3.2. Functional Annotation of the Genome
3.3. Drug Resistance Profile
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nataro, J.P.; Kaper, J.B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 1998, 11, 142–201. [Google Scholar] [CrossRef]
- Bashahun, G.; Amina, A. Colibacillosis in calves: A review of literature. J. Anim. Sci. Vet. Med. 2017, 2, 62–71. [Google Scholar] [CrossRef]
- Pokharel, P.; Dhakal, S.; Dozois, C.M. The Diversity of E. coli Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen. Microorganisms 2023, 11, 344. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Liaqat, S.; Tariq, H.; Abbas, S.; Arshad, M.; Li, W.-J.; Ahmed, I. Neonatal calf diarrhea: A potent reservoir of multi-drug resistant bacteria, environmental contamination and public health hazard in Pakistan. Sci. Total Environ. 2021, 799, 149450. [Google Scholar] [CrossRef] [PubMed]
- Poole, T.L.; Callaway, T.R.; Norman, K.N.; Scott, H.M.; Loneragan, G.H.; Ison, S.A.; Beier, R.C.; Harhay, D.M.; Norby, B.; Nisbet, D.J. Transferability of antimicrobial resistance from multidrug-resistant Escherichia coli isolated from cattle in the USA to E. coli and Salmonella Newport recipients. J. Glob. Antimicrob. Resist. 2017, 11, 123–132. [Google Scholar] [CrossRef]
- Barlow, R.S.; Fegan, N.; Gobius, K.S. A comparison of antibiotic resistance integrons in cattle from separate beef meat production systems at slaughter. J. Appl. Microbiol. 2008, 104, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Adamie, B.A.; Akwar, H.T.; Arroyo, M.; Bayko, H.; Hafner, M.; Harrison, S.; Jeannin, M.; King, D.; Kweon, S.; Kyeong, N.D.; et al. Forecasting the Fallout from AMR: Economic Impacts of Antimicrobial Resistance in Food-Producing Animals—A Report from the EcoAMR Series; World Organisation for Animal Health: Paris, France; World Bank: Washington, DC, USA, 2024; p. 170. [Google Scholar] [CrossRef]
- Gemeda, B.A.; Wieland, B.; Alemayehu, G.; KnightJones, T.J.D.; Wodajo, H.D.; Tefera, M.; Kumbe, A.; Olani, A.; Abera, S.; Amenu, K. Antimicrobial resistance of Escherichia coli isolates from Livestock and the environment in extensive smallholder Livestock production systems in Ethiopia. Antibiotics 2023, 12, 941. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 1 September 2024).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Lomsadze, A.; Gemayel, K.; Tang, S.; Borodovsky, M. Modeling leaderless transcription and atypical genes results in more ac-curate gene prediction in prokaryotes. Genome Res. 2018, 29, 1079–1089. [Google Scholar] [CrossRef] [PubMed]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid Annotations Using Subsystems Technology. BMC Genomics 2008, 9, 75. [Google Scholar] [CrossRef]
- Yoon, S.H.; Ha, S.M.; Lim, J.M.; Kwon, S.J.; Chun, J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Leeuwenhoek 2017, 110, 1281–1286. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.W.; Alcock, B.P.; French, S.; Farha, M.A.; Raphenya, A.R.; Brown, E.D.; McArthur, A.G. A standardized nomenclature for resistance-modifying agents in the Comprehensive Antibiotic Resistance Database. Microbiol. Spectr. 2023, 11, e02744239. [Google Scholar] [CrossRef] [PubMed]
- Société Française de Microbiologie. Comité de L’antibiogramme de la Société Française de Microbiologie. Recommandations Vétérinaires 2021. Available online: https://www.sfm-microbiologie.org/wp-content/uploads/2021/12/CASFM_VET2021.pdf (accessed on 2 November 2024).
