An Update on Vaccines Against Trypanosoma cruzi and Chagas Disease
Abstract
:1. Introduction
2. Immunity to T. cruzi Infection
3. Vaccine Development Against T. cruzi and Chagas Disease
3.1. Subunit Vaccine Candidates
3.2. Subunit Vaccines
3.3. Therapeutic Vaccines Against CD
4. Future Opportunities and Challenges
Funding
Data Availability Statement
Conflicts of Interest
References
- Bonney, K.M.; Luthringer, D.J.; Kim, S.A.; Garg, N.J.; Engman, D.M. Pathology and pathogenesis of chagas heart disease. Annu. Rev. Pathol. Mech. Dis. 2020, 14, 421–447. [Google Scholar] [CrossRef]
- World Health Organization. Chagas Disease: Control and Elimination; Report of the Secretariat WHO; UNDP/World Bank/WHO: Geneva, Switerzland, 2010; Available online: http://apps.who.int/gb/ebwha/pdf_files/WHA63/A63_17-en.pdf (accessed on 20 January 2025).
- Limon-Flores, A.Y.; Cervera-Cetina, R.; Tzec-Arjona, J.L.; Ek-Macias, L.; Sanchez-Burgos, G.; Ramirez-Sierra, M.J.; Cruz-Chan, J.V.; VanWynsberghe, N.R.; Dumonteil, E. Effect of a combination DNA vaccine for the prevention and therapy of Trypanosoma cruzi infection in mice: Role of CD4+ and CD8+ T cells. Vaccine 2010, 28, 7414–7419. [Google Scholar] [CrossRef] [PubMed]
- Moncayo, A.; Silveira, A.C. Current epidemiological trends for Chagas disease in Latin America and future challenges in epidemiology, surveillance and health policy. Mem. Inst. Oswaldo Cruz. 2009, 104 (Suppl. S1), 17–30. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.Y.; Bacon, K.M.; Bottazzi, M.E.; Hotez, P.J. Global economic burden of Chagas disease: A computational simulation model. Lancet Infect. Dis. 2013, 13, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.Y.; Bacon, K.M.; Connor, D.L.; Willig, A.M.; Bailey, R.R. The potential economic value of a Trypanosoma cruzi (Chagas disease) vaccine in Latin America. PLoS Negl. Trop. Dis. 2010, 4, e916. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, F.R.; Guedes, P.M.; Gazzinelli, R.T.; Silva, J.S. The role of parasite persistence in pathogenesis of Chagas heart disease. Parasite Immunol. 2009, 31, 673–685. [Google Scholar] [CrossRef]
- Vellozo, N.S.; Matos-Silva, T.C.; Lopes, M.F. Immunopathogenesis in Trypanosoma cruzi infection: A role for suppressed macrophages and apoptotic cells. Front. Immunol. 2023, 14, 1244071. [Google Scholar] [CrossRef] [PubMed]
- Lewis, M.D.; Francisco, A.F.; Jayawardhana, S.; Langston, H.; Taylor, M.C.; Kelly, J.M. Imaging the development of chronic Chagas disease after oral transmission. Sci. Rep. 2018, 8, 11292. [Google Scholar] [CrossRef]
- Combs, T.P.; Nagajyothi; Mukherjee, S.; de Almeida, C.J.; Jelicks, L.A.; Schubert, W.; Lin, Y.; Jayabalan, D.S.; Zhao, D.; Braunstein, V.L.; et al. The adipocyte as an important target cell for Trypanosoma cruzi infection. J. Biol. Chem. 2005, 280, 24085–24094. [Google Scholar] [CrossRef]
- Ferreira, A.V.; Segatto, M.; Menezes, Z.; Macedo, A.M.; Gelape, C.; de Oliveira Andrade, L.; Nagajyothi, F.; Scherer, P.E.; Teixeira, M.M.; Tanowitz, H.B. Evidence for Trypanosoma cruzi in adipose tissue in human chronic chagas disease. Microbes Infect. 2011, 13, 1002–1005. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Valdez, F.J.; Padilla, A.; Wang, W.; Orr, D.; Tarleton, R.L. Spontaneous dormancy protects Trypanosoma cruzi during extended drug exposure. Elife 2018, 7, e34039. [Google Scholar] [CrossRef] [PubMed]
