Trypanosoma cruzi/Triatomine Interactions—A Review
Abstract
:1. Introduction
2. Trypanosoma cruzi
3. Vectors
3.1. Development, Attraction, and Blood Ingestion
3.2. The Excretory System and the Fate of Ingested Blood
3.3. Immune System of Triatomines
4. The Microbiota of Triatomines
4.1. Infection Routes
4.2. Microbiota of Triatomines
4.3. Identification of Mutualistic Symbionts
4.4. Development of Mutualistic Symbionts/Bacteria in Triatomines
4.5. Functions of Mutualistic Symbionts/Microbiota
4.6. Intestinal Bacteriolysis
5. Interactions of Triatomines with Trypanosoma cruzi
5.1. Effects of the Vector on Trypanosoma cruzi—Development of the Parasite in the Vector
5.1.1. Development of Trypanosoma cruzi in the Stomach
5.1.2. Development of Trypanosoma cruzi in the Small Intestine
5.1.3. Development of Trypanosoma cruzi in the Rectum
5.1.4. Parasite Load in the Whole Intestine
5.2. Effects of Trypanosoma cruzi on Triatomines
5.2.1. Effects of Trypanosoma cruzi on Nymphs and Adults of Triatomines
5.2.2. Effects of Trypanosoma cruzi on the Behavior of Triatomines
5.2.3. Effects of Trypanosoma cruzi on Immunity
6. Interaction of Trypanosoma cruzi and the Microbiota of Triatomines
6.1. Effects of the Microbiota on Trypanosoma cruzi
6.2. Indirect Effects of Trypanosoma cruzi via Inducing and Suppressing Vector Immunity
6.3. Interactions of Trypanosoma cruzi with Mutualistic Symbionts
7. Suggestions for Future Research
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chagas, C. Nova trypanozomiaze humana. Über eine neue Trypanosomiasis des Menschen. Mem. Inst. Oswaldo Cruz 1909, 1, 159–218. [Google Scholar] [CrossRef]
- WHO. Chagas Disease (American Trypanosomiasis). Available online: http://www.who.int/health-topics/chagas-disease (accessed on 8 March 2025).
- Lidani, K.C.F.; Andrade, F.A.; Bavia, L.; Damasceno, F.S.; Beltrame, M.H.; Messias-Reason, I.J.; Sandri, T.L. Chagas Disease: From Discovery to a Worldwide Health Problem. Front. Public Health 2019, 7, 166. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Distribution of Cases of Chagas Disease, Based on Official Estimates, 2018. 2023. Available online: https://www.who.int/docs/default-source/ntds/chagas-disease/chagas-2018-cases.pdf (accessed on 8 March 2025).
- Sereno, D.; Oury, B.; Grijalva, M.J. Chagas Disease across the Ages: A Historical View and Commentary on Navigating Future Challenges. Microorganisms 2024, 12, 1153. [Google Scholar] [CrossRef] [PubMed]
- Suárez, C.; Nolder, D.; García-Mingo, A.; Moore, D.A.J.; Chiodini, P.L. Diagnosis and Clinical Management of Chagas Disease: An Increasing Challenge in Non-Endemic Areas. Res. Rep. Trop. Med. 2022, 13, 25–40. [Google Scholar] [CrossRef]
- Cucunubá, Z.M.; Gutiérrez-Romero, S.A.; Ramírez, J.D.; Velásquez-Ortiz, N.; Ceccarelli, S.; Parra-Henao, G.; Henao-Martínez, A.F.; Rabinovich, J.; Basáñez, M.G.; Nouvellet, P.; et al. The Epidemiology of Chagas Disease in the Americas. Lancet Reg. Health Am. 2024, 37, 100881. [Google Scholar] [CrossRef]
- da Gama, A.N.S.; Correia Soeiro, M. Trypanosoma cruzi Transmission through Blood Samples and Derivatives: Main Routes, Control Strategies and Recent Advancements in Blood Banks. Pathogens 2025, 14, 133. [Google Scholar] [CrossRef] [PubMed]
- Wirth, M.; Gálvez, R.I.; Jochum, J.; Strauss, R.; Kristensen, K.; Stich, A.; Stegemann, M.; Stahl, P.; Puchner, K.P.; Strasen, J.; et al. Knowledge, Attitudes, Behaviors, and Serological Status Related to Chagas Disease among Latin American Migrants in Germany: A Cross-Sectional Study in Six German Cities. Front. Cell Infect. Microbiol. 2023, 12, 1047281. [Google Scholar] [CrossRef]
- Schaub, G.A.; Wülker, W. Tropische Parasitosen im Programm der Weltgesundheitsorganisation. Universitas 1984, 39, 71–80. (In German) [Google Scholar]
- Schaub, G.A. Kissing Bugs. In Encyclopedia of Parasitology, 4th ed.; Mehlhorn, H., Ed.; Springer: Berlin, Germany, 2016; pp. 1400–1403. [Google Scholar]
- Schaub, G.A. Interaction of Trypanosoma cruzi, Triatomines and the Microbiota of the Vectors—A Review. Microorganisms 2024, 12, 855. [Google Scholar] [CrossRef]
- PAHO. World Chagas Disease Day 2021. Available online: http://www.paho.org/en/news/13-4-2021-70-people-chagas-dont-know-theyre-infected (accessed on 10 March 2025).
