New β-Lactam/β-Lactamase Inhibitor Combination Antibiotics
Abstract
:1. Introduction
2. New β-Lactam/β-Lactamase Inhibitor Combination Antibiotics
3. Cefepime/Enmetazobactam
4. Aztreonam/Avibactam
5. Sulbactam/Durlobactam
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AmpC | Ampicillinase C |
BL/BLI | β-lactam/β-lactamase inhibitor |
CE | Clinically evaluable |
CFU | Colony-forming units |
CRAB | carbapenem-resistant Acinetobacter baumannii |
CrCL | Creatinine clearance |
CRRT | Continuous renal replacement therapy |
cUTI | Complicated urinary tract infection |
cIAI | Complicated intra-abdominal infection |
eGFR | Estimated glomerular filtration rate |
ESBL | Extended-spectrum β-lactamases |
FDA | Food and Drug Administration |
HAP | Hospital-acquired pneumonia |
HABP | Hospital-acquired bacterial pneumonia |
ITT | Intention to treat |
KPC | Klebsiella pneumoniae carbapenemase |
MBL | Metallo-β-lactamase |
MDR | Multidrug resistance |
MIC | Minimum inhibitory concentration |
OXA | Oxacillinase |
PBP | Penicillin-binding proteins |
VAP | Ventilator-associated pneumonia |
VABP | Ventilator-associated bacterial pneumonia |
References
- Chandel, A.K.; Rao, L.V.; Narasu, M.L.; Singh, O.V. The realm of penicillin G acylase in β-lactam antibiotics. Enzyme Microb. Technol. 2008, 42, 199–207. [Google Scholar]
- Lima, L.M.; Silva, B.N.M.D.; Barbosa, G.; Barreiro, E.J. β-lactam antibiotics: An overview from a medicinal chemistry perspective. Eur. J. Med. Chem. 2020, 208, 112829. [Google Scholar] [CrossRef]
- Drawz, S.M.; Bonomo, R.A. Three decades of beta-lactamase inhibitors. Clin. Microbiol. Rev. 2010, 23, 160–201. [Google Scholar] [CrossRef]
- Castanheira, M.; Simner, P.J.; Bradford, P.A. Extended-spectrum β-lactamases: An update on their characteristics, epidemiology and detection. JAC-Antimicrob. Resist. 2021, 3, dlab092. [Google Scholar] [CrossRef]
- Crandon, J.L.; Bulik, C.C.; Kuti, J.L.; Nicolau, D.P. Clinical pharmacodynamics of cefepime in patients infected with Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2010, 54, 1111–1116. [Google Scholar] [CrossRef]
- O’Connor, A.; Lopez, M.J.; Patel, P.; Eranki, A.P. Cefepime; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK542232/ (accessed on 28 February 2024).
- D’Angelo, R.G.; Johnson, J.K.; Bork, J.T.; Heil, E.L. Treatment options for extended-spectrum beta-lactamase (ESBL) and AmpC-producing bacteria. Expert Opin. Pharmacother. 2016, 17, 953–967. [Google Scholar] [CrossRef]
- Spellberg, B.; Guidos, R.; Gilbert, D.; Bradley, J.; Boucher, H.W.; Scheld, W.M.; Bartlett, J.G.; Edwards, J.; the Infectious Diseases Society of America. The Epidemic of Antibiotic-Resistant Infections: A Call to Action for the Medical Community from the Infectious Diseases Society of America. Clin. Infect. Dis. 2008, 46, 155–164. [Google Scholar] [CrossRef]
- Spellberg, B. The future of antibiotics. Crit. Care 2014, 18, 228. [Google Scholar] [CrossRef]
- Hinchliffe, P.; Tooke, C.L.; Bethel, C.R.; Wang, B.; Arthur, C.; Heesom, K.J.; Shapiro, S.; Schlatzer, D.M.; Papp-Wallace, K.M.; Bonomo, R.A.; et al. Penicillanic Acid Sulfones Inactivate the Extended-Spectrum β-Lactamase CTX-M-15 through Formation of a Serine-Lysine Cross-Link: An Alternative Mechanism of β-Lactamase Inhibition. mBio 2022, 13, e0179321. [Google Scholar] [CrossRef]
- Pharmaceutical Technology. India’s DCGI Approves Orchid Pharma’s Active Pharmaceutical Ingredient (API) Enmetazobactam. 2024. Available online: https://www.pharmaceutical-technology.com/news/dcgi-orchid-pharma-enmetazobactam/?cf-view&cf-closed (accessed on 24 January 2025).