- Marin-Neto, J.A.; Cunha-Neto, E.; Maciel, B.C.; Simoes, M.V. Pathogenesis of chronic Chagas heart disease. Circulation 2007, 115, 1109–1123. [Google Scholar] [CrossRef]
- Choudhuri, S.; Rios, L.; Vazquez-Chagoyan, J.C.; Garg, N.J. Oxidative stress implications for therapeutic vaccine development against Chagas disease. Expert. Rev. Vaccines 2021, 20, 1395–1406. [Google Scholar] [CrossRef]
- Maldonado, E.; Rojas, D.A.; Urbina, F.; Solari, A. The oxidative stress and chronic inflammatory process in Chagas disease: Role of exosomes and contributing genetic factors. Oxid. Med. Cell. Longev. 2021, 2021, 4993452. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, T.B.; Pedrosa, R.C.; Filho, D.W. Oxidative stress in chronic cardiopathy associated with Chagas disease. Int. J. Cardiol. 2007, 116, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Lopez, M.; Tanowitz, H.B.; Garg, N.J. Pathogenesis of chronic Chagas disease: Macrophages, mitochondria, and oxidative stress. Curr. Clin. Microbiol. Rep. 2018, 5, 45–54. [Google Scholar] [CrossRef]
- de Carvalho, F.C.T.; de Oliveira, L.R.C.; Gatto, M.; Tasca, K.I.; da Silva, L.D.M.; dos Santos, K.C.; Pierine, D.T.; da Costa, E.A.P.N.; Francisqueti-Ferron, F.V.; dos Santos, R.M.; et al. Oxidative stress evaluation in patients with chronic Chagas disease. Parasitol. Int. 2023, 96, 102770. [Google Scholar] [CrossRef]
- Sanchez-Villamil, J.P.; Bautista-Nino, P.K.; Serrano, N.C.; Rincon, M.Y.; Garg, N.J. Potential role of antioxidants as adjunctive therapy in Chagas disease. Oxid. Med. Cell. Longev. 2020, 2020, 9081813. [Google Scholar] [CrossRef]
- Wan, X.; Garg, N.J. Sirtuin control of mitochondrial dysfunction, oxidative stress, and inflammation in Chagas disease models. Front. Cell Infect. Microbiol. 2021, 11, 693051. [Google Scholar] [CrossRef] [PubMed]
- Choudhuri, S.; Chowdhury, I.H.; Garg, N.J. Mitochondrial regulation of macrophage response against pathogens. Front. Immunol. 2020, 11, 622602. [Google Scholar] [CrossRef] [PubMed]
- Rios, L.; Campos, E.E.; Menon, R.; Zago, M.P.; Garg, N.J. Epidemiology and pathogenesis of maternal-fetal transmission of Trypanosoma cruzi and a case for vaccine development against congenital chagas disease. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165591. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, E.; Morales-Pison, S.; Urbina, F.; Solari, A. Vaccine design against Chagas disease focused on the use of nucleic acids. Vaccines 2022, 10, 587. [Google Scholar] [CrossRef]
- Pinazo, M.J.; Malchiodi, E.; Ioset, J.R.; Bivona, A.; Gollob, K.J.; Dutra, W.O. Challenges and advancements in the development of vaccines and therapies against Chagas disease. Lancet Microbe 2024, 5, 100972. [Google Scholar] [CrossRef]
- Farani, P.S.G.; Jones, K.M.; Poveda, C. Treatments and the perspectives of developing a vaccine for Chagas disease. Vaccines 2024, 12, 870. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Toloza, G.; Ferreira, A. Trypanosoma cruzi evades the complement system as an efficient strategy to survive in the mammalian host: The specific roles of host/parasite molecules and trypanosoma cruzi calreticulin. Front. Microbiol. 2017, 8, 1667. [Google Scholar] [CrossRef] [PubMed]