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2023; CLSI Supplement M100. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Cho, Y.I.; Yoon, K.J. An overview of calf diarrhea-infectious etiology, diagnosis, and intervention. J. Vet. Sci. 2014, 15, 1–17. [Google Scholar] [CrossRef]
- Kolenda, R.; Burdukiewicz, M.; Schierack, P. Systematic review and meta-analysis of the epidemiology of pathogenic Escherichia coli of calves and the role of calves as reservoirs for human pathogenic E. coli. Front. Cell. Infect. Microbiol. 2015, 5, 23. [Google Scholar] [CrossRef]
- WHO. Antimicrobial Resistance. 21 November 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 30 November 2024).
- Kuzeubayeva, A.; Ussenbayev, A.; Aydin, A.; Akanova, Z.; Rychshanova, R.; Abdullina, E.; Seitkamzina, D.; Sakharia, L.; Ruzmatov, S. Contamination of Kazakhstan cheeses originating from Escherichia coli and its resistance to antimicrobial drugs. Vet. World 2024, 17, 361–370. [Google Scholar] [CrossRef]
- Mendybayeva, A.M.; Aliyeva, G.K.; Chuzhebayeva, G.D.; Tegza, A.A.; Rychshanova, R.M. Antibiotic resistance of enterobacterial pathogens isolated on the territory of the Northern Kazakhstan. Comp. Immunol. Microbiol. Infect. Dis. 2022, 87, 101854. [Google Scholar] [CrossRef] [PubMed]
- Grevskott, D.H.; Salvà-Serra, F.; Moore, E.R.B.; Marathe, N.P. Nanopore sequencing reveals genomic map of CTX-M-type extended-spectrum β-lactamases carried by Escherichia coli strains isolated from blue mussels (Mytilus edulis) in Norway. BMC Microbiol. 2020, 20, 134. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Sun, M.; Guo, S.; Wang, Y.; Meng, L.; Shi, J.; Geng, C.; Han, D.; Fu, X.; Xue, J.; et al. Detection of drug resistance in Escherichia coli from calves with diarrhea in the Tongliao region: An analysis of multidrug-resistant strains. Front. Vet. Sci. 2024, 13, 1466690. [Google Scholar] [CrossRef]
- Jia, Y.; Mao, W.; Liu, B.; Zhang, S.; Cao, J.; Xu, X. Study on the drug resistance and pathogenicity of Escherichia coli isolated from calf diarrhea and the distribution of virulence genes and antimicrobial resistance genes. Front. Microbiol. 2022, 13, 992111. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Critically Important Antimicrobials for Human Medicine: Ranking of Antimicrobial Agents for Risk Management of Antimicrobial Resistance Due to Non-Human Use; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Schmidt, J.; Zdarska, V.; Kolar, M.; Mlynarcik, P. Analysis of BlaEC family class C beta-lactamase. FEMS Microbiol. Lett. 2023, 370, fnad097. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Younis, E.E.; Osman, S.A.; Ishida, Y.; El-Khodery, S.A.; Shimamoto, T. Genetic analysis of antimicrobial resistance in Escherichia coli isolated from diarrheic neonatal calves. Vet. Microbiol. 2009, 136, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.M.; Shimamoto, T. Molecular characterization of antimicrobial resistance in Gram-negative bacteria isolated from bovine mastitis in Egypt. Microbiol. Immunol. 2011, 55, 318–327. [Google Scholar] [CrossRef]
