Generation of Population-Level Diversity in Anaplasma phagocytophilum msp2/p44 Gene Repertoires Through Recombination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of A. phagocytophilum Strains for Analysis
2.2. Determination of msp2/p44 Repertoires
2.3. Detection of Recombination
2.4. Polypeptide Structural Comparisons
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CVR | Central variable region of msp2/p44 genes |
MSP2 | Major surface protein 2 |
References
- Stuen, S.; Granquist, E.G.; Silaghi, C. Anaplasma phagocytophilum—A widespread multi-host pathogen with highly adaptive strategies. Front. Cell. Infect. Microbiol. 2013, 3, 31. [Google Scholar] [CrossRef]
- Bakken, J.S.; Dumler, J.S.; Chen, S.M.; Eckman, M.R.; Van Etta, L.L.; Walker, D.H. Human granulocytic ehrlichiosis in the upper Midwest United States. A new species emerging? J. Am. Med. Assoc. 1994, 272, 212–218. [Google Scholar] [CrossRef]
- Dumler, J.S. Human ehrlichiosis: Clinical, laboartory, epidemiologic, and pathologic considerations. In Rickettsiae and Rickettsial Diseases; Kazár, J., Toman, R., Eds.; Veda: Bratislava, Slovakia, 1996; pp. 287–302. [Google Scholar]
- Rivera, J.E.; Young, K.; Kwon, T.S.; McKenzie, P.A.; Grant, M.A.; McBride, D.A. Anaplasmosis presenting with respiratory symptoms and pneumonitis. Open Forum Infect. Dis. 2020, 7, ofaa265. [Google Scholar] [CrossRef]
- Dumler, J.S. The biological basis of severe outcomes in Anaplasma phagocytophilum infection. FEMS Immunol. Med. Microbiol. 2012, 64, 13–20. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Y.; Wang, W.; Guo, D.; Huang, S.; Jie, S. The clinical characteristics and outcomes of patients with human granulocytic anaplasmosis in China. Int. J. Infect. Dis. 2011, 15, 859–866. [Google Scholar] [CrossRef]
- Stuen, S. Anaplasma phagocytophilum—The most widespread tick-borne infection in animals in Europe. Vet. Res. Commun. 2007, 31, 79–84. [Google Scholar] [CrossRef]
- Samaddar, S.; Rolandelli, A.; O’Neal, A.J.; Laukaitis-Yousey, H.J.; Marnin, L.; Singh, N.; Wang, X.; Butler, L.R.; Rangghran, P.; Kitsou, C.; et al. Bacterial reprogramming of tick metabolism impacts vector fitness and susceptibility to infection. Nat. Microbiol. 2024, 9, 2278–2291. [Google Scholar] [CrossRef]
- Zhang, D.; Yu, L.; Tang, H.; Niu, H. Anaplasma phagocytophilum AFAP targets the host nucleolus and inhibits induced apoptosis. Front. Microbiol. 2025, 15, 1533640. [Google Scholar] [CrossRef]
- Rikihisa, Y. Mechanisms of obligatory intracellular infection with Anaplasma phagocytophilum. Clin. Microbiol. Rev. 2011, 24, 469–489. [Google Scholar] [CrossRef]
- Crosby, F.L.; Eskeland, S.; Bø-Granquist, E.G.; Munderloh, U.G.; Price, L.D.; Al-Khedery, B.; Stuen, S.; Barbet, A.F. Comparative whole genome analysis of an Anaplasma phagocytophilum strain isolated from Norwegian sheep. Pathogens 2022, 11, 601. [Google Scholar] [CrossRef]
- Brown, W.C.; Barbet, A.F. Persistent Infections and immunity in ruminants to arthropod-borne bacteria in the family Anaplasmataceae. Annu. Rev. Anim. Biosci. 2016, 4, 177–197. [Google Scholar] [CrossRef]