- Almeida, I.C.; Camargo, M.M.; Procopio, D.O.; Silva, L.S.; Mehlert, A.; Travassos, L.R.; Gazzinelli, R.T.; Ferguson, M.A. Highly purified glycosylphosphatidylinositols from Trypanosoma cruzi are potent proinflammatory agents. EMBO J. 2000, 19, 1476–1485. [Google Scholar] [CrossRef]
- Tanowitz, H.B.; Wen, J.J.; Machado, F.S.; Desruisseaux, M.S.; Robello, C.; Garg, N.J. Trypanosoma cruzi and Chagas disease: Innate immunity, ROS, and cardiovascular system. In Vascular Responses to Pathogens; Gavins, F.N.E., Stokes, K.Y., Eds.; Academic Press/Elsevier Inc.: Waltham, MA, USA, 2016; pp. 183–193. [Google Scholar]
- Cronemberger-Andrade, A.; Xander, P.; Soares, R.P.; Pessoa, N.L.; Campos, M.A.; Ellis, C.C.; Grajeda, B.; Ofir-Birin, Y.; Almeida, I.C.; Regev-Rudzki, N.; et al. Trypanosoma cruzi-infected human macrophages shed proinflammatory extracellular vesicles that enhance host-cell invasion via toll-like receptor 2. Front. Cell Infect. Microbiol. 2020, 10, 99. [Google Scholar] [CrossRef]
- Koo, S.J.; Szczesny, B.; Wan, X.; Putluri, N.; Garg, N.J. Pentose phosphate shunt modulates reactive oxygen species and nitric oxide production controlling Trypanosoma cruzi in macrophages. Front. Immunol. 2018, 9, 202. [Google Scholar] [CrossRef]
- Koo, S.J.; Garg, N.J. Metabolic programming of macrophage functions and pathogens control. Redox Biol. 2019, 24, 101198. [Google Scholar] [CrossRef] [PubMed]
- Cerbán, F.M.; Stempin, C.C.; Volpini, X.; Carrera Silva, E.A.; Gea, S.; Motran, C.C. Signaling pathways that regulate Trypanosoma cruzi infection and immune response. Biochim. Biophys. Acta-Mol. Basis Dis. 2020, 1866, 165707. [Google Scholar] [CrossRef] [PubMed]
- Macaluso, G.; Grippi, F.; Di Bella, S.; Blanda, V.; Gucciardi, F.; Torina, A.; Guercio, A.; Cannella, V. A review on the immunological response against Trypanosoma cruzi. Pathogens 2023, 12, 282. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.M.; Ribeirão, M.; Boscardin, S.B. CD4+ Th1 but not Th2 clones efficiently activate macrophages to eliminate Trypanosoma cruzi through a nitric oxide dependent mechanism. Immunol. Lett. 2000, 73, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Hoft, D.F.; Schnapp, A.R.; Eickhoff, C.S.; Roodman, S.T. Involvement of CD4+ Rh1 cells in systemic immunity protective against primary and secondary challenges with Trypanosoma cruzi. Infect. Immun. 2000, 68, 197–204. [Google Scholar] [CrossRef]
- Hodžić, A.; Mateos-Hernández, L.; de la Fuente, J.; Cabezas-Cruz, A. A-gal-based vaccines: Advances, opportunities, and perspectives. Trends Parasitol. 2020, 36, 992–1001. [Google Scholar] [CrossRef]
- Acosta Rodríguez, E.V.; Araujo Furlan, C.L.; Fiocca Vernengo, F.; Montes, C.L.; Gruppi, A. Understanding CD8+T cell immunity to Trypanosoma cruzi and how to improve it. Trends Parasitol. 2019, 35, 899–917. [Google Scholar] [CrossRef]
- Pérez-Antón, E.; Egui, A.; Thomas, M.C.; Simón, M.; Segovia, M.; López, M.C. Immunological exhaustion and functional profile of CD8+T lymphocytes as cellular biomarkers of therapeutic efficacy in chronic Chagas disease patients. Acta Trop. 2020, 202, 105242. [Google Scholar] [CrossRef]
- Dutra, W.O.; Menezes, C.A.; Magalhaes, L.M.; Gollob, K.J. Immunoregulatory networks in human Chagas disease. Parasite Immunol. 2014, 36, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Medina-Rincón, G.J.; Gallo-Bernal, S.; Jiménez, P.A.; Cruz-Saavedra, L.; Ramírez, J.D.; Rodríguez, M.J.; Medina-Mur, R.; Díaz-Nassif, G.; Valderrama-Achury, M.D.; Medina, H.M. Molecular and clinical aspects of chronic manifestations in Chagas disease: A state-of-the-art review. Pathogens 2021, 10, 1493. [Google Scholar] [CrossRef] [PubMed]
