Morpho-Molecular Identification and Pathogenic Characterization of Fusarium and Colletotrichum Species Associated with Intercropped Soybean Pod Decay
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and Fungal Isolation
2.2. Morphological Identification of Fungal Population
2.3. Molecular Identification of Fungal Genera
2.4. Phylogenetic Analysis
2.5. Pathogenicity Test of Isolated Fungi
2.6. Data Process and Analysis
3. Results
3.1. Identification of Fungal Species Associated with Intercropped Soybean Pods
3.2. Identification of Fusarium Species Associated with Soybean Pods
3.3. Identification of Colletotrichum Species Associated with Soybean Pods
3.4. Isolation Frequency of Fusarium and Colletotrichum Species
3.5. Pathogenicity of Fusarium Species on Soybean Pods and Seeds
3.6. Pathogenicity of Colletotrichum Species on Soybean Pods and Seeds
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loganathan, M.; Maruthasalam, S.; Shiu, L.Y.; Lien, W.C.; Hsu, W.H.; Lee, P.F.; Yu, C.W.; Lin, C.H. Regeneration of soybean (Glycine max L. Merrill) through direct somatic embryogenesis from the immature embryonic shoot tip. Vitr. Cell. Dev. Biol.-Plant 2010, 46, 265–273. [Google Scholar] [CrossRef]
- Kumari, S.; Dambale, A.S.; Samantara, R.; Jincy, M.; Bains, G. Introduction, history, geographical distribution, importance, and uses of soybean (Glycine max L.). In Soybean Production Technology: Physiology, Production and Processing; Springer: Berlin/Heidelberg, Germany, 2025; pp. 1–17. [Google Scholar]
- Modgil, R.; Tanwar, B.; Goyal, A.; Kumar, V. Soybean (Glycine max). In Oilseeds: Health Attributes and Food Applications; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–46. [Google Scholar]
- Belewu, M.; Belewu, K. Comparative physico-chemical evaluation of tiger-nut, soybean and coconut milk sources. Int. J. Agric. Biol. 2007, 5, e787. [Google Scholar]
- Pagano, M.C.; Miransari, M. The importance of soybean production worldwide. In Abiotic and Biotic Stresses in Soybean Production; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–26. [Google Scholar]
- Mishra, R.; Tripathi, M.; Sikarwar, R.; Singh, Y.; Tripathi, N. Soybean (Glycine max L. Merrill): A multipurpose legume shaping our world. Plant Cell Biotechnol. Mol. Biol. 2024, 25, 17–37. [Google Scholar] [CrossRef]
- Hosseini, B.; Voegele, R.T.; Link, T.I. Diagnosis of soybean diseases caused by fungal and oomycete pathogens: Existing methods and new developments. J. Fungi 2023, 9, 587. [Google Scholar] [CrossRef] [PubMed]
- Naeem, M.; Li, H.; Yan, L.; Raza, M.A.; Gong, G.; Chen, H.; Yang, C.; Zhang, M.; Shang, J.; Liu, T. Characterization and pathogenicity of Fusarium species associated with soybean pods in maize/soybean strip intercropping. Pathogens 2019, 8, 245. [Google Scholar] [CrossRef] [PubMed]
- Arias, M.M.D.; Leandro, L.F.; Munkvold, G.P. Aggressiveness of Fusarium species and impact of root infection on growth and yield of soybeans. Phytopathology 2013, 103, 822–832. [Google Scholar] [CrossRef]