- Ahmed, W.; Neubauer, H.; Tomaso, H.; El Hofy, F.I.; Monecke, S.; Abd El-Tawab, A.A.; Hotzel, H. Characterization of Enterococci- and ESBL-Producing Escherichia coli Isolated from Milk of Bovides with Mastitis in Egypt. Pathogens 2021, 10, 97. [Google Scholar] [CrossRef] [PubMed]
- Janssen, A.B.; van Schaik, W. Harder, better, faster, stronger: Colistin resistance mechanisms in Escherichia coli. PLoS Genet. 2021, 17, e1009262. [Google Scholar] [CrossRef] [PubMed]
- Baron, S.; Leulmi, Z.; Villard, C.; Olaitan, A.O.; Telke, A.A.; Rolain, J.M. Inactivation of the arn operon and loss of aminoarabinose on lipopolysaccharide as the cause of susceptibility to colistin in an atypical clinical isolate of Proteus vulgaris. Int. J. Antimicrob. Agents 2018, 51, 450–457. [Google Scholar] [CrossRef]
- Humphrey, M.; Larrouy-Maumus, G.J.; Furniss, R.C.D.; Mavridou, D.A.I.; Sabnis, A.; Edwards, A.M. Colistin resistance in Escherichia coli confers protection of the cytoplasmic but not outer membrane from the polymyxin antibiotic. Microbiology 2021, 167, 001104. [Google Scholar] [CrossRef] [PubMed]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef] [PubMed]
- Awad, W.S.; El-Sayed, A.A.; Mohammed, F.F.; Bakry, N.M.; Abdou, N.-E.M.I.; Kamel, M.S. Molecular characterization of pathogenic Escherichia coli isolated from diarrheic and in-contact cattle and buffalo calves. Trop. Anim. Health Prod. 2020, 52, 3173–3185. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Y.; Schlesener, C.L.; Aly, S.S.; Huang, B.C.; Li, X.; Atwill, E.R.; Weimer, B.C. Whole genome sequence analysis reveals high genomic diversity and potential host-driven adaptations among multidrug-resistant Escherichia coli from pre-weaned dairy calves. Front. Microbiol. 2024, 15, 1420300. [Google Scholar] [CrossRef] [PubMed]
- Mancini, J.; Weckselblatt, B.; Chung, Y.K.; Durante, J.C.; Andelman, S.; Glaubman, J.; Dorff, J.D.; Bhargava, S.; Lijek, R.S.; Unger, K.P.; et al. The heat-resistant agglutinin family includes a novel adhesin from enteroaggregative Escherichia coli strain 60A. J. Bacteriol. 2011, 93, 4813–4820. [Google Scholar] [CrossRef] [PubMed]
- Soria-Bustos, J.; Saitz, W.; Medrano, A.; Lara-Ochoa, C.; Bennis, Z.; Monteiro-Neto, V.; Dos Santos, C.I.; Rodrigues, J.; Hernandes, R.T.; Yáñez, J.A.; et al. Role of the YehD fimbriae in the virulence-associated properties of enteroaggregative Escherichia coli. Environ. Microbiol. 2022, 24, 1035–1051. [Google Scholar] [CrossRef]
- Easton, D.M.; Allsopp, L.P.; Phan, M.D.; Moriel, D.G.; Goh, G.K.; Beatson, S.A.; Mahony, T.J.; Cobbold, R.N.; Schembri, M.A. The Intimin-Like Protein FdeC Is Regulated by H-NS and Temperature in Enterohemorrhagic Escherichia coli. Appl. Environ. Microbiol. 2014, 80, 7337–7347. [Google Scholar] [CrossRef] [PubMed]
- Yazdanpour, Z.; Tadjrobehkar, O.; Shahkhah, M. Significant association between genes encoding virulence factors with antibiotic resistance and phylogenetic groups in community acquired uropathogenic Escherichia coli isolates. BMC Microbiol. 2020, 20, 241. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, M.S.; Traglia, G.M.; Lin, D.L.; Tran, T.; Tolmasky, M.E. Plasmid-mediated antibiotic resistance and virulence in gram-negatives: The klebsiella pneumoniae paradigm. Microbiol. Spectr. 2014, 2, 1–15. [Google Scholar] [CrossRef]