- Vargas-Abasolo, R.; Gutiérrez-Cabrera, A.E.; Cruz-López, L.; Alavez-Rosas, D.; Benelli, G.; Córdoba-Aguilar, A. Chagas Disease Vector Control Strategies: Where we are and where should we Go from here. Entomol. Gen. 2023, 43, 771–788. [Google Scholar] [CrossRef]
- Grijalva, M.J.; Villacís, A.G.; Ocaña-Mayorga, S.; Yumiseva, C.A.; Nieto-Sanchez, C.; Baus, E.G.; Moncayo, A.L. Evaluation of the Effectiveness of Chemical Control for Chagas Disease Vectors in Loja Province, Ecuador. Vector Borne Zoonotic Dis. 2022, 22, 449–458. [Google Scholar] [CrossRef]
- Schwarz, A.; Medrano-Mercado, N.; Billingsley, P.F.; Schaub, G.A.; Sternberg, J.M. IgM-Antibody Responses of Chickens to Salivary Antigens of Triatoma infestans as Early Biomarkers for Low-Level Infestation of Triatomines. Int. J. Parasitol. 2010, 40, 1295–1302. [Google Scholar] [CrossRef] [PubMed]
- de Miranda, R.P.R.; Soares, T.K.D.A.; Castro, D.P.; Genta, F.A. General Aspects, Host Interaction, and Application of Metarhizium sp. in Arthropod Pest and Vector Control. Front. Fungal Biol. 2024, 5, 1456964. [Google Scholar] [CrossRef] [PubMed]
- Jansen, A.M.; Roque, A.L.R.; Xavier, S.C.C. Trypanosoma cruzi Enzootic Cycle: General Aspects, Domestic and Synanthropic Hosts and Reservoirs. In American Trypanosomiasis Chagas Disease, 2nd ed.; Telleria, J., Tibayrenc, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 265–282. [Google Scholar] [CrossRef]
- Jansen, A.M.; Xavier, S.C.d.C.; Roque, A.L.R. Landmarks of the Knowledge and Trypanosoma cruzi Biology in the Wild Environment. Front. Cell. Infect. Microbiol. 2020, 10, 10. [Google Scholar] [CrossRef]
- Waldeck, B.; Schaub, G.A. “Natural Infections” with Trypanosoma cruzi via the Skin of Mice: Size of Mouthparts of Vectors and Numbers of Invading Parasites. Parasitol. Res. 2022, 121, 2033–2041. [Google Scholar] [CrossRef] [PubMed]
- Busselman, R.E.; Killets, K.C.; Saunders, A.B.; Hamer, S.A. Viable Trypanosoma cruzi Cultured from a Dead Paratriatoma lecticularia (Hemiptera: Reduviidae) Encountered in a Large Dog Kennel Environment in South Texas, USA. J. Med. Entomol. 2025, 62, 225–229. [Google Scholar] [CrossRef]
- Gonçalves, K.R.; Mazzeti, A.L.; Nascimento, A.F.D.S.; Castro-Lacerda, J.M.; Nogueira-Paiva, N.C.; Mathias, F.A.S.; Reis, A.B.; Caldas, S.; Bahia, M.T. The Entrance Route: Oral, Mucous, Cutaneous, or Systemic has a Marked Influence on the Outcome of Trypanosoma cruzi Experimental Infection. Acta Trop. 2022, 234, 106581. [Google Scholar] [CrossRef]
- Steverding, D. The History of Chagas Disease. Parasit. Vectors 2014, 7, 317. [Google Scholar] [CrossRef]
- Bern, C.; Messenger, L.A.; Whitman, J.D.; Maguire, J.H. Chagas Disease in the United States: A Public Health Approach. Clin. Microbiol. Rev. 2020, 33, e00023-19. [Google Scholar] [CrossRef]
- De Fuentes-Vicente, J.A.; Gutiérrez-Cabrera, A.E.; Flores-Villegas, A.L.; Lowenberger, C.; Benelli, G.; Salazar-Schettino, P.M.; Córdoba-Aguilar, A. What Makes an Effective Chagas Disease Vector? Factors Underlying Trypanosoma cruzi-Triatomine Interactions. Acta Trop. 2018, 183, 23–31. [Google Scholar] [CrossRef]
- Meiser, C.K.; Schaub, G.A. Xenodiagnosis. In Parasitology Research Monographs. Nature Helps… How Plants and Other Organisms Contribute to Solve Health Problems; Mehlhorn, H., Ed.; Springer: Berlin, Germany, 2011; Volume 1, pp. 273–299. [Google Scholar]
- Mehlhorn, H.; Schaub, G.A. Chagas’ Disease, Man. In Encyclopedia of Parasitology, 4th ed.; Mehlhorn, H., Ed.; Springer: Heidelberg, Germany, 2016; pp. 479–483. [Google Scholar]
- Ribeiro, V.; Dias, N.; Paiva, T.; Hagström-Bex, L.; Nitz, N.; Pratesi, R.; Hecht, M. Current Trends in the Pharmacological Management of Chagas Disease. Int. J. Parasitol. Drugs Drug. Resist. 2020, 12, 7–17. [Google Scholar] [CrossRef]