- Solana, J.C.; Moreno, J.; Iborra, S.; Soto, M.; Requena, J.M. Live attenuated vaccines, a favorable strategy to provide long-term immunity against protozoan diseases. Trends Parasitol. 2022, 38, 316–334. [Google Scholar] [CrossRef] [PubMed]
- Revelli, S.; Basombrio, M.A.; Valenti, J.L.; Moreno, H.; Poli, H.; Morini, J.C. Evaluation of an attenuated Trypanosoma cruzi strain in rats. Analysis of survival, parasitemia and tissue damage. Medicina 1993, 53, 39–43. [Google Scholar] [PubMed]
- Basombrio, M.A.; Segura, M.A.; Mora, M.C.; Gomez, L. Field trial of vaccination against American Trypanosomiasis (Chagas’ disease) in dogs. Am. J. Trop. Med. Hyg. 1993, 49, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Basso, B.; Marini, V. Experimental Chagas disease in balb/c mice previously vaccinated with T. rangeli. II. The innate immune response shows immunological memory: Reality or fiction? Immunobiol. 2015, 220, 428–436. [Google Scholar] [CrossRef]
- Basso, B.; Moretti, E.; Fretes, R. Vaccination with Trypanosoma rangeli induces resistance of guinea pigs to virulent Trypanos Cruzi. Vet. Immunol. Immunopathol. 2014, 157, 119–123. [Google Scholar] [CrossRef]
- Gupta, S.; Salgado-Jimenez, B.; Lokugamage, N.; Vazquez-Chagoyan, J.C.; Garg, N.J. Tcg2/Tcg4 DNA vaccine induces th1 immunity against acute Trypanosoma cruzi infection: Adjuvant and antigenic effects of heterologous T. rangeli booster immunization. Front. Immunol. 2019, 10, 1456. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Valdez, F.J.; Perez Brandan, C.; Ferreira, A.; Basombrio, M.A. Gene-deleted live-attenuated Trypanosoma cruzi parasites as vaccines to protect against Chagas disease. Expert. Rev. Vaccines 2015, 14, 681–697. [Google Scholar] [CrossRef] [PubMed]
- Garg, N.J.; Nunes, M.P.; Tarleton, R.L. Delivery by Trypanosoma cruzi of proteins into the MHC class I antigen processing and presentation pathway. J. Immunol. 1997, 158, 3293–3302. [Google Scholar] [CrossRef] [PubMed]
- da Costa, K.M.; Marques da Fonseca, L.; Dos Reis, J.S.; Santos, M.; Previato, J.O.; Mendonca-Previato, L.; Freire-de-Lima, L. Trypanosoma cruzi trans-sialidase as a potential vaccine target against Chagas disease. Front. Cell Infect. Microbiol. 2021, 11, 768450. [Google Scholar] [CrossRef] [PubMed]
- Rios, L.E.; Vazquez-Chagoyan, J.C.; Pacheco, A.O.; Zago, M.P.; Garg, N.J. Immunity and vaccine development efforts against Trypanosoma cruzi. Acta Trop. 2019, 200, 105168. [Google Scholar] [CrossRef]
- Bhatia, V.; Sinha, M.; Luxon, B.; Garg, N.J. Utility of Trypanosoma cruzi sequence database for the identification of potential vaccine candidates: In silico and in vitro screening. Infect. Immun. 2004, 72, 6245–6254. [Google Scholar] [CrossRef]
- Bhatia, V.; Garg, N.J. Previously unrecognized vaccine candidates control Trypanosoma cruzi infection and immunopathology in mice. Clin. Vaccine Immunol. 2008, 15, 1158–1164. [Google Scholar] [CrossRef] [PubMed]
- Albaqami, F.F.; Altharawi, A.; Althurwi, H.N.; Alharthy, K.M. From proteome to candidate vaccines: Target discovery and molecular dynamics-guided multi-epitope vaccine engineering against kissing bug. Front. Immunol. 2024, 15, 1413893. [Google Scholar] [CrossRef] [PubMed]