- Turton, J.; Davies, F.; Turton, J.; Perry, C.; Payne, Z.; Pike, R. Hybrid resistance and virulence plasmids in “high-risk” clones of klebsiella pneumoniae, including those carrying blaNDM-5. Microorganisms 2019, 7, 326. [Google Scholar] [CrossRef] [PubMed]
- Rubini, D.; Varthan, P.V.; Jayasankari, S.; Vedahari, B.N.; Nithyanand, P. Suppressing the phenotypic virulence factors of Uropathogenic Escherichia coli using marine polysaccharide. Microb. Pathog. 2020, 141, 103973. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Baky, R.M.; Ibrahim, R.A.; Mohamed, D.S.; Ahmed, E.F.; Hashem, Z.S. Prevalence of Virulence Genes and Their Association with Antimicrobial Resistance Among Pathogenic, E. coli Isolated from Egyptian Patients with Different Clinical Infections. Infect. Drug Resist. 2020, 13, 1221–1236. [Google Scholar] [CrossRef] [PubMed]
Antibiotic | Concentration (µg) | Breakpoint (mm) | |
---|---|---|---|
Sensitive (S) | Resistant (R) | ||
Tetracyclin (TET) * | 30 | ≥19 | <17 |
Gentamicin (GEN) | 10 | ≥18 | <16 |
Sulfamethoxazole/trimethoprim (SXT) | 25 | ≥16 | <10 |
Enrofloxacin (ENR) | 5 | ≥19 | <19 |
Amoxicillin/clavulanic acid (AMC) | 30 | ≥21 | <14 |
Florfenicol (FLO) | 30 | ≥19 | <19 |
Ampicillin (AMP) ** | 10 | ≥17 | ≤13 |
Genome size (bp) | 4,803,482 |
GC% content | 50.9% |
Number of contigs ≥ 1000 bp | 241 |
Max length of contig | 180,322 |
N50 length (bp) | 38,594 |
Genes (total) | 4986 |
CDSs (total) | 4864 |
Genes (RNA) | 122 |
tRNAs | 88 |
Strain | Accession | Size (bp) | GC% | OrthoANI Value (%) | GGDC Distance |
---|---|---|---|---|---|
Escherichia coli strain CFS3246 | CP026929.2 | 4,803,482 | 50.87 | 99.88 | 0.0017 |
Escherichia coli strain E275 a | CP035865.1 | 5,044,130 | 50.74 | 99.13 | 0.0855 |
Escherichia coli strain 17MR471 | CP051158.1 | 4,765,524 | 50.71 | 99.22 | 0.0875 |
Escherichia coli O19H7 strain 730V1 | CP061764.1 | 5,113,454 | 50.95 | 98.59 | 0.1462 |
Escherichia coli strain 1283 | CP023371.1 | 4,677,088 | 50.79 | 99.68 | 0.0569 |
Escherichia coli strain DA33133 | CP029574.1 | 4,771,844 | 50.82 | 99.58 | 0.0639 |
Escherichia coli strain KSE-B05 | CP125003.1 | 4,710,376 | 50.80 | 99.60 | 0.0613 |
Escherichia coli strain KFS-D01 | CP125039.1 | 4,710,765 | 50.81 | 99.61 | 0.0573 |
Escherichia coli strain ABW_A32 | CP067303 | 4,602,727 | 50.69 | 99.75 | 0.0514 |
Escherichia coli strain ABW_A33 | CP067299 | 4,625,685 | 50.65 | 99.77 | 0.0535 |
Strain | Antibiotics (µg) | |||||||
---|---|---|---|---|---|---|---|---|
Ampicillin (AMP-10) | Tetracyclin (TET-30) | Gentamicin (GEN-10) | Sulfamethoxazole/trimethoprim (SXT-25) | Enrofloxacin (ENR-5) | Colistin (COL-10) | Amoxicillin/clavulanic acid (AMC-30) | Florfenicol (FLO-30) | |
E. coli strain 35 | R * | R | R | R | R | I | R | R |
Resistance Mechanism | Antimicrobial Resistance Gene Family | Genes | Drug Class |
---|---|---|---|