- Gabaldón-Figueira, J.C.; Martinez-Peinado, N.; Escabia, E.; Ros-Lucas, A.; Chatelain, E.; Scandale, I.; Gascon, J.; Pinazo, M.J.; Alonso-Padilla, J. State-of-the-Art in the Drug Discovery Pathway for Chagas Disease: A Framework for Drug Development and Target Validation. Res. Rep. Trop. Med. 2023, 14, 1–19. [Google Scholar] [CrossRef] [PubMed]
- De Fuentes-Vicente, J.A.; Santos-Hernández, N.G.; Ruiz-Castillejos, C.; Espinoza-Medinilla, E.E.; Flores-Villegas, A.L.; de Alba-Alvarado, M.; Cabrera-Bravo, M.; Moreno-Rodríguez, A.; Vidal-López, D.G. What do you Need to Know before Studying Chagas Disease? A Beginner’s Guide. Trop. Med. Infect. Dis. 2023, 8, 360. [Google Scholar] [CrossRef] [PubMed]
- Pilicita, V.A.; Sonzogni, A.S.; Allasia, M.; Borra, F.; Minari, R.J.; Gonzalez, V.D.G. Proteins-Based Nanoparticles for Benznidazole Enteric Delivery. Macromol. Biosci. 2025, 25, e2400338. [Google Scholar] [CrossRef] [PubMed]
- Schaub, G.A. Interactions of Trypanosomatids and Triatomines. Adv. Insect Physiol. 2009, 37, 177–242. [Google Scholar] [CrossRef]
- Tibayrenc, M.; Ayala, F.J. Microevolution and Subspecific Taxonomy of Trypanosoma cruzi. Infect. Genet. Evol. 2022, 103, 105344. [Google Scholar] [CrossRef]
- Zingales, B.; Bartholomeu, D.C. Trypanosoma cruzi Genetic Diversity: Impact on Transmission Cycles and Chagas Disease. Mem. Inst. Oswaldo Cruz 2022, 117, e210193. [Google Scholar] [CrossRef]
- Velásquez-Ortiz, N.; Herrera, G.; Hernández, C.; Muñoz, M.; Ramírez, J.D. Discrete Typing Units of Trypanosoma cruzi: Geographical and Biological Distribution in the Americas. Sci. Data 2022, 9, 360. [Google Scholar] [CrossRef]
- Pérez-Cascales, E.; Tellería, J. Unidades discretas de tipificación de Trypanosoma cruzi: Una revisión sobre lo que se conoce hasta el momento en Bolivia. Rev. Arg. Parasitol. 2024, 13, 13–24. (In Spanish) [Google Scholar]
- Herreros-Cabello, A.; Callejas-Hernández, F.; Gironès, N.; Fresno, M. Trypanosoma cruzi: Genomic Diversity and Structure. Pathogens 2025, 14, 61. [Google Scholar] [CrossRef]
- Telleria, J.; Tibayrenc, M.; Del Salto Mendoza, M.; Seveno, M.; Costales, J.A. Comparative Proteomic Analysis of Trypanosoma cruzi TcI Lineage Epimastigotes Unveils Metabolic and Phenotypic Differences between Fast- and Slow-Dividing Strains. Exp. Parasitol. 2023, 252, 108576. [Google Scholar] [CrossRef]
- Tibayrenc, M. Modelling the Transmission of Trypanosoma cruzi: The Need for an Integrated Genetic Epidemiological and Population Genomics Approach. Adv. Exp. Med. Biol. 2010, 673, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Kollien, A.H.; Schaub, G.A. The Development of Trypanosoma cruzi in Triatominae. Parasitol. Today 2000, 16, 381–387. [Google Scholar] [CrossRef]
- Tevere, E.; Di Capua, C.B.; Chasen, N.M.; Etheridge, R.D.; Cricco, J.A. Trypanosoma cruzi Heme Responsive Gene (TcHRG) Plays a Central Role in Orchestrating Heme Uptake in Epimastigotes. FEBS J. 2024, 291, 1186–1198. [Google Scholar] [CrossRef] [PubMed]
- Serrano, A.A.; Schenkman, S.; Yoshida, N.; Mehlert, A.; Richardson, J.M.; Ferguson, M.A. The Lipid Structure of the Glycosylphosphatidylinositol-Anchored Mucin-Like Sialic Acid Acceptors of Trypanosoma cruzi Changes during Parasite Differentiation from Epimastigotes to Infective Metacyclic Trypomastigote Forms. J. Biol. Chem. 1995, 270, 27244–27253. [Google Scholar] [CrossRef]
- Schaub, G.A.; Vogel, P.; Balczun, C. Parasite-Vector Interactions. In Molecular Parasitology—Protozoan Parasites and Their Molecules; Walochnik, J., Duchêne, M., Eds.; Springer: Wien, Austria, 2016; pp. 431–489. [Google Scholar]