- Serna, C.; Lara, J.A.; Rodrigues, S.P.; Marques, A.F.; Almeida, I.C.; Maldonado, R.A. A synthetic peptide from Trypanosoma cruzi mucin-like associated surface protein as candidate for a vaccine against Chagas disease. Vaccine 2014, 32, 3525–3532. [Google Scholar] [CrossRef] [PubMed]
- Cazorla, S.I.; Becker, P.D.; Frank, F.M.; Ebensen, T.; Sartori, M.J.; Corral, R.S.; Malchiodi, E.L.; Guzman, C.A. Oral vaccination with Salmonella enterica as a cruzipain-DNA delivery system confers protective immunity against Trypanosoma cruzi. Infect. Immun. 2008, 76, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Morell, M.; Thomas, M.C.; Caballero, T.; Alonso, C.; Lopez, M.C. The genetic immunization with paraflagellar rod protein-2 fused to the hsp70 confers protection against late Trypanosoma cruzi infection. Vaccine 2006, 24, 7046–7055. [Google Scholar] [CrossRef] [PubMed]
- Egui, A.; Thomas, M.C.; Morell, M.; Maranon, C.; Carrilero, B.; Segovia, M.; Puerta, C.J.; Pinazo, M.J.; Rosas, F.; Gascon, J.; et al. Trypanosoma cruzi paraflagellar rod proteins 2 and 3 contain immunodominant CD8+T-cell epitopes that are recognized by cytotoxic t cells from chagas disease patients. Mol. Immunol. 2012, 52, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Fralish, B.H.; Tarleton, R.L. Genetic immunization with Lyt1 or a pool of trans-sialidase genes protects mice from lethal Trypanosoma cruzi infection. Vaccine 2003, 21, 3070–3080. [Google Scholar] [CrossRef]
- Vasconcelos, J.R.; Hiyane, M.I.; Marinho, C.R.; Claser, C.; Machado, A.M.; Gazzinelli, R.T.; Bruna-Romero, O.; Alvarez, J.M.; Boscardin, S.B.; Rodrigues, M.M. Protective immunity against Trypanosoma cruzi infection in a highly susceptible mouse strain after vaccination with genes encoding the amastigote surface protein-2 and trans-sialidase. Hum. Gene Ther. 2004, 15, 878–886. [Google Scholar] [CrossRef]
- Vasconcelos, J.R.; Dominguez, M.R.; Neves, R.L.; Ersching, J.; Araujo, A.; Santos, L.I.; Virgilio, F.S.; Machado, A.V.; Bruna-Romero, O.; Gazzinelli, R.T.; et al. Adenovirus vector-induced CD8+T effector memory cell differentiation and recirculation, but not proliferation, are important for protective immunity against experimental Trypanosoma cruzi infection. Hum. Gene Ther. 2014, 25, 350–363. [Google Scholar] [CrossRef] [PubMed]
- Pereira, I.R.; Vilar-Pereira, G.; Marques, V.; da Silva, A.A.; Caetano, B.; Moreira, O.C.; Machado, A.V.; Bruna-Romero, O.; Rodrigues, M.M.; Gazzinelli, R.T.; et al. A human type 5 adenovirus-based Trypanosoma cruzi therapeutic vaccine re-programs immune response and reverses chronic cardiomyopathy. PLoS Pathog. 2015, 11, e1004594. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, F.A.P.; Pontes, C.; Machado, A.M.V.; Bruna-Romero, O.; Quintana, H.T.; De Oliveira, F.; De Vasconcelos, J.R.C.; Ribeiro, D. A Therapeutical effects of vaccine from Trypanosoma cruzi amastigote surface protein 2 by simultaneous inoculation with live parasites. J. Cell Biochem. 2019, 120, 3373–3383. [Google Scholar] [CrossRef]