- Knechtle, P.; Shapiro, S.; Morrissey, I.; De Piano, C.; Belley, A. Sigmoid Emax Modeling To Define the Fixed Concentration of Enmetazobactam for MIC Testing in Combination with Cefepime. Antimicrob. Agents Chemother. 2021, 65, e00926-21. [Google Scholar] [CrossRef]
- Papp-Wallace, K.M.; Bethel, C.R.; Caillon, J.; Barnes, M.D.; Potel, G.; Bajaksouzian, S.; Rutter, J.D.; Reghal, A.; Shapiro, S.; Taracila, M.A.; et al. Beyond Piperacillin-Tazobactam: Cefepime and AAI101 as a Potent β-Lactam-β-Lactamase Inhibitor Combination. Antimicrob. Agents Chemother. 2019, 63, e00105-19. [Google Scholar] [CrossRef]
- Allecra Therapeutics. Cefepime/Enmetazobactam [Internet]. 2024. Available online: https://www.allecra.com/more-cefepime (accessed on 24 January 2025).
- Tselepis, L.; Langley, G.W.; Aboklaish, A.F.; Widlake, E.; Jackson, D.E.; Walsh, T.R.; Schofield, C.J.; Brem, J.; Tyrrell, J.M. In vitro efficacy of imipenem-relebactam and cefepime-AAI101 against a global collection of ESBL-positive and carbapenemase-producing Enterobacteriaceae. Int. J. Antimicrob. Agents 2020, 56, 105925. [Google Scholar] [CrossRef]
- Keam, S.J. Cefepime/Enmetazobactam: First Approval. Drugs 2024, 84, 737–744. [Google Scholar] [CrossRef]
- Hawser, S.; Morrissey, I.; Kothari, N.; Monti, F.; Belley, A.; Dunkel, N. Surveillance of Cefepime/Enmetazobactam Against European Isolates Collected from 2019–2021, Including Cephalosporin Resistant Phenotypes. 2023. Available online: https://www.ihma.com/app/uploads/ECCMID-2023-Advanz-Enterobacterales-poster-0289-FINAL_TO_PDF_V2.pdf (accessed on 24 January 2024).
- Hawser, S.; Morrissey, I.; Kothari, N.; Monti, F.; Belley, A.; Quevedo, J. Influence of Genotype on the Activity of Cefepime/Enmetazobactam Against Beta-Lactam Resistant Enterobacterales Collected from Europe in 2019–2021. In Proceedings of the 33rd European Congress of Clinical Microbiology & Infectious Diseases, Copenhagen, Denmark, 15–18 April 2023; p. P0097. Available online: https://www.ihma.com/app/uploads/ECCMID-2023-Advanz-molecular-poster-0097-FINAL_TO_PDF_V2.pdf (accessed on 24 January 2025).
- Lanier, C.; Melton, T.; Covert, K. Cefepime-Enmetazobactam: A Drug Review of a Novel Beta-Lactam/Beta-Lactamase Inhibitor. Ann. Pharmacother. 2024, 10600280241279904. [Google Scholar] [CrossRef]
- Allecra Therapeutics. Allecra Therapeutics Publishes Final Phase 3 ALLIUM Data in JAMA: Cefepime/Enmetazobactam Met Criteria for Superiority [Internet]. 2022. Available online: https://www.allecra.com/images/images/2022pdf/20221005_Allecra%20JAMA%20Publication%20.pdf (accessed on 21 January 2025).
- European Medicines Agency Exblifep, INN-Cefepime+Enmetazobactam, Summary of Product Characteristics. 2024. Available online: https://www.ema.europa.eu/en/documents/product-information/exblifep-epar-product-information_en.pdf (accessed on 24 January 2025).
- Allecra Therapeutics SAS. NDA APPROVAL [Internet]. Report No.: NDA 216165. 2024. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2024/216165Orig1s000ltr.pdf (accessed on 21 January 2025).
- European Medicines Agency. Exblifep (Cefepime/Enmetazobactam) An Overview of Exblifep and Why It Is Authorised in the EU [Internet]. Report No.: EMA/52694/2024. 2024. Available online: https://www.ema.europa.eu/en/documents/overview/exblifep-epar-medicine-overview_en.pdf (accessed on 21 January 2025).