- Barros, G.G.; Zanon, M.S.A.; Chiotta, M.L.; Reynoso, M.M.; Scandiani, M.M.; Chulze, S.N. Pathogenicity of phylogenetic species in the Fusarium graminearum complex on soybean seedlings in Argentina. Eur. J. Plant Pathol. 2014, 138, 215–222. [Google Scholar] [CrossRef]
- Chang, X.; Li, H.; Naeem, M.; Wu, X.; Yong, T.; Song, C.; Liu, T.; Chen, W.; Yang, W. Diversity of the seedborne fungi and pathogenicity of Fusarium species associated with intercropped soybean. Pathogens 2020, 9, 531. [Google Scholar] [CrossRef]
- Zhang, J.; Xue, A.; Cober, E.; Morrison, M.; Zhang, H.; Zhang, S.; Gregorich, E. Prevalence, pathogenicity and cultivar resistance of Fusarium and Rhizoctonia species causing soybean root rot. Can. J. Plant Sci. 2013, 93, 221–236. [Google Scholar] [CrossRef]
- Pedrozo, R.; Little, C.R. Fusarium verticillioides inoculum potential influences soybean seed quality. Eur. J. Plant Pathol. 2017, 148, 749–754. [Google Scholar] [CrossRef]
- Pioli, R.; Mozzoni, L.; Morandi, E. First report of pathogenic association between Fusarium graminearum and soybean. Plant Dis. 2004, 88, 220. [Google Scholar] [CrossRef] [PubMed]
- Leslie, J.F.; Summerell, B.A. The FusariumLaboratory Manual; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Chiotta, M.L.; Alaniz Zanon, M.S.; Palazzini, J.M.; Scandiani, M.M.; Formento, Á.N.; Barros, G.G.; Chulze, S.N. Pathogenicity of Fusarium graminearum and F. meridionale on soybean pod blight and trichothecene accumulation. Plant Pathol. 2016, 65, 1492–1497. [Google Scholar] [CrossRef]
- Olszewski, J.; Dzienis, G.; Okorski, A.; Goś, W.; Pszczółkowska, A. Fungal Colonization of the Anatomical Parts of Soybean Seeds Supplied with Different Nitrogen Rates and Inoculated with Bradyrhizobium japonicum. Agriculture 2025, 15, 857. [Google Scholar] [CrossRef]
- Zhang, M.; Shi, Z.; Chen, G.; Cao, A.; Wang, Q.; Yan, D.; Fang, W.; Li, Y. Detection and identification methods and control techniques for crop seed diseases. Agriculture 2023, 13, 1786. [Google Scholar] [CrossRef]
- Mancini, V.; Murolo, S.; Romanazzi, G. Diagnostic methods for detecting fungal pathogens on vegetable seeds. Plant Pathol. 2016, 65, 691–703. [Google Scholar] [CrossRef]
- Panwar, S.; Duggirala, K.S.; Yadav, P.; Debnath, N.; Yadav, A.K.; Kumar, A. Advanced diagnostic methods for identification of bacterial foodborne pathogens: Contemporary and upcoming challenges. Crit. Rev. Biotechnol. 2023, 43, 982–1000. [Google Scholar] [CrossRef]
- Echarte, L.; Della Maggiora, A.; Cerrudo, D.; Gonzalez, V.; Abbate, P.; Cerrudo, A.; Sadras, V.; Calvino, P. Yield response to plant density of maize and sunflower intercropped with soybean. Field Crops Res. 2011, 121, 423–429. [Google Scholar] [CrossRef]
- Abdelmagid, A.; Hafez, M.; Soliman, A.; Adam, L.R.; Daayf, F. First report of Fusarium sporotrichioides causing root rot of soybean in Canada and detection of the pathogen in host tissues by PCR. Can. J. Plant Pathol. 2021, 43, 527–536. [Google Scholar] [CrossRef]