- Portillo, S.; Zepeda, B.G.; Iniguez, E.; Olivas, J.J.; Karimi, N.H.; Moreira, O.C.; Marques, A.F.; Michael, K.; Maldonado, R.A.; Almeida, I.C. A prophylactic α-gal-based glycovaccine effectively protects against murine acute chagas disease. NPJ Vaccines 2019, 4, 13. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Garg, N.J. Prophylactic efficacy of TcVac2 against Trypanosoma cruzi in mice. PLoS Negl. Trop. Dis. 2010, 4, e797. [Google Scholar] [CrossRef]
- Gupta, S.; Garg, N.J. TcVac3 induced control of Trypanosoma cruzi infection and chronic myocarditis in mice. PLOS ONE 2013, 8, e59434. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Garg, N.J. A two-component DNA-prime/protein-boost vaccination strategy for eliciting long-term, protective T cell immunity against Trypanosoma cruzi. PLoS Pathog. 2015, 11, e1004828. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, I.H.; Lokugamage, N.; Garg, N.J. Experimental nanovaccine offers protection against repeat exposures to Trypanosoma cruzi through activation of polyfunctional T cell response. Front. Immunol. 2020, 11, 595039. [Google Scholar] [CrossRef] [PubMed]
- Lokugamage, N.; Choudhuri, S.; Davies, C.; Chowdhury, I.H.; Garg, N.J. Antigen-based nano-immunotherapy controls parasite persistence, inflammatory and oxidative stress, and cardiac fibrosis, the hallmarks of chronic Chagas cardiomyopathy, in a mouse model of Trypanosoma cruzi infection. Vaccines 2020, 8, 96. [Google Scholar] [CrossRef]
- Aparicio-Burgos, J.E.; Ochoa-Garcia, L.; Zepeda-Escobar, J.A.; Gupta, S.; Dhiman, M.; Martinez, J.S.; de Oca-Jimenez, R.M.; Val Arreola, M.; Barbabosa-Pliego, A.; Vazquez-Chagoyan, J.C.; et al. Testing the efficacy of a multi-component DNA-prime/DNA-boost vaccine against Trypanosoma cruzi infection in dogs. PLoS Negl. Trop. Dis. 2011, 5, e1050. [Google Scholar] [CrossRef] [PubMed]
- Aparicio-Burgos, J.E.; Zepeda-Escobar, J.A.; de Oca-Jimenez, R.M.; Estrada-Franco, J.G.; Barbabosa-Pliego, A.; Ochoa-Garcia, L.; Alejandre-Aguilar, R.; Rivas, N.; Penuelas-Rivas, G.; Val-Arreola, M.; et al. Immune protection against Trypanosoma cruzi induced by TcVac4 in a canine model. PLoS Negl. Trop. Dis. 2015, 9, e0003625. [Google Scholar] [CrossRef]
- Arce-Fonseca, M.; Ballinas-Verdugo, M.A.; Zenteno, E.R.; Suarez-Flores, D.; Carrillo-Sanchez, S.C.; Alejandre-Aguilar, R.; Rosales-Encina, J.L.; Reyes, P.A.; Rodriguez-Morales, O. Specific humoral and cellular immunity induced by Trypanosoma cruzi DNA immunization in a canine model. Vet. Res. 2013, 44, 15. [Google Scholar] [CrossRef] [PubMed]
- Sanchez Alberti, A.; Bivona, A.E.; Cerny, N.; Schulze, K.; Weissmann, S.; Ebensen, T.; Morales, C.; Padilla, A.M.; Cazorla, S.I.; Tarleton, R.L.; et al. Engineered trivalent immunogen adjuvanted with a sting agonist confers protection against Trypanosoma cruzi infection. NPJ Vaccines 2017, 2, 9. [Google Scholar] [CrossRef]
- Chancey, R.J.; Edwards, M.S.; Montgomery, S.P. Congenital Chagas disease. Pediatr. Rev. 2023, 44, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, M.G.; Vigliano, C.; Lococo, B.; Bertocchi, G.; Viotti, R. Prevention of congenital Chagas disease by benznidazole treatment in reproductive-age women. An observational study. Acta Trop. 2017, 174, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Rios, L.; Lokugamage, N.; Garg, N.J. Effects of acute and chronic Trypanosoma cruzi infection on pregnancy outcomes in mice: Parasite transmission, mortality, delayed growth, and organ damage in pups. Am. J. Pathol. 2023, 193, 313–331. [Google Scholar] [CrossRef]