- Kaye, K.S.; Belley, A.; Barth, P.; Lahlou, O.; Knechtle, P.; Motta, P.; Velicitat, P. Effect of Cefepime/Enmetazobactam vs Piperacillin/Tazobactam on Clinical Cure and Microbiological Eradication in Patients with Complicated Urinary Tract Infection or Acute Pyelonephritis: A Randomized Clinical Trial. JAMA 2022, 328, 1304–1314. [Google Scholar] [CrossRef]
- FDA. Cefepime and Enmetazobactam Injection [Internet]. U.S. FOOD & DRUG ADMINISTRATION. 2024. Available online: https://www.fda.gov/drugs/development-resources/cefepime-and-enmetazobactam-injection (accessed on 21 January 2025).
- Vardakas, K.Z.; Tansarli, G.S.; Rafailidis, P.I.; Falagas, M.E. Carbapenems versus alternative antibiotics for the treatment of bacteraemia due to Enterobacteriaceae producing extended-spectrum β-lactamases: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2012, 67, 2793–2803. [Google Scholar] [CrossRef]
- Das, S.; Fitzgerald, R.; Ullah, A.; Bula, M.; Collins, A.M.; Mitsi, E.; Reine, J.; Hill, H.; Rylance, J.; Ferreira, D.M.; et al. Intrapulmonary Pharmacokinetics of Cefepime and Enmetazobactam in Healthy Volunteers: Towards New Treatments for Nosocomial Pneumonia. Antimicrob. Agents Chemother. 2020, 65, e01468-20. [Google Scholar] [CrossRef]
- Aztreonam. DrugBank Online [Internet]. Available online: https://go.drugbank.com/drugs/DB00355 (accessed on 21 January 2025).
- Neu, H.C. Aztreonam activity, pharmacology, and clinical uses. Am. J. Med. 1990, 88, 2S–6S; discussion 38S–42S. [Google Scholar] [CrossRef]
- Mauri, C.; Maraolo, A.E.; Di Bella, S.; Luzzaro, F.; Principe, L. The Revival of Aztreonam in Combination with Avibactam against Metallo-β-Lactamase-Producing Gram-Negatives: A Systematic Review of In Vitro Studies and Clinical Cases. Antibiotics 2021, 10, 1012. [Google Scholar] [CrossRef]
- Ramsey, C.; MacGowan, A.P. A review of the pharmacokinetics and pharmacodynamics of aztreonam. J. Antimicrob. Chemother. 2016, 71, 2704–2712. [Google Scholar] [CrossRef]
- Tan, X.; Kim, H.S.; Baugh, K.; Huang, Y.; Kadiyala, N.; Wences, M.; Singh, N.; Wenzler, E.; Bulman, Z.P. Therapeutic Options for Metallo-β-Lactamase-Producing Enterobacterales. Infect. Drug Resist. 2021, 14, 125–142. [Google Scholar] [CrossRef]
- Keam, S.J. Sulbactam/Durlobactam: First Approval. Drugs 2023, 83, 1245–1252. [Google Scholar] [CrossRef]
- ACS. Avibactam Sodium. Chemistry for Life [Internet]. 2019. Available online: https://www.acs.org/molecule-of-the-week/archive/a/avibactam-sodium.html (accessed on 21 January 2025).
- Carmeli, Y.; Armstrong, J.; Laud, P.J.; Newell, P.; Stone, G.; Wardman, A.; Gasink, L.B. Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): A randomised, pathogen-directed, phase 3 study. Lancet Infect. Dis. 2016, 16, 661–673. [Google Scholar] [CrossRef]
- Pfizer. European Commission Approves Pfizer’s EMBLAVEO® for Patients with Multidrug-Resistant Infections and Limited Treatment Options. 2024. Available online: https://www.pfizer.com/news/press-release/press-release-detail/european-commission-approves-pfizers-emblaveor-patients (accessed on 21 January 2025).
- Brogden, R.N.; Heel, R.C. Aztreonam. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 1986, 31, 96–130. [Google Scholar] [CrossRef]
- European Medicines Agency. Emblaveo, INN-Aztreonam/Avibactam, Summary of Product Characteristics [Internet]. 2024. Available online: https://www.ema.europa.eu/en/documents/product-information/emblaveo-epar-product-information_en.pdf (accessed on 21 January 2025).