- Wang, X.; Kikuchi, T.; Rikihisa, Y. Two monoclonal antibodies with defined epitopes of P44 major surface proteins neutralize Anaplasma phagocytophilum by distinct mechanisms. Infect. Immun. 2006, 74, 1873–1882. [Google Scholar] [CrossRef]
- Wang, X.; Rikihisa, Y.; Lai, T.H.; Kumagai, Y.; Zhi, N.; Reed, S.M. Rapid sequential changeover of expressed p44 genes during the acute phase of Anaplasma phagocytophilum infection in horses. Infect. Immun. 2004, 72, 6852–6859. [Google Scholar] [CrossRef]
- Granquist, E.G.; Stuen, S.; Crosby, L.; Lundgren, A.M.; Alleman, A.R.; Barbet, A.F. Variant-specific and diminishing immune responses towards the highly variable MSP2(P44) outer membrane protein of Anaplasma phagocytophilum during persistent infection in lambs. Vet. Immunol. Immunopathol. 2010, 133, 117–124. [Google Scholar] [CrossRef]
- Granquist, E.G.; Stuen, S.; Lundgren, A.M.; Bråten, M.; Barbet, A.F. Outer membrane protein sequence variation in lambs experimentally infected with Anaplasma phagocytophilum. Infect. Immun. 2008, 76, 120–126. [Google Scholar] [CrossRef]
- Barbet, A.F.; Meeus, P.F.; Bélanger, M.; Bowie, M.V.; Yi, J.; Lundgren, A.M.; Alleman, A.R.; Wong, S.J.; Chu, F.K.; Munderloh, U.G.; et al. Expression of multiple outer membrane protein sequence variants from a single genomic locus of Anaplasma phagocytophilum. Infect. Immun. 2003, 71, 1706–1718. [Google Scholar] [CrossRef]
- Lin, Q.; Rikihisa, Y. Establishment of cloned Anaplasma phagocytophilum and analysis of p44 gene conversion within an infected horse and infected SCID mice. Infect. Immun. 2005, 73, 5106–5114. [Google Scholar] [CrossRef]
- Lin, Q.; Zhang, C.; Rikihisa, Y. Analysis of involvement of the RecF pathway in p44 recombination in Anaplasma phagocytophilum and in Escherichia coli by using a plasmid carrying the p44 expression and p44 donor loci. Infect. Immun. 2006, 74, 2052–2062. [Google Scholar] [CrossRef]
- Lin, Q.; Ohashi, N.; Horowitz, H.W.; Aguero-Rosenfeld, M.E.; Raffalli, J.; Wormser, G.P.; Rikihisa, Y. Analysis of sequences and loci of p44 homologs expressed by Anaplasma phagocytophila in acutely infected patients. J. Clin. Microbiol. 2002, 40, 2981–2988. [Google Scholar] [CrossRef]
- Dunning Hotopp, J.C.; Lin, M.; Madupu, R.; Crabtree, J.; Angiuoli, S.V.; Eisen, J.A.; Seshadri, R.; Ren, Q.; Wu, M.; Utterback, T.R.; et al. Comparative genomics of emerging human ehrlichiosis agents. PLoS Genet. 2006, 2, e21. [Google Scholar] [CrossRef]
- Brayton, K.A.; Kappmeyer, L.S.; Herndon, D.R.; Dark, M.J.; Tibbals, D.L.; Palmer, G.H.; McGuire, T.C.; Knowles, D.P. Complete genome sequencing of Anaplasma marginale reveals that the surface is skewed to two superfamilies of outer membrane proteins. Proc. Natl. Acad. Sci. USA 2005, 102, 844–849. [Google Scholar] [CrossRef] [PubMed]
- Palmer, G.H.; Bankhead, T.; Seifert, H.S. Antigenic variation in bacterial pathogens. Microbiol. Spectrum 2016, 4, vmbf-0005-2015. [Google Scholar] [CrossRef] [PubMed]
- Barbet, A.F.; Lundgren, A.M.; Yi, J.; Rurangirwa, F.R.; Palmer, G.H. Antigenic variation of Anaplasma marginale by expression of MSP2 mosaics. Infect. Immun. 2000, 68, 6133–6138. [Google Scholar] [CrossRef]