- Galvão, C. Taxonomy. In Triatominae—The Biology of Chagas Disease Vectors; Guarneri, A.A., Lorenzo, M.G., Eds.; Springer Nature: New York, NY, USA, 2021; pp. 15–38. [Google Scholar]
- De Fuentes-Vicente, J.A.; Gutiérrez-Cabrera, A.E. Kissing Bugs (Triatominae). In Encyclopedia of Infection and Immunity; Rezaei, N., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 2, pp. 953–970. [Google Scholar] [CrossRef]
- Schaub, G.A. An Update on the Knowledge of Parasite-Vector Interactions of Chagas Disease. Res. Rep. Trop. Med. 2021, 12, 63–76. [Google Scholar] [CrossRef] [PubMed]
- Schaub, G.A.; Mehlhorn, H. Insects. In Encyclopedia of Parasitology, 4th ed.; Mehlhorn, H., Ed.; Springer: Berlin, Germany, 2016; pp. 1348–1357. [Google Scholar]
- Murillo-Solano, C.; López-Domínguez, J.; Gongora, R.; Rojas-Gulloso, A.; Usme-Ciro, J.; Perdomo-Balaguera, E.; Herrera, C.; Parra-Henao, G.; Dumonteil, E. Diversity and Interactions among Triatomine Bugs, their Blood Feeding Sources, Gut Microbiota and Trypanosoma cruzi in the Sierra Nevada de Santa Marta in Colombia. Sci. Rep. 2021, 11, 12306. [Google Scholar] [CrossRef]
- Martínez-Ibarra, J.A.; Nogueda-Torres, B.; Meraz-Medina, T.; Diaz-Chavez, R.; Virgen-Cobian, C.J.; Quirarte-Brambila, M. Advantageous Feeding on Different Blood Meal Sources by the Chagas Disease Vector Triatoma barberi (Hemiptera: Reduviidae). J. Med. Entomol. 2019, 56, 1565–1570. [Google Scholar] [CrossRef]
- Martínez-Ibarra, J.A.; Nogueda-Torres, B.; Montañez-Valde, O.D.; Michel-Parra, J.G. Influence of Blood Meal Source on the Biological Parameters of Triatoma pallidipennis (Heteroptera: Reduviidae) from Mexico. Med. Vet. Entomol. 2023, 37, 124–131. [Google Scholar] [CrossRef]
- Dujardin, J.-P. The Body of Chagas Disease Vectors. Pathogens 2025, 14, 98. [Google Scholar] [CrossRef]
- Lazzari, C.R. The Behaviour of Kissing Bugs. In Triatominae—The Biology of Chagas Disease Vectors; Guarneri, A.A., Lorenzo, M.G., Eds.; Springer Nature: New York, NY, USA, 2021; pp. 215–238. [Google Scholar] [CrossRef]
- Wenk, P.; Lucic, S.; Betz, O. Functional Anatomy of the Hypopharynx and the Salivary Pump in the Feeding Apparatus of the Assassin Bug Rhodnius prolixus (Reduviidae, Heteroptera). Zoomorphology 2010, 129, 225–234. [Google Scholar] [CrossRef]
- Pontes, G.B.; Minoli, S.; Insaurralde, I.O.; de Brito Sánchez, M.G.; Barrozo, R. Bitter Stimuli Modulate the Feeding Decision of a Blood-Sucking Insect via Two Sensory Inputs. J. Exp. Biol. 2014, 217, 3708–3717. [Google Scholar] [CrossRef]
- Sant’Anna, M.R.V.; Soares, A.C.; Araújo, R.N.; Gontijo, N.F.; Pereira, M.H. Triatomines (Hemiptera, Reduviidae) Blood Intake: Physical Constraints and Biological Adaptations. J. Insect Physiol. 2017, 97, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Guarneri, A.A.; Diotaiuti, L.; Gontijo, N.F.; Gontijo, A.F.; Pereira, M.H. Comparison of Feeding Behaviour of Triatoma infestans, Triatoma brasiliensis and Triatoma pseudomaculata in Different Hosts by Electronic Monitoring of the Cibarial Pump. J. Insect Physiol. 2000, 46, 1121–1127. [Google Scholar] [CrossRef] [PubMed]
- Schaub, G.A.; Lösch, P. Parasite/Host-Interrelationships of the Trypanosomatids Trypanosoma cruzi and Blastocrithidia triatomae and the Reduviid Bug Triatoma infestans: Influence of Starvation of the Bug. Ann. Trop. Med. Parasitol. 1989, 83, 215–223. [Google Scholar] [CrossRef]
- Noireau, F.; Dujardin, J.P. Flight and Nutritional Status of Sylvatic Triatoma sordida and Triatoma guasayana. Mem. Inst. Oswaldo Cruz 2001, 96, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Sarquis, O.; Carvalho-Costa, F.A.; Oliveira, L.S.; Duarte, R.; D.’Andrea, P.S.; de Oliveira, T.G.; Lima, M.M. Ecology of Triatoma brasiliensis in Northeastern Brazil: Seasonal Distribution, Feeding Resources, and Trypanosoma cruzi Infection in a Sylvatic Population. J. Vector Ecol. 2010, 35, 385–394. [Google Scholar] [CrossRef]