- Carmeli, Y.; Cisneros, J.M.; Paul, M.; Daikos, G.L.; Wang, M.; Torre-Cisneros, J.; Singer, G.; Titov, I.; Gumenchuk, I.; Zhao, Y.; et al. Aztreonam-avibactam versus meropenem for the treatment of serious infections caused by Gram-negative bacteria (REVISIT): A descriptive, multinational, open-label, phase 3, randomised trial. Lancet Infect. Dis. 2024, 25, 218–230. [Google Scholar] [CrossRef]
- Bassetti, M.; Vena, A.; Larosa, B.; Giacobbe, D.R. New antibiotics in clinical pipeline for treating infections caused by metallo-β-lactamases producing Gram-negative bacteria. Curr. Opin. Infect. Dis. 2024, 37, 582–588. [Google Scholar] [CrossRef]
- Pfizer. Phase 3 Studies of Pfizer’s Novel Antibiotic Combination Offer New Treatment Hope for Patients with Multidrug-Resistant Infections and Limited Treatment Options [Internet]. 2023. Available online: https://www.pfizer.com/news/press-release/press-release-detail/phase-3-studies-pfizers-novel-antibiotic-combination-offer (accessed on 24 January 2025).
- Cornely, O.A.; Cisneros, J.M.; Torre-Cisneros, J.; Rodríguez-Hernández, M.J.; Tallón-Aguilar, L.; Calbo, E.; Horcajada, J.P.; Queckenberg, C.; Zettelmeyer, U.; Arenz, D.; et al. Pharmacokinetics and safety of aztreonam/avibactam for the treatment of complicated intra-abdominal infections in hospitalized adults: Results from the REJUVENATE study. J. Antimicrob. Chemother. 2020, 75, 618–627. [Google Scholar] [CrossRef]
- Science Medicines Health. European Medicines Agency [Internet]. (Emblaveo; INN-Aztreonam-Avibactam). Report No.: EMA/140194/2024. Available online: https://www.ema.europa.eu/en/documents/overview/emblaveo-epar-medicine-overview_en.pdf (accessed on 24 January 2025).
- Ransom, E.; Bhatnagar, A.; Patel, J.B.; Machado, M.-J.; Boyd, S.; Reese, N.; Lutgring, J.D.; Lonsway, D.; Anderson, K.; Brown, A.C.; et al. Validation of Aztreonam-Avibactam Susceptibility Testing Using Digitally Dispensed Custom Panels. J. Clin. Microbiol. 2020, 58, e01944-19. [Google Scholar] [CrossRef]
- Kaye, K.S.; Shorr, A.F.; Wunderink, R.G.; Du, B.; Poirier, G.E.; Rana, K.; Miller, A.; Lewis, D.; O’Donnell, J.; Chen, L.; et al. Efficacy and safety of sulbactam–durlobactam versus colistin for the treatment of patients with serious infections caused by Acinetobacter baumannii–calcoaceticus complex: A multicentre, randomised, active-controlled, phase 3, non-inferiority clinical trial (ATTACK). Lancet Infect. Dis. 2023, 23, 1072–1084. [Google Scholar]
- Shapiro, A.B. Kinetics of Sulbactam Hydrolysis by β-Lactamases, and Kinetics of β-Lactamase Inhibition by Sulbactam. Antimicrob. Agents Chemother. 2017, 61, e01612-17. [Google Scholar] [CrossRef]
- Durlobactam. DrugBank online [Internet]. 2025. Available online: https://go.drugbank.com/drugs/DB16704 (accessed on 21 January 2025).
- Pasteran, F.; Cedano, J.; Baez, M.; Albornoz, E.; Rapoport, M.; Osteria, J.; Montaña, S.; Le, C.; Ra, G.; Bonomo, R.A.; et al. A New Twist: The Combination of Sulbactam/Avibactam Enhances Sulbactam Activity against Carbapenem-Resistant Acinetobacter baumannii (CRAB) Isolates. Antibiotics 2021, 10, 577. [Google Scholar] [CrossRef] [PubMed]
- FDA Approves New Treatment for Pneumonia Caused by Certain Difficult-to-Treat Bacteria [Internet]. 2023. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-new-treatment-pneumonia-caused-certain-difficult-treat-bacteria (accessed on 21 January 2025).