- Futse, J.E.; Brayton, K.A.; Knowles, D.P.; Palmer, G.H. Structural basis for segmental gene conversion in generation of Anaplasma marginale outer membrane protein variants. Mol. Microbiol. 2005, 57, 212–221. [Google Scholar] [CrossRef]
- Rejmanek, D.; Foley, P.; Barbet, A.F.; Foley, J. Evolution of antigen variation in the tick-borne pathogen Anaplasma phagocytophilum. Mol. Biol. Evol. 2012, 29, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Rikihisa, Y.; Ohashi, N.; Zhi, N. Mechanisms of variable p44 expression by Anaplasma phagocytophilum. Infect. Immun. 2003, 71, 5650–5661. [Google Scholar] [CrossRef]
- Martin, D.P.; Varsani, A.; Roumagnac, P.; Botha, G.; Maslamoney, S.; Schwab, T.; Kelz, Z.; Kumar, V.; Murrell, B. RDP5: A computer program for analyzing recombination in, and removing signals of recombination from, nucleotide sequence datasets. Virus Evol. 2021, 7, veaa087. [Google Scholar] [CrossRef]
- Martin, D.; Rybicki, E. RDP: Detection of recombination amongst aligned sequences. Bioinformatics 2000, 16, 562–563. [Google Scholar] [CrossRef]
- Salminen, M.O.; Carr, J.K.; Burke, D.S.; McCutchan, F.E. Identification of breakpoints in intergenotypic recombinants of HIV type 1 by BOOTSCANning. AIDS Res. Hum. Retroviruses 1995, 11, 1423–1425. [Google Scholar] [CrossRef] [PubMed]
- Maynard Smith, J. Analyzing the mosaic structure of genes. J. Mol. Evol. 1992, 34, 126–129. [Google Scholar]
- Posada, D.; Crandall, K.A. Evaluation of methods for detecting recombination from DNA sequences: Computer simulations. Proc. Natl. Acad. Sci. USA 2001, 98, 13757–13762. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, M.J.; Armstrong, J.S.; Gibbs, A.J. Sister-Scanning: A Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 2000, 16, 573–582. [Google Scholar] [CrossRef]
- Weiller, G.F. Phylogenetic profiles: A graphical method for detecting genetic recombinations in homologous sequences. Mol. Biol. Evol. 1998, 15, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Holmes, E.C.; Worobey, M.; Rambaut, A. Phylogenetic evidence for recombination in Dengue virus. Mol. Biol. Evol. 1999, 16, 405. [Google Scholar] [CrossRef] [PubMed]
- Lam, H.M.; Ratmann, O.; Boni, M.F. Improved algorithmic complexity for the 3SEQ recombination detection algorithm. Mol. Biol. Evol. 2018, 35, 247–251. [Google Scholar] [CrossRef]
- Kim, D.E.; Chivian, D.; Baker, D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 2004, 32 (Suppl. S2), W526–W531. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera- a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Barbet, A.F.; Al-Khedery, B.; Stuen, S.; Granquist, E.G.; Felsheim, R.F.; Munderloh, U.G. An emerging tick-borne disease of humans is caused by a subset of strains with conserved genome structure. Pathogens 2013, 2, 544–555. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Choi, K.S.; Dumler, J.S. Major surface protein 2 of Anaplasma phagocytophilum facilitates adherence to granulocytes. Infect. Immun. 2003, 71, 4018–4025. [Google Scholar] [CrossRef]