- Wigglesworth, V.B. The Physiology of Excretion in a Blood-Sucking Insect, Rhodnius prolixus (Hemiptera; Reduviidae) I. Composition of the Urine. J. Exp. Biol. 1931, 8, 411–427. [Google Scholar] [CrossRef]
- Böker, C.A.; Schaub, G.A. Scanning Electron Microscopic Studies of Trypanosoma cruzi in the Rectum of its Vector Triatoma infestans. Z. Parasitenkd. 1984, 70, 459–469. [Google Scholar] [CrossRef]
- Maddrell, S.H.P. The Fastest Fluid-Secreting Cell Known: The Upper Malpighian Tubule Cell of Rhodnius. BioEssays 1991, 13, 357–362. [Google Scholar] [CrossRef]
- Oliveira, P.L.; Genta, F.A. Blood Digestion in Triatomine Insects. In Triatominae—The Biology of Chagas Disease Vectors; Guarneri, A.A., Lorenzo, M.G., Eds.; Springer Nature: New York, NY, USA, 2021; pp. 265–284. [Google Scholar]
- Balczun, C.; Meiser, C.K.; Schaub, G.A. Triatomines as Vectors of American Trypanosomiasis. In Parasitology Research Monographs. Arthropods as Vectors of Emerging Diseases; Mehlhorn, H., Ed.; Springer: Berlin, Germany, 2012; Volume 3, pp. 275–299. [Google Scholar] [CrossRef]
- Lehane, M. Managing the Blood Meal. In The Biology of Blood Sucking Insects, 2nd ed.; Lehane, M., Ed.; Cambridge University Press: Cambridge, UK, 2005; pp. 84–115. [Google Scholar]
- Smit, J.D.; Guggenheim, R.; Bauer, P.G. Crystallized Hemoglobin in Rhodnius prolixus after a Blood Meal on Guinea-Pig. Experientia 1983, 39, 1335–1338. [Google Scholar] [CrossRef] [PubMed]
- Billingsley, P.F.; Downe, A.E.R. Ultrastructural Changes in Posterior Midgut Cells Associated with Blood Feeding in Adult Female Rhodnius prolixus Stål (Heteroptera: Reduviidae). Can. J. Zool. 1983, 61, 2574–2586. [Google Scholar] [CrossRef]
- Balczun, C.; Siemanowski, J.; Pausch, J.K.; Helling, S.; Marcus, K.; Stephan, C.; Meyer, H.E.; Schneider, T.; Cizmowski, C.; Oldenburg, M.; et al. Intestinal Aspartate Proteases TiCatD and TiCatD2 of the Haematophagous Bug Triatoma infestans (Reduviidae): Sequence Characterisation, Expression Pattern and Characterisation of Proteolytic Activity. Insect Biochem. Mol. Biol. 2012, 42, 240–250. [Google Scholar] [CrossRef]
- Gama, M.d.V.F.; Alexandre, Y.d.N.; Pereira da Silva, J.M.; Castro, D.P.; Genta, F.A. Digestive α-L-Fucosidase Activity in Rhodnius prolixus after Blood Feeding: Effect of Secretagogue and Nutritional Stimuli. Front. Physiol. 2023, 14, 1123414. [Google Scholar] [CrossRef]
- Henriques, B.S.; Gomes, B.; Oliveira, P.L.; Garcia, E.S.; Azambuja, P.; Genta, F.A. Characterization of the Temporal Pattern of Blood Protein Digestion in Rhodnius prolixus: First Description of Early and Late Gut Cathepsins. Front. Physiol. 2021, 11, 509310. [Google Scholar] [CrossRef]
- Ouali, R.; Vieira, L.R.; Salmon, D.; Bousbata, S. Early Post-Prandial Regulation of Protein Expression in the Midgut of Chagas Disease Vector Rhodnius prolixus Highlights New Potential Targets for Vector Control Strategy. Microorganisms 2021, 9, 804. [Google Scholar] [CrossRef] [PubMed]
- Rocha, L.L.; Neves, C.A.; Zanuncio, J.C.; Serrão, J.E. Digestive Cells in the Midgut of Triatoma vitticeps (Stal, 1859) in Different Starvation Periods. C. R. Biol. 2010, 333, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Ouali, R.; Bousbata, S. Unveiling the Peptidase Network Orchestrating Hemoglobin Catabolism in Rhodnius prolixus. Mol. Cell. Proteomics. 2024, 23, 100775. [Google Scholar] [CrossRef]
- Rocha, L.L.; Neves, C.A.; Zanuncio, J.C.; Serrão, J.E. Endocrine and Regenerative Cells in the Midgut of Chagas’ Disease Vector Triatoma vitticeps during Different Starvation Periods. Folia Biol. 2014, 62, 259–267. [Google Scholar] [CrossRef]