- Chang, K.; Hwang, S.; Conner, R.; Ahmed, H.; Zhou, Q.; Turnbull, G.; Strelkov, S.; McLaren, D.; Gossen, B. First report of Fusarium proliferatum causing root rot in soybean (Glycine max L.) in Canada. Crop Prot. 2015, 67, 52–58. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, N.; Chang, K.F.; Hwang, S.-F.; Strelkov, S.E.; Conner, R.L.; McLaren, D.L.; Fu, H.; Harding, M.W.; Turnbull, G.D. Genetic diversity and aggressiveness of Fusarium species isolated from soybean in Alberta, Canada. Crop Prot. 2018, 105, 49–58. [Google Scholar] [CrossRef]
- Chang, X.; Dai, H.; Wang, D.; Zhou, H.; He, W.; Fu, Y.; Ibrahim, F.; Zhou, Y.; Gong, G.; Shang, J. Identification of Fusarium species associated with soybean root rot in Sichuan Province, China. Eur. J. Plant Pathol. 2018, 151, 563–577. [Google Scholar] [CrossRef]
- Yang, X.; Feng, F. Ranges and diversity of soybean fungal diseases in North America. Phytopathology 2001, 91, 769–775. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Wei, X.; Zheng, T.; Gou, Y.N.; Wang, J.; Deng, J.X.; Li, M.-J. Evaluation of pathogenic Fusarium spp. associated with soybean seed (Glycine max) in Hubei Province, China. Plant Dis. 2022, 106, 3178–3186. [Google Scholar] [CrossRef] [PubMed]
- Abdelmagid, A.; Hafez, M.; Lawley, Y.; Adam, L.; Daayf, F. First report of Fusarium cerealis causing root rot on soybean. Plant Dis. 2018, 102, 12. [Google Scholar] [CrossRef]
- Ellis, M.; Arias, M.D.; Jimenez, D.C.; Munkvold, G.; Leandro, L. First report of Fusarium commune causing damping-off, seed rot, and seedling root rot on soybean (Glycine max) in the United States. Plant Dis. 2013, 97, 284. [Google Scholar] [CrossRef]
- Olszak-Przybyś, H.; Korbecka-Glinka, G.; Patkowska, E. Identification and pathogenicity of Fusarium isolated from soybean in Poland. Pathogens 2023, 12, 1162. [Google Scholar] [CrossRef]
- Chang, X.; Naeem, M.; Li, H.; Yan, L.; Liu, T.; Liu, B.; Zhang, H.; Khaskheli, M.; Gong, G.; Zhang, M. First report of Fusarium asiaticum as a causal agent for seed decay of soybean (Glycine max) in Sichuan, China. Plant Dis. 2020, 104, 1542. [Google Scholar] [CrossRef]
- Chang, X.; Yan, L.; Naeem, M.; Khaskheli, M.I.; Zhang, H.; Gong, G.; Zhang, M.; Song, C.; Yang, W.; Liu, T. Maize/soybean relay strip intercropping reduces the occurrence of Fusarium root rot and changes the diversity of the pathogenic Fusarium species. Pathogens 2020, 9, 211. [Google Scholar] [CrossRef]
- Arias, M.D.; Munkvold, G.; Ellis, M.; Leandro, L. Distribution and frequency of Fusarium species associated with soybean roots in Iowa. Plant Dis. 2013, 97, 1557–1562. [Google Scholar] [CrossRef]
- Cannon, P.; Damm, U.; Johnston, P.; Weir, B. Colletotrichum: Current status and future directions. Stud. Mycol. 2012, 73, 181–213. [Google Scholar] [CrossRef]
- Dean, R.; Van Kan, J.A.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef]
- da Silva, L.L.; Moreno, H.L.A.; Correia, H.L.N.; Santana, M.F.; de Queiroz, M.V. Colletotrichum: Species complexes, lifestyle, and peculiarities of some sources of genetic variability. Appl. Microbiol. Biotechnol. 2020, 104, 1891–1904. [Google Scholar] [CrossRef]