- McLeod, S.M.; O’Donnell, J.P.; Narayanan, N.; Mills, J.P.; Kaye, K.S. Sulbactam-durlobactam: A β-lactam/β-lactamase inhibitor combination targeting Acinetobacter baumannii. Future Microbiol. 2024, 19, 563–576. [Google Scholar] [CrossRef] [PubMed]
- XACDURO®. Full Prescribing Information [Internet]. FDA. 2023. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/216974s000lbl.pdf (accessed on 21 January 2025).
- Katsarou, A.; Stathopoulos, P.; Tzvetanova, I.D.; Asimotou, C.-M.; Falagas, M.E. β-Lactam/β-Lactamase Inhibitor Combination Antibiotics Under Development. Pathogens 2025, 14, 168. [Google Scholar] [CrossRef] [PubMed]
Generic Name | Brand Name | Drug Approval | Antibiotic Class | Antimicrobial Spectrum | Site of Infection |
---|---|---|---|---|---|
Cefepime/enmetazobactam | EXBLIFEP® | FDA, EMA | fourth-generation cephalosporin/penicillin acid sulfone | ESBL producing Pseudomonas aeruginosa and Enterobacterales (Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, and Enterobacter cloacae) | cUTI, including pyelonephritis (FDA, EMA) HAP, VAP (and bacteremia associated with those infections) (EMA) b |
Aztreonam/avibactam | EMBLAVEO® | EMA | monocyclic β-lactam /broad-spectrum β-lactamase inhibitor | carbapenem-resistant Enterobacterales (including those that produce ESBLs, serine carbapenemases, and metallo-β-lactamases) | cIAI, cUTI including pyelonephritis, HAP, VAP, and aerobic Gram-negative infections b |
Sulbactam/durlobactam | XACDURO® | FDA | β-lactamase inhibitor/β-lactamase inhibitor | Acinetobacter baumannii-calcoaceticus complex | HABP and VABP in patients older than 18 years |
eGFR (mL/min/1.73 m2) or Calculated CrCI (mL/min) | Cefepime/ Enmetazobactam (2 g/0.5 g) b | Aztreonam/ Avibactam | Sulbactam/ Durlobactam (1 g/1 g) |
---|---|---|---|
>130 | q8h * | NA | q4h |
50–130 | 2 g/0.5 g, q8h (when eGFR 60–130 mL/min/1.73 m2) | 2 g/0.67 g, as a loading dose, then 1.5 g/0.5 g q6h | q6h |
30–50 | 1 g/ 0.25 g q8h (when eGFR 30–60 mL/min/1.73 m2) | 2 g/0.67 g, as a loading dose, then 0.75 g/0.25 g q6h | q8h |
15–30 | 1 g/0.25 g q12h | 1.35 g/0.45 g, as a loading dose, then 0.675 g/0.225 g q8h | q12h |
<15 | 1 g/0.25 g q24h | 1 g/0.33 g as a loading dose, then 0.675 g/0.225 g q12h | q24h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sargianou, M.; Stathopoulos, P.; Vrysis, C.; Tzvetanova, I.D.; Falagas, M.E. New β-Lactam/β-Lactamase Inhibitor Combination Antibiotics. Pathogens 2025, 14, 307. https://doi.org/10.3390/pathogens14040307
Sargianou M, Stathopoulos P, Vrysis C, Tzvetanova ID, Falagas ME. New β-Lactam/β-Lactamase Inhibitor Combination Antibiotics. Pathogens. 2025; 14(4):307. https://doi.org/10.3390/pathogens14040307
Chicago/Turabian StyleSargianou, Maria, Panagiotis Stathopoulos, Christos Vrysis, Iva D. Tzvetanova, and Matthew E. Falagas. 2025. "New β-Lactam/β-Lactamase Inhibitor Combination Antibiotics" Pathogens 14, no. 4: 307. https://doi.org/10.3390/pathogens14040307
APA StyleSargianou, M., Stathopoulos, P., Vrysis, C., Tzvetanova, I. D., & Falagas, M. E. (2025). New β-Lactam/β-Lactamase Inhibitor Combination Antibiotics. Pathogens, 14(4), 307. https://doi.org/10.3390/pathogens14040307