- Kollien, A.H.; Waniek, P.J.; Nisbet, A.J.; Billingsley, P.F.; Schaub, G.A. Activity and Sequence Characterization of Two Cysteine Proteases in the Digestive Tract of the Reduviid Bug Triatoma infestans. Insect Mol. Biol. 2004, 13, 569–579. [Google Scholar] [CrossRef]
- Borges, E.C.; Machado, E.M.M.; Garcia, E.S.; Azambuja, P. Trypanosoma cruzi: Effects of Infection on Cathepsin D Activity in the Midgut of Rhodnius prolixus. Exp. Parasitol. 2006, 112, 130–133. [Google Scholar] [CrossRef]
- Billingsley, P.F.; Downe, A.E.R. Cellular Localisation of Aminopeptidase in the Midgut of Rhodnius prolixus Stål (Hemiptera: Reduviidae) during Blood Digestion. Cell Tissue Res. 1985, 241, 421–428. [Google Scholar] [CrossRef]
- Kollien, A.H.; Grospietsch, T.; Kleffmann, T.; Zerbst-Boroffka, I.; Schaub, G.A. Ionic Composition of the Rectal Contents and Excreta of the Reduviid Bug Triatoma infestans. J. Insect Physiol. 2001, 47, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Ratcliffe, N.A.; Whitten, M.M.A. Vector Immunity. In SGM Symposium 63: Microbe-Vector Interactions in Vector Borne Diseases; Gillespie, S.H., Osborne, A., Eds.; Cambridge University Press: Cambridge, UK, 2004; pp. 199–262. [Google Scholar]
- Müller, U.; Vogel, P.; Alber, G.; Schaub, G.A. The Innate Immune System of Mammals and Insects. In Contributions to Microbiology; Egesten, A., Schmidt, A., Herwald, H., Eds.; Karger: Basel, Switzerland, 2008; Volume 15, pp. 21–44. [Google Scholar]
- Salcedo-Porras, N.; Lowenberger, C. Immune System of Triatomines. In Triatominae–The Biology of Chagas Disease Vectors; Guarneri, A.A., Lorenzo, M.G., Eds.; Springer Nature: New York, NY, USA, 2021; pp. 307–344. [Google Scholar]
- Ratcliffe, N.A.; Mello, C.B.; Castro, H.C.; Dyson, P.; Figueiredo, M. Immune Reactions of Vector Insects to Parasites and Pathogens. Microorganisms. 2024, 12, 568. [Google Scholar] [CrossRef]
- Guarneri, A.A.; Schaub, G.A. Interaction of Triatomines with their Bacterial Microbiota and Trypanosomes. In Triatominae—The Biology of Chagas Disease Vectors; Guarneri, A.A., Lorenzo, M.G., Eds.; Springer Nature: New York, NY, USA, 2021; pp. 345–386. [Google Scholar] [CrossRef]
- Whitten, M.; Sun, F.; Tew, I.; Schaub, G.A.; Soukou, C.; Nappi, A.; Ratcliffe, N. Differential Modulation of Rhodnius prolixus Nitric Oxide Activities Following Challenge with Trypanosoma rangeli, T. cruzi and Bacterial Cell Wall Components. Insect Biochem. Mol. Biol. 2007, 37, 440–452. [Google Scholar] [CrossRef] [PubMed]
- Genta, F.A.; Souza, R.S.; Garcia, E.S.; Azambuja, P. Phenoloxidases from Rhodnius prolixus: Temporal and Tissue Expression Pattern and Regulation by Ecdysone. J. Insect Physiol. 2010, 56, 1253–1259. [Google Scholar] [CrossRef]
- Garcia, E.S.; Castro, D.P.; Figueiredo, M.B.; Azambuja, P. Immune Homeostasis to Microorganisms in the Guts of Triatomines (Reduviidae)—A Review. Mem. Inst. Oswaldo Cruz 2010, 105, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Salcedo-Porras, N.; Noor, S.; Cai, C.; Oliveira, P.L.; Lowenberger, C. Rhodnius prolixus Uses the Peptidoglycan Recognition Receptor rpPGRP-LC/LA to Detect Gram-Negative Bacteria and Activate the IMD Pathway. Curr. Res. Insect Sci. 2021, 1, 100006. [Google Scholar] [CrossRef]
- Salcedo-Porras, N.; Oliveira, P.L.; Guarneri, A.A.; Lowenberger, C. A Fat Body Transcriptome Analysis of the Immune Responses of Rhodnius prolixus to Artificial Infections with Bacteria. Parasit. Vectors 2022, 15, 269. [Google Scholar] [CrossRef]