- Sharma, S.; Gupta, G.; Ramteke, R. Colletotrichum truncatum [(Schw.) Andrus & WD Moore], the causal agent of anthracnose of soybean [Glycine max (L.) Merrill]—A Review. Soybean Res. 2011, 9, 31–52. [Google Scholar]
- Yang, H.C.; Hartman, G.L. Methods and evaluation of soybean genotypes for resistance to Colletotrichum truncatum. Plant Dis. 2015, 99, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Hartman, G.L.; Rupe, J.C.; Sikora, E.J.; Domier, L.L.; Davis, J.A.; Steffey, K.L. Compendium of Soybean Diseases and Pests; American Phytopathological Society: St. Paul, MN, USA, 2015. [Google Scholar]
- Cai, L.; Hyde, K.; Taylor, P.; Weir, B.; Waller, J.; Abang, M.; Zhang, J.; Yang, Y.; Phoulivong, S.; Liu, Z. A polyphasic approach for studying Colletotrichum. Fungal Divers. 2009, 39, 183–204. [Google Scholar]
- Damm, U.; Woudenberg, J.; Cannon, P.; Crous, P. Colletotrichum species with curved conidia from herbaceous hosts. Fungal Divers. 2009, 39, 45. [Google Scholar]
- Hyde, K.; Cai, L.; Cannon, P.; Crouch, J.; Crous, P.; Damm, U.; Goodwin, P.; Chen, H.; Johnston, P.; Jones, E. Colletotrichum—Names in current use. Fungal Divers. 2009, 39, 147–182. [Google Scholar]
- Yang, H.C.; Haudenshield, J.; Hartman, G. First report of Colletotrichum chlorophyti causing soybean anthracnose. Plant Dis. 2012, 96, 1699. [Google Scholar] [CrossRef]
- Yang, H.C.; Haudenshield, J.S.; Hartman, G.L. Colletotrichum incanum sp. nov., a curved-conidial species causing soybean anthracnose in USA. Mycologia 2014, 106, 32–42. [Google Scholar] [CrossRef]
- Khakimov, A.; Salakhutdinov, I.; Omolikov, A.; Utaganov, S. Traditional and current-prospective methods of agricultural plant diseases detection: A review. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2022; p. 012002. [Google Scholar]
- Dayarathne, M.C.; Mridha, A.U.; Wang, Y. Diagnosis of fungal plant pathogens using conventional and molecular approaches. In Diagnostics of Plant Diseases; IntechOpen: Rijeka, Croatia, 2020. [Google Scholar]
- Da Lio, D.; Cobo-Díaz, J.F.; Masson, C.; Chalopin, M.; Kebe, D.; Giraud, M.; Verhaeghe, A.; Nodet, P.; Sarrocco, S.; Le Floch, G. Combined metabarcoding and multi-locus approach for genetic characterization of Colletotrichum species associated with common walnut (Juglans regia) anthracnose in France. Sci. Rep. 2018, 8, 10765. [Google Scholar] [CrossRef]
- Bhunjun, C.S.; Phukhamsakda, C.; Jayawardena, R.S.; Jeewon, R.; Promputtha, I.; Hyde, K.D. Investigating species boundaries in Colletotrichum. Fungal Divers. 2021, 107, 107–127. [Google Scholar] [CrossRef]
- Fuentes-Aragón, D.; Guarnaccia, V.; Rebollar-Alviter, A.; Juárez-Vázquez, S.B.; Aguirre-Rayo, F.; Silva-Rojas, H.V. Multilocus identification and thiophanate-methyl sensitivity of Colletotrichum gloeosporioides species complex associated with fruit with symptoms and symptomless leaves of mango. Plant Pathol. 2020, 69, 1125–1138. [Google Scholar] [CrossRef]
- Bo, D.J.; Fu, H.T.; Yi, G.J.; Wen, Y.T.; Xin, S.; Chun, W.X.; Feng, Y.; Liu, J.; Shu Kai, S.K.; Liu WeiGuo, L.W. Maize-soybean strip intercropping: Achieved a balance between high productivity and sustainability. J. Integr. Agric. 2018, 17, 747–754. [Google Scholar] [CrossRef]