Antibiotic efflux | MFS antibiotic efflux pump | emrB, emrA, emrR, emrK, emrY, mdtH, mdtG, Escherichia coli mdfA, leuO, mdtM, mdtN, mdtO, mdtP, evgS, evgA, H-NS | Aminoglycoside antibiotic, fluoroquinolone antibiotic, tetracycline antibiotic, phosphonic acid antibiotic, lincosamide antibiotic; nucleoside antibiotic; phenicol antibiotic; penam; macrolide antibiotic; cephalosporin; cephamycin; disinfecting agents and antiseptics |
RND antibiotic efflux pump | gadX, gadW, mdtF, mdtE, CRP, AcrF, AcrE, AcrS, rsmA, acrD, baeR, baeS, mdtC, mdtB, mdtA, Escherichia coli acrA, acrB, cpxA, Escherichia coli AcrAB-TolC with MarR, Escherichia coli AcrAB-TolC with AcrR, marA | Aminoglycoside antibiotic; aminocoumarin antibiotic; fluoroquinolone antibiotic; cephalosporin; glycylcycline; penam; tetracycline antibiotic; rifamycin antibiotic; phenicol antibiotic; disinfecting agents and antiseptics | |
SMR antibiotic efflux pump | KpnE, KpnF | Macrolide antibiotic; aminoglycoside antibiotic; cephalosporin; tetracycline antibiotic; peptide antibiotic; rifamycin antibiotic; disinfecting agents and antiseptics | |
kdpDE two-component regulatory system | kdpDE | Aminoglycoside antibiotic | |
ABC antibiotic efflux pump | YojI, msbA, TolC, soxR, soxS | Peptide antibiotic; nitroimidazole antibiotic; carbapenem; cephalosporin; glycylcycline; cephamycin; rifamycin antibiotic; phenicol antibiotic; penem; monobactam; carbapenem; cephalosporin | |
Antibiotic target alteration | Elfamycin-resistant Fluoroquinolone-resistant Fluoroquinolone-resistant Glycopeptide resistance gene cluster; Van ligase Penicillin-binding protein mutations Pmr phosphoethanolamine transferase Undecaprenyl pyrophosphate-related proteins | EF-Tu, gyrA, parC, vanG, PBP3, ArnT, PmrF, eptA, bacA | Elfamycin antibiotic; fluoroquinolone antibiotic; glycopeptide antibiotic; cephalosporin; cephamycin; penam; peptide antibiotic |
antibiotic inactivation | ampC beta-lactamase | Escherichia coli ampC-type beta-lactamase | Cephalosporin; penam |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexyuk, P.G.; Bogoyavlenskiy, A.P.; Moldakhanov, Y.S.; Akanova, K.S.; Manakbayeva, A.N.; Kerimov, T.; Berezin, V.E.; Alexyuk, M.S. Genomic and Drug Resistance Profile of Bovine Multidrug-Resistant Escherichia coli Isolated in Kazakhstan. Pathogens 2025, 14, 90. https://doi.org/10.3390/pathogens14010090
Alexyuk PG, Bogoyavlenskiy AP, Moldakhanov YS, Akanova KS, Manakbayeva AN, Kerimov T, Berezin VE, Alexyuk MS. Genomic and Drug Resistance Profile of Bovine Multidrug-Resistant Escherichia coli Isolated in Kazakhstan. Pathogens. 2025; 14(1):90. https://doi.org/10.3390/pathogens14010090
Chicago/Turabian StyleAlexyuk, Pavel G., Andrey P. Bogoyavlenskiy, Yergali S. Moldakhanov, Kuralay S. Akanova, Adolat N. Manakbayeva, Timur Kerimov, Vladimir E. Berezin, and Madina S. Alexyuk. 2025. "Genomic and Drug Resistance Profile of Bovine Multidrug-Resistant Escherichia coli Isolated in Kazakhstan" Pathogens 14, no. 1: 90. https://doi.org/10.3390/pathogens14010090
APA StyleAlexyuk, P. G., Bogoyavlenskiy, A. P., Moldakhanov, Y. S., Akanova, K. S., Manakbayeva, A. N., Kerimov, T., Berezin, V. E., & Alexyuk, M. S. (2025). Genomic and Drug Resistance Profile of Bovine Multidrug-Resistant Escherichia coli Isolated in Kazakhstan. Pathogens, 14(1), 90. https://doi.org/10.3390/pathogens14010090