- Alejandro, A.D.; Lilia, J.P.; Jesús, M.B.; Henry, R.M. The IMD and Toll Canonical Immune Pathways of Triatoma pallidipennis are Preferentially Activated by Gram-Negative and Gram-Positive Bacteria, respectively, but Cross-Activation also Occurs. Parasit. Vectors 2022, 15, 256. [Google Scholar] [CrossRef]
- Borsatto, K.C.; Coronado, M.A.; Galvão, C.; Arni, R.K.; Alevi, K.C.C. Transcriptomics Applied to the Study of Chagas Disease Vectors. Am. J. Trop. Med. Hyg. 2022, 106, 1042–1048. [Google Scholar] [CrossRef] [PubMed]
- Satyavathi, V.; Ghosh, R.; Subramanian, S. Long Non-Coding RNAs Regulating Immunity in Insects. Noncoding RNA 2017, 3, 14. [Google Scholar] [CrossRef]
- Moure, U.A.E.; Tan, T.; Sha, L.; Lu, X.; Shao, Z.; Yang, G.; Wang, Y.; Cui, H. Advances in the Immune Regulatory Role of Non-Coding RNAs (miRNAs and lncRNAs) in Insect-Pathogen Interactions. Front. Immunol. 2022, 13, 856457. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, J. Specific Memory within Innate Immune Systems. Trends Immunol. 2005, 26, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, G.; Farrell, G.; Kavanagh, K. Immune Priming: The Secret Weapon of the Insect World. Virulence 2020, 11, 238–246. [Google Scholar] [CrossRef]
- Barillas-Mury, C.; Ribeiro, J.M.C.; Valenzuela, J.G. Understanding Pathogen Survival and Transmission by Arthropod Vectors to Pevent Human Disease. Science 2022, 377, eabc2757. [Google Scholar] [CrossRef]
- Carmona-Peña, S.P.; Contreras-Garduño, J.; Castro, D.P.; Manjarrez, J.; Vázquez-Chagoyán, J.C. The Innate Immune Response of Triatomines against Trypanosoma cruzi and Trypanosoma rangeli with an Unresolved Question: Do Triatomines have Immune Memory? Acta Trop. 2021, 224, 106108. [Google Scholar] [CrossRef]
- Carmona-Peña, S.P.; Vázquez-Chagoyán, J.C.; Castro, D.P.; Genta, F.A.; Contreras-Garduño, J. Benefits and Costs of Immune Memory in Rhodnius prolixus against Trypanosoma cruzi. Microb. Pathog. 2022, 165, 105505. [Google Scholar] [CrossRef]
- Dillon, R.J.; Dillon, V.M. The Gut Bacteria of Insects: Nonpathogenic Interactions. Annu. Rev. Entomol. 2004, 49, 71–92. [Google Scholar] [CrossRef]
- Douglas, A.E. The Molecular Basis of Bacterial-Insect Symbiosis. J. Mol. Biol. 2014, 426, 3830–3837. [Google Scholar] [CrossRef]
- Tarabai, H.; Floriano, A.M.; Zima, J.; Filová, N.; Brown, J.J.; Roachell, W.; Smith, R.L.; Beatty, N.L.; Vogel, K.J.; Nováková, E. Microbiomes of Blood-Feeding Triatomines in the Context of Their Predatory Relatives and the Environment. Microbiol. Spectr. 2023, 11, e0168123. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gao, L.; Aksoy, S. Microbiota in Disease-Transmitting Vectors. Nat. Rev. Microbiol. 2023, 21, 604–618. [Google Scholar] [CrossRef]
- Da Lage, J.L.; Fontenelle, A.; Filée, J.; Merle, M.; Béranger, J.M.; Almeida, C.E.; Folly Ramos, E.; Harry, M. Evidence that Hematophagous Triatomine Bugs May Eat Plants in the Wild. Insect Biochem. Mol. Biol. 2024, 165, 104059. [Google Scholar] [CrossRef] [PubMed]
- Schaub, G.A.; Jensen, C. Developmental Time and Mortality of the Reduviid Bug Triatoma infestans with Differential Exposure to Coprophagic Infections with Blastocrithidia triatomae (Trypanosomatidae). J. Invertebr. Pathol. 1990, 55, 17–27. [Google Scholar] [CrossRef]
- Schaub, G.A. Direct Transmission of Trypanosoma cruzi between Vectors of Chagas’ Disease. Acta Trop. 1988, 45, 11–19. [Google Scholar]
- Lorenzo Figueiras, A.N.; Kenigsten, A.; Lazzari, C.R. Aggregation in the Haematophagous Bug Triatoma infestans: Chemical Signals and Temporal Pattern. J. Insect Physiol. 1994, 40, 311–316. [Google Scholar] [CrossRef]
- Lorenzo, M.G.; Lazzari, C.R. The Spatial Pattern of Defaecation in Triatoma infestans and the Role of Faeces as a Chemical Mark of the Refuge. J. Insect Physiol. 1996, 42, 903–907. [Google Scholar] [CrossRef]