- Yang, F.; Wang, X.; Liao, D.; Lu, F.; Gao, R.; Liu, W.; Yong, T.; Wu, X.; Du, J.; Liu, J. Yield response to different planting geometries in maize–soybean relay strip intercropping systems. Agron. J. 2015, 107, 296–304. [Google Scholar] [CrossRef]
- Liu, J.; Deng, J.; Zhang, K.; Wu, H.; Yang, C.; Zhang, X.; Du, J.; Shu, K.; Yang, W. Pod mildew on soybeans can mitigate the damage to the seed arising from field mold at harvest time. J. Agric. Food Chem. 2016, 64, 9135–9142. [Google Scholar] [CrossRef]
- Doohan, F.; Brennan, J.; Cooke, B. Influence of climatic factors on Fusarium species pathogenic to cereals. Eur. J. Plant Pathol. 2003, 109, 755–768. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, D.; Liu, Q.; Zhang, S.; Tang, Y.; Jiang, G.; Li, S.; Ding, W. The sequevar distribution of Ralstonia solanacearum in tobacco-growing zones of China is structured by elevation. Eur. J. Plant Pathol. 2017, 147, 541–551. [Google Scholar] [CrossRef]
- Jiang, G.; Wei, Z.; Xu, J.; Chen, H.; Zhang, Y.; She, X.; Macho, A.P.; Ding, W.; Liao, B. Bacterial wilt in China: History, current status, and future perspectives. Front. Plant Sci. 2017, 8, 1549. [Google Scholar] [CrossRef]
- Zhou, Y.; Gong, G.; Cui, Y.; Zhang, D.; Chang, X.; Hu, R.; Liu, N.; Sun, X. Identification of Botryosphaeriaceae species causing kiwifruit rot in Sichuan Province, China. Plant Dis. 2015, 99, 699–708. [Google Scholar] [CrossRef]
- O’Donnell, K.; Humber, R.A.; Geiser, D.M.; Kang, S.; Park, B.; Robert, V.A.; Crous, P.W.; Johnston, P.R.; Aoki, T.; Rooney, A.P. Phylogenetic diversity of insecticolous fusaria inferred from multilocus DNA sequence data and their molecular identification via FUSARIUM-ID and Fusarium MLST. Mycologia 2012, 104, 427–445. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Gao, X.; Wu, M.; Xu, R.; Wang, X.; Pan, R.; Kim, H.-J.; Liao, H. Root interactions in a maize/soybean intercropping system control soybean soil-borne disease, red crown rot. PLoS ONE 2014, 9, e95031. [Google Scholar] [CrossRef]
- Naeem, M.; Munir, M.; Li, H.; Raza, M.A.; Song, C.; Wu, X.; Irshad, G.; Khalid, M.H.B.; Yang, W.; Chang, X. Transcriptional responses of Fusarium graminearum interacted with soybean to cause root rot. J. Fungi 2021, 7, 422. [Google Scholar] [CrossRef] [PubMed]
- Miedaner, T.; Bolduan, C.; Melchinger, A. Aggressiveness and mycotoxin production of eight isolates each of Fusarium graminearum and Fusarium verticillioides for ear rot on susceptible and resistant early maize inbred lines. Eur. J. Plant Pathol. 2010, 127, 113–123. [Google Scholar] [CrossRef]
- Wu, C.J.; Chen, H.K.; Ni, H.F. Identification and characterization of Colletotrichum species associated with mango anthracnose in Taiwan. Eur. J. Plant Pathol. 2020, 157, 1–15. [Google Scholar] [CrossRef]
- Singhmanini, A.; Kotasthane, A.S.; Agrawal, T.; Mahilang, A. Characterization of Colletotrichum species associated with soybean pod blight in soybean growing districts of Chhattisgarh. Indian Phytopathol. 2023, 76, 77–88. [Google Scholar] [CrossRef]