- Rios, L.E.; Lokugamage, N.; Choudhuri, S.; Chowdhury, I.H.; Garg, N.J. Subunit nanovaccine elicited T cell functional activation controls Trypanosoma cruzi mediated maternal and placental tissue damage and improves pregnancy outcomes in mice. NPJ Vaccines 2023, 8, 188. [Google Scholar] [CrossRef] [PubMed]
- Dumonteil, E.; Escobedo-Ortegon, J.; Reyes-Rodriguez, N.; Arjona-Torres, A.; Ramirez-Sierra, M.J. Immunotherapy of trypanosoma cruzi infection with DNA vaccines in mice. Infect. Immun. 2004, 72, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Quijano-Hernandez, I.A.; Bolio-Gonzalez, M.E.; Rodriguez-Buenfil, J.C.; Ramirez-Sierra, M.J.; Dumonteil, E. Therapeutic DNA vaccine against trypanosoma cruzi infection in dogs. Ann. N. Y. Acad. Sci. 2008, 1149, 343–346. [Google Scholar] [CrossRef]
- Sanchez-Burgos, G.; Mezquita-Vega, R.G.; Escobedo-Ortegon, J.; Ramirez-Sierra, M.J.; Arjona-Torres, A.; Ouaissi, A.; Rodrigues, M.M.; Dumonteil, E. Comparative evaluation of therapeutic DNA vaccines against trypanosoma cruzi in mice. FEMS Immunol. Med. Microbiol. 2007, 50, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Zapata-Estrella, H.; Hummel-Newell, C.; Sanchez-Burgos, G.; Escobedo-Ortegon, J.; Ramirez-Sierra, M.J.; Arjona-Torres, A.; Dumonteil, E. Control of trypanosoma cruzi infection and changes in t-cell populations induced by a therapeutic DNA vaccine in mice. Immunol. Lett. 2006, 103, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Barry, M.A.; Wang, Q.; Jones, K.M.; Heffernan, M.J.; Buhaya, M.H.; Beaumier, C.M.; Keegan, B.P.; Zhan, B.; Dumonteil, E.; Bottazzi, M.E.; et al. A therapeutic nanoparticle vaccine against trypanosoma cruzi in a balb/c mouse model of chagas disease. Hum. Vaccin. Immunother. 2016, 12, 976–987. [Google Scholar] [CrossRef] [PubMed]
- Barry, M.A.; Versteeg, L.; Wang, Q.; Pollet, J.; Zhan, B.; Gusovsky, F.; Bottazzi, M.E.; Hotez, P.J.; Jones, K.M. A therapeutic vaccine prototype induces protective immunity and reduces cardiac fibrosis in a mouse model of chronic trypanosoma cruzi infection. PLoS Negl. Trop. Dis. 2019, 13, e0007413. [Google Scholar] [CrossRef]
- Dumonteil, E.; Herrera, C.; Marx, P.A. Safety and preservation of cardiac function following therapeutic vaccination against trypanosoma cruzi in rhesus macaques. J. Microbiol. Immunol. Infect. 2023, 56, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Rosas-Jorquera Christian, E.; Sardinha Luiz, R.; Pretel Fernando, D.; Bombeiro André, L.; D'Império Lima Maria, R.; Alvarez José, M. Challenge of chronically infected mice with homologous trypanosoma cruzi parasites enhances the immune response but does not modify cardiopathy: Implications for the design of a therapeutic vaccine. Clin. Vaccine Immunol. 2013, 20, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.J.; Bhatia, V.; Popov, V.L.; Garg, N.J. Phenyl-alpha-tert-butyl nitrone reverses mitochondrial decay in acute chagas' disease. Am. J. Pathol. 2006, 169, 1953–1964. [Google Scholar] [CrossRef]
- Wen, J.J.; Bhatia, V.; Popov, V.L.; Garg, N.J. Phenyl-alpha-tert-butyl-nitrone and benzonidazole treatment controlled the mitochondrial oxidative stress and evolution of cardiomyopathy in chronic chagasic rats. J. Am. Coll. Cardiol. 2010, 55, 2499–2508. [Google Scholar] [CrossRef]