- Castañeda-Ortiz, E.J.; Ueti, M.W.; Camacho-Nuez, M.; Mosqueda, J.J.; Mousel, M.R.; Johnson, W.C.; Palmer, G.H. Association of Anaplasma marginale strain superinfection with infection prevalence within tropical regions. PLoS ONE 2015, 10, e0120748. [Google Scholar] [CrossRef]
- Koku, R.; Futse, J.E.; Morrison, J.; Brayton, K.A.; Palmer, G.H.; Noh, S.M. The use of the antigenically variable Major Surface Protein 2 in the establishment of superinfection during natural tick transmission of Anaplasma marginale in Southern Ghana. Infect. Immun. 2023, 91, e0050122. [Google Scholar] [CrossRef]
- Singu, V.; Liu, H.; Cheng, C.; Ganta, R.R. Ehrlichia chaffeensis expresses macrophage- and tick cell-specific 28-kilodalton outer membrane proteins. Infect. Immun. 2005, 73, 79–87. [Google Scholar] [CrossRef]
- Singu, V.; Peddireddi, L.; Sirigireddy, K.R.; Cheng, C.; Munderloh, U.G.; Ganta, R.R. Unique macrophage and tick cell-specific protein expression from the p28/p30-outer membrane protein multigene locus in Ehrlichia chaffeensis and Ehrlichia canis. Cell. Microbiol. 2006, 8, 1475–1487. [Google Scholar] [CrossRef]
- Duan, N.; Ma, X.; Cui, H.; Wang, Z.; Chai, Z.; Yan, J.; Li, X.; Feng, Y.; Cao, Y.; Jin, Y.; et al. Insights into the mechanism regulating the differential expression of the P28-OMP outer membrane proteins in obligatory intracellular pathogen. Emerg. Microbes Infec. 2021, 10, 461–471. [Google Scholar] [CrossRef]
- Nyika, A.; Barbet, A.F.; Burridge, M.J.; Mahan, S.M. DNA vaccination with map1 gene followed by protein boost augments protection against challenge with Cowdria ruminantium, the agent of heartwater. Vaccine 2002, 20, 1215–1225. [Google Scholar] [CrossRef]
- Crocquet-Valdes, P.A.; Thirumalapura, N.R.; Ismail, N.; Yu, X.; Saito, T.B.; Stevenson, H.L.; Pietzsch, C.A.; Thomas, S.; Walker, D.H. Immunization with Ehrlichia P28 outer membrane proteins confers protection in a mouse model of ehrlichiosis. Clin. Vaccine Immunol. 2011, 18, 2018–2025. [Google Scholar] [CrossRef]
- Budachetri, K.; Lin, M.; Chien, R.C.; Zhang, W.; Brock, G.N.; Rikihisa, Y. Efficacy and immune correlates of OMP-1B and VirB2-4 vaccines for protection of dogs from tick transmission of Ehrlichia chaffeensis. mBio 2022, 13, e0214022. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbet, A.F.; Allred, D.R.; Crosby, F.L. Generation of Population-Level Diversity in Anaplasma phagocytophilum msp2/p44 Gene Repertoires Through Recombination. Pathogens 2025, 14, 233. https://doi.org/10.3390/pathogens14030233
Barbet AF, Allred DR, Crosby FL. Generation of Population-Level Diversity in Anaplasma phagocytophilum msp2/p44 Gene Repertoires Through Recombination. Pathogens. 2025; 14(3):233. https://doi.org/10.3390/pathogens14030233
Chicago/Turabian StyleBarbet, Anthony F., David R. Allred, and Francy L. Crosby. 2025. "Generation of Population-Level Diversity in Anaplasma phagocytophilum msp2/p44 Gene Repertoires Through Recombination" Pathogens 14, no. 3: 233. https://doi.org/10.3390/pathogens14030233
APA StyleBarbet, A. F., Allred, D. R., & Crosby, F. L. (2025). Generation of Population-Level Diversity in Anaplasma phagocytophilum msp2/p44 Gene Repertoires Through Recombination. Pathogens, 14(3), 233. https://doi.org/10.3390/pathogens14030233