- Rogério, F.; Ciampi-Guillardi, M.; Barbieri, M.; Bragança, C.; Seixas, C.; Almeida, A.; Massola, N., Jr. Phylogeny and variability of Colletotrichum truncatum associated with soybean anthracnose in Brazil. J. Appl. Microbiol. 2017, 122, 402–415. [Google Scholar] [CrossRef]
- Rogério, F.; Boufleur, T.R.; Ciampi-Guillardi, M.; Sukno, S.A.; Thon, M.R.; Massola Junior, N.S.; Baroncelli, R. Genome sequence resources of Colletotrichum truncatum, C. plurivorum, C. musicola, and C. sojae: Four species pathogenic to soybean (Glycine max). Phytopathol. 2020, 110, 1497–1499. [Google Scholar] [CrossRef]
- Luo, M.; Huang, L.; An, X.; Pan, Y.; Wu, S. First Report of Colletotrichum karstii Causing Anthracnose on Soybean in China. Plant Dis. 2024, 108, 2236. [Google Scholar] [CrossRef]
- Cacciola, S.O.; Gilardi, G.; Faedda, R.; Schena, L.; Pane, A.; Garibaldi, A.; Gullino, M.L. Characterization of Colletotrichum ocimi population associated with black spot of sweet basil (Ocimum basilicum) in Northern Italy. Plants 2020, 9, 654. [Google Scholar] [CrossRef]
- Guarnaccia, V.; Gilardi, G.; Martino, I.; Garibaldi, A.; Gullino, M.L. Species diversity in Colletotrichum causing anthracnose of aromatic and ornamental lamiaceae in Italy. Agronomy 2019, 9, 613. [Google Scholar] [CrossRef]
- Liu, F.; Damm, U.; Cai, L.; Crous, P.W. Species of the Colletotrichum gloeosporioides complex associated with anthracnose diseases of Proteaceae. Fungal Divers. 2013, 61, 89–105. [Google Scholar] [CrossRef]
- Summerell, B.A. Resolving Fusarium: Current status of the genus. Annu. Rev. Phytopathol. 2019, 57, 323–339. [Google Scholar] [CrossRef]
- O’Donnell, K.; Whitaker, B.K.; Laraba, I.; Proctor, R.H.; Brown, D.W.; Broders, K.; Kim, H.S.; McCormick, S.P.; Busman, M.; Aoki, T. DNA sequence-based identification of Fusarium: A work in progress. Plant Dis. 2022, 106, 1597–1609. [Google Scholar] [CrossRef]
- Neergaard, P.; Neergaard, P. Management of Seed Storage. Seed Pathol. 1977, 1, 574–594. [Google Scholar]
- Killebrew, J.; Roy, K.; Lawrence, G.; McLean, K.; Hodges, H. Greenhouse and field evaluation of Fusarium solani pathogenicity to soybean seedlings. Plant Dis. 1988, 72, 1067–1070. [Google Scholar] [CrossRef]
- van Diepeningen, A.D.; Brankovics, B.; Iltes, J.; Van der Lee, T.A.; Waalwijk, C. Diagnosis of Fusarium infections: Approaches to identification by the clinical mycology laboratory. Curr. Fungal Infect. Rep. 2015, 9, 135–143. [Google Scholar] [CrossRef] [PubMed]
Species | Macroconidia | Colony Characterization | Growth Rate (cm/day) | |||
---|---|---|---|---|---|---|
Shape | Width (μm) | Length (μm) | Septa | |||
F. equiseti | Falcate | 3.10 ± 0.02 c, 3.02–3.70 | 39.25 ± 1.81 a, 38.23–45.98 | 3–5 | Pale gray color (front), ginger yellowish (back) | 4.88 ± 0.41 b |
F. incarnatum | Falcate | 3.98 ± 0.44 a, 5.67–2.72 | 36.98 ± 3.63 a, 45.55–36.62 | 3–4 | Pale gray color (front), yellowish color (back) | 5.32 ± 0.39 a |
F. verticillioides | Fusiform | 3.40 ± 0.90 b, 3.80–3.33 | 23.25 ± 0.2 b, 20.21–25.90 | 2–3 | Pale gray colonies, reverse pale gray | 4.90 ± 0.30 b |