- Gupta, S.; Smith, C.; Auclair, S.; Delgadillo Ade, J.; Garg, N.J. Therapeutic efficacy of a subunit vaccine in controlling chronic Trypanosoma cruzi infection and chagas disease is enhanced by glutathione peroxidase over-expression. PLoS ONE 2015, 10, e0130562. [Google Scholar] [CrossRef] [PubMed]
- Dzul-Huchim, V.M.; Ramirez-Sierra, M.J.; Martinez-Vega, P.P.; Rosado-Vallado, M.E.; Arana-Argaez, V.E.; Ortega-Lopez, J.; Gusovsky, F.; Dumonteil, E.; Cruz-Chan, J.V.; Hotez, P.; et al. Vaccine-linked chemotherapy with a low dose of benznidazole plus a bivalent recombinant protein vaccine prevents the development of cardiac fibrosis caused by Trypanosoma cruzi in chronically-infected balb/c mice. PLoS Negl. Trop. Dis. 2022, 16, e0010258. [Google Scholar] [CrossRef] [PubMed]
- Barrett, M.P.; Kyle, D.E.; Sibley, L.D.; Radke, J.B.; Tarleton, R.L. Protozoan persister-like cells and drug treatment failure. Nat. Rev. Microbiol. 2019, 17, 607–620. [Google Scholar] [CrossRef] [PubMed]
- Schwendener, R.A. Liposomes as vaccine delivery systems: A review of the recent advances. Ther. Adv. Vaccines 2014, 2, 159–182. [Google Scholar] [CrossRef]
- Franck, C.O.; Fanslau, L.; Bistrovic Popov, A.; Tyagi, P.; Fruk, L. Biopolymer-based carriers for DNA vaccine design. Angew. Chem. Int. Ed. Engl. 2021, 60, 13225–13243. [Google Scholar] [CrossRef] [PubMed]
- Kheirvari, M.; Liu, H.; Tumban, E. Virus-like particle vaccines and platforms for vaccine development. Viruses 2023, 15, 1109. [Google Scholar] [CrossRef] [PubMed]
- Tao, P.; Li, Q.; Shivachandra, S.B.; Rao, V.B. Bacteriophage t4 as a nanoparticle platform to display and deliver pathogen antigens: Construction of an effective anthrax vaccine. Methods Mol. Biol. 2017, 1581, 255–267. [Google Scholar] [PubMed]
- Ramos-Vega, A.; Monreal-Escalante, E.; Dumonteil, E.; Banuelos-Hernandez, B.; Angulo, C. Plant-made vaccines against parasites: Bioinspired perspectives to fight against chagas disease. Expert. Rev. Vaccines 2021, 20, 1373–1388. [Google Scholar] [CrossRef] [PubMed]
- Cortes-Serra, N.; Losada-Galvan, I.; Pinazo, M.J.; Fernandez-Becerra, C.; Gascon, J.; Alonso-Padilla, J. State-of-the-art in host-derived biomarkers of Chagas disease prognosis and early evaluation of anti-Trypanosoma cruzi treatment response. Biochim. Biophys. Acta-Mol. Basis Dis. 2020, 1866, 165758. [Google Scholar] [CrossRef] [PubMed]
- Choudhuri, S.; Bhavnani, S.K.; Zhang, W.; Botelli, V.; Barrientos, N.; Iñiguez, F.; Zago, M.P.; Garg, N.J. Prognostic performance of peripheral blood biomarkers in identifying seropositive individuals at risk of developing clinically symptomatic Chagas cardiomyopathy. Microbiol. Spectr. 2021, 9, e0036421. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garg, N.J. An Update on Vaccines Against Trypanosoma cruzi and Chagas Disease. Pathogens 2025, 14, 124. https://doi.org/10.3390/pathogens14020124
Garg NJ. An Update on Vaccines Against Trypanosoma cruzi and Chagas Disease. Pathogens. 2025; 14(2):124. https://doi.org/10.3390/pathogens14020124
Chicago/Turabian StyleGarg, Nisha J. 2025. "An Update on Vaccines Against Trypanosoma cruzi and Chagas Disease" Pathogens 14, no. 2: 124. https://doi.org/10.3390/pathogens14020124
APA StyleGarg, N. J. (2025). An Update on Vaccines Against Trypanosoma cruzi and Chagas Disease. Pathogens, 14(2), 124. https://doi.org/10.3390/pathogens14020124