F. proliferatum | Falcate, fusiform | 3.60 ± 1.12 b, 5.41–2.96 | 39.12 ± 6.54 a, 48.56–32.66 | 3–4 | Pale gray color (front), pale gray (back) | 4.50 ± 0.03 c |
F. fujikuroi | Falcate | 2.42 ± 0.46 e, 3.12–2.28 | 39.92 ± 1.98 a, 43.82–38.94 | 3–5 | Pale gray color (front), pale yellowish color (back) | 4.76 ± 0.32 c |
F. oxysporum | Falcate | 3.10 ± 0.16 c, 2.31–4.82 | 26.90 ± 1.60 b, 28.62–22.23 | 3 | Pale gray (front) pale purple on the back | 5.40 ± 0.30 a |
F. chlamydosporum | Falcate | 3.20 ± 0.82 c, 3.90–3.22 | 25.45 ± 0.20 b, 28.12–23.95 | 2–3 | Brown, light pink (Front) purple (back) | 5.23 ± 0.01 a |
F. acutatum | Falcate | 2.79 ± 1.62 d, 3.20–1.98 | 23.24 ± 0.8 b, 24.56–20.86 | 3–5 | White-gray (front) purple (back) | 4.39 ± 0.02 c |
Species | Conidial Shape | Conidia Size | Texture | Growth Rate (cm/day) | |
---|---|---|---|---|---|
Length (μm) | Width (μm) | ||||
C. truncatum | Fusiform | 23.20 ± 0.56 a 24.65–16.22 | 5.56 ± 0.35 b 5.90–4.32 | Cottony | 6.90 ± 0.12 a |
C. karstii | Cylindrical | 15.5 ± 0.20 b 18.20–14.90 | 6.80 ± 0.23 a 8.56–5.52 | Cottony | 5.63 ± 0.27 b |
C. cliviicola | oval/ellipsoidal | 13.35 ± 0.02 c 14.22–12.86 | 3.62 ± 0.06 c 4.56–3.22 | Cottony | 6.12 ± 0.25 a |
C. plurivorum | Fusiform | 13.75 ± 0.12 c 15.78–12.66 | 3.4 ± 0.02 c 4.45–3.56 | Cottony and white | 6.30 ± 0.09 a |
C. boninense | Cylindrical | 15.10 ± 0.20 b 16.20–14.75 | 5.30 ± 0.45 b 6.60–4.25 | Medium brown | 6.15 ± 0.02 a |
C. fructicola | Fusiform | 12.90 ± 0.32 c 14.56–10.86 | 6.80 ± 0.23 a 8.56–5.52 | Grayish black | 6.4 ± 0.60 a |
Isolates | PMC (%) | DSI (%) | Pod Weight (g) |
---|---|---|---|
Control (CK) | 0 ± 0 e | 0 ± 0 d | 1.89 ± 0.04 d |
F. proliferatum (FS31) | 90.66 ± 0.40 a | 96.66 ± 4.71 a | 1.79 ± 0.31 c |
F. proliferatum (FS120) | 89.66 ± 0.47 a | 100 ± 0 a | 1.71 ± 0.05 c |
F. proliferatum (FS167) | 78.33 ± 2.35 a | 93.33 ± 4.71 a | 1.74 ± 0.01 c |
F. fujikuroi (FS79) | 43.33 ± 2.35 b | 66.66 ± 11.78 b | 2.48 ± 0.27 b |
F. fujikuroi (FS101) | 46.66 ± 4.71 b | 75 ± 0 ab | 2.37 ± 0.24 b |
F. fujikuroi (FS123) | 23.33 ± 2.35 c | 58.33 ± 11.78 b | 2.71 ± 0.09 b |
F. equiseti (FS4) | 88.33 ± 2.35 a | 75 ± 11.78 b | 2.21 ± 0.07 b |
F. equiseti (FS65) | 41.66 ± 2.35 b | 50 ± 11.78 b | 2.19 ± 0.02 b |
F. equiseti (FS170) | 21.66 ± 2.35 c | 50 ± 20.41 b | 2.13 ± 0.03 b |
F. acutatum (FS142) | 100 ± 0 a | 100 ± 0 a | 2.64 ± 0.09 b |
F. acutatum (FS151) | 95 ± 4.08 a | 100 ± 0 a | 2.47 ± 0.31 b |
F. acutatum (FS155) | 98.33 ± 2.35 a | 100 ± 0 a | 2.57 ± 0.12 b |
F. verticillioides (FS42) | 98.33 ± 2.35 a | 100 ± 0 a | 2.29 ± 0.12 b |
F. verticillioides (FS89) | 100 ± 0 a | 100 ± 0 a | 2.25 ± 0.04 b |
F. verticillioides (FS112) | 100 ± 0 a | 100 ± 0 a | 2.29 ± 0.06 c |
F. incarnatum (FS2) | 26.66 ± 2.35 c | 33.33 ± 11.78 c | 3.34 ± 0.19 a |
F. incarnatum (FS24) | 20 ± 4.08 dc | 25 ± 0 c | 3.29 ± 0.05 a |
F. incarnatum (FS130) | 18.33 ± 6.23 d | 33.33 ± 11.78 c | 3.25 ± 0.06 a |
F. oxysporum (FS49) | 55 ± 4.08 b | 83.33 ± 11.78 a | 1.84 ± 0.27 c |
F. oxysporum (FS26) | 45 ± 4.08 b | 66.66 ± 11.78 b | 1.86 ± 0.04 c |
F. oxysporum (FS132) | 50 ± 4.08 b | 58.33 ± 11.78 b | 1.89 ± 0.16 c |
F. chlamydosporum (FS76) | 18.33 ± 2.35 d | 75 ± 0 ab | 1.68 ± 0.16 c |
F. chlamydosporum (FS105) | 23.33 ± 6.23 c | 50 ± 20.41 b | 1.57 ± 0.05 c |
F. chlamydosporum (FS126) | 16.66 ± 2.35 d | 66.66 ± 11.78 b | 1.69 ± 0.08 c |
Isolates | PMC (%) | DSI (%) | Pod Weight (g) |
---|---|---|---|
Control (CK) | 0 ± 0 d | 0 ± 0 e | 1.86 ± 0.040 d |
C. fructicola (CS15) | 90 ± 4.08 a | 100 ± 0 a | 2.51 ± 0.04 b |
C. fructicola (CS93) | 86.66 ± 6.23 a | 91.66 ± 11.78 a | 2.52 ± 0.02 b |
C. fructicola (CS169) | 76.66 ± 2.35 ab | 100 ± 0 a | 2.51 ± 0.01 b |
C. truncatum (CS03) | 78.33 ± 4.71 ab | 75 ± 0 b | 2.09 ± 0.02 c |
C. truncatum (CS61) | 80 ± 4.08 a | 83.33 ± 11.78 b | 2.11 ± 0.01 c |
C. truncatum (CS153) | 81.66 ± 2.35 a | 66.66 ± 11.7 b | 2.16 ± 0.08 c |
C. karstii (CS13) | 91.66 ± 2.35 a | 83.33 ± 11.78 b | 2.67 ± 0.05 b |
C. karstii (CS96) | 86.66 ± 2.35 a | 75 ± 0 b | 2.47 ± 0.08 b |
C. karstii (CS158) | 80 ± 7.07 a | 75 ± 0 b | 2.67 ± 0.03 b |
C. cliviicola (CS22) | 81.66 ± 2.35 a | 66.66 ± 11.78 c | 2.13 ± 0.12 c |
C. cliviicola (CS95) | 76.66 ± 2.35 ab | 58.33 ± 11.78 c | 2.21 ± 0.08 c |
C. cliviicola (CS164) | 65 ± 4.0 b | 50 ± 20.41 c | 2.26 ± 0.09 c |
C. plurivorum (CS06) | 10 ± 4.08 c | 25 ± 0 d | 2.60 ± 0.02 b |
C. plurivorum (CS172) | 8.33 ± 2.35 c | 33.33 ± 11.78 d | 2.59 ± 0.01 b |
C. plurivorum (CS180) | 6.66 ± 2.35 c | 25 ± 20.41 d | 2.61 ± 0.01 b |
C. boninense (CS94) | 10 ± 4.08 c | 33.33 ± 11.78 d | 2.96 ± 0.01 a |
C. boninense (CS118) | 11.66 ± 6.23 c | 25 ± 0 d | 2.98 ± 0.02 a |
C. boninense (CS166) | 10 ± 4.08 c | 25 ± 0 d | 2.95 ± 0.03 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munir, M.; Naeem, M.; Wu, X.; Zeng, W.; Sun, Z.; Li, Y.; Yong, T.; Yang, F.; Chang, X. Morpho-Molecular Identification and Pathogenic Characterization of Fusarium and Colletotrichum Species Associated with Intercropped Soybean Pod Decay. Pathogens 2025, 14, 1020. https://doi.org/10.3390/pathogens14101020
Munir M, Naeem M, Wu X, Zeng W, Sun Z, Li Y, Yong T, Yang F, Chang X. Morpho-Molecular Identification and Pathogenic Characterization of Fusarium and Colletotrichum Species Associated with Intercropped Soybean Pod Decay. Pathogens. 2025; 14(10):1020. https://doi.org/10.3390/pathogens14101020
Chicago/Turabian StyleMunir, Maira, Muhammd Naeem, Xiaoling Wu, Weiying Zeng, Zudong Sun, Yuze Li, Taiwen Yong, Feng Yang, and Xiaoli Chang. 2025. "Morpho-Molecular Identification and Pathogenic Characterization of Fusarium and Colletotrichum Species Associated with Intercropped Soybean Pod Decay" Pathogens 14, no. 10: 1020. https://doi.org/10.3390/pathogens14101020
APA StyleMunir, M., Naeem, M., Wu, X., Zeng, W., Sun, Z., Li, Y., Yong, T., Yang, F., & Chang, X. (2025). Morpho-Molecular Identification and Pathogenic Characterization of Fusarium and Colletotrichum Species Associated with Intercropped Soybean Pod Decay. Pathogens, 14(10), 1020. https://doi.org/10.3390/pathogens14101020