- Vallejo, G.A.; Guhl, F.; Schaub, G.A. Triatominae—Trypanosoma cruzi/T rangeli: Vector-Parasite Interactions. Acta Trop. 2009, 110, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Dumonteil, E.; Ramirez-Sierra, M.J.; Pérez-Carrillo, S.; Teh-Poot, C.; Herrera, C.; Gourbière, S.; Waleckx, E. Detailed Ecological Associations of Triatomines Revealed by Metabarcoding and Next-Generation Sequencing: Implications for Triatomine Behavior and Trypanosoma cruzi Transmission Cycles. Sci. Rep. 2018, 8, 4140. [Google Scholar] [CrossRef]
- Orantes, L.C.; Monroy, C.; Dorn, P.L.; Stevens, L.; Rizzo, D.M.; Morrissey, L.; Hanley, J.P.; Rodas, S.G.; Richards, B.; Wallin, K.F.; et al. Uncovering Vector, Parasite, Blood Meal and Microbiome Patterns from Mixed-DNA Specimens of the Chagas Disease Vector Triatoma dimidiata. PLoS Negl. Trop. Dis. 2018, 12, e0006730. [Google Scholar] [CrossRef]
- Schaub, G.A. Intestinal Bacteria/Mutualistic Symbionts of Triatomines—A Review. Mitt. Dtsch. Ges. Allg. Angew. Entomol. 2020, 22, 191–194. [Google Scholar]
- Kieran, T.J.; Arnold, K.M.H.; Thomas, J.C.; Varian, C.P.; Saldaña, A.; Calzada, J.E.; Glenn, T.C.; Gottdenker, N.L. Regional Biogeography of Microbiota Composition in the Chagas Disease Vector Rhodnius pallescens. Parasit. Vectors 2019, 12, 504. [Google Scholar] [CrossRef]
- Arias-Giraldo, L.M.; Muñoz, M.; Hernández, C.; Herrera, G.; Velásquez-Ortiz, N.; Cantillo-Barraza, O.; Urbano, P.; Ramírez, J.D. Species-Dependent Variation of the Gut Bacterial Communities across Trypanosoma cruzi Insect Vectors. PLoS ONE 2020, 15, e0240916. [Google Scholar] [CrossRef] [PubMed]
- Dumonteil, E.; Pronovost, H.; Bierman, E.F.; Sanford, A.; Majeau, A.; Moore, R.; Herrera, C. Interactions among Triatoma sanguisuga Blood Feeding Sources, Gut Microbiota and Trypanosoma cruzi Diversity in Southern Louisiana. Mol. Ecol. 2020, 29, 3747–3761. [Google Scholar] [CrossRef]
- Mann, A.E.; Mitchell, E.A.; Zhang, Y.; Curtis-Robles, R.; Thapa, S.; Hamer, S.A.; Allen, M.S. Comparison of the Bacterial Gut Microbiome of North American Triatoma spp. with and without Trypanosoma cruzi. Front. Microbiol. 2020, 11, 364. [Google Scholar] [CrossRef] [PubMed]
- Villacís, J.F.; López-Rosero, A.; Bustillos, J.J.; Cadena, M.; Yumiseva, C.A.; Grijalva, M.J.; Villacís, A.G. Bacterial Microbiota from the Gut of Rhodnius ecuadoriensis, a Vector of Chagas Disease in Ecuador’s Central Coast and Southern Andes. Front. Microbiol. 2024, 15, 1464720. [Google Scholar] [CrossRef] [PubMed]
- Teal, E.; Herrera, C.; Dumonteil, E. Metabolomics of Developmental Changes in Triatoma sanguisuga Gut Microbiota. PLoS ONE 2023, 18, e0280868. [Google Scholar] [CrossRef]
- Gumpert, J. Untersuchungen über die Symbiose von Tieren mit Pilzen und Bakterien. X. Die Symbiose der Triatominen. 2. Infektion symbiontenfreier Triatominen mit symbiontischen und saprophytischen Mikroorganismen und gemeinsame Eigenschaften der symbiontischen Stämme. Z. Allg. Mikrobiol. 1962, 2, 290–302. [Google Scholar] [CrossRef]
- Brecher, G.; Wigglesworth, V.B. The Transmission of Actinomyces rhodnii Erikson in Rhodnius prolixus Stål (Hemiptera) and its Influence on the Growth of the Host. Parasitology 1944, 35, 220–224. [Google Scholar] [CrossRef]
- Goodchild, A.J.P. The Bacteria associated with Triatoma infestans and some other Species of Reduviidae. Parasitology 1955, 45, 441–448. [Google Scholar] [CrossRef]
- Eichler, S.; Schaub, G.A. Development of Symbionts in Triatomine Bugs and the Effects of Infections with Trypanosomatids. Exp. Parasitol. 2002, 100, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Yassin, A.F. Rhodococcus triatomae sp. nov., Isolated from a Blood-Sucking Bug. Int. J. Syst. Evol. Microbiol. 2005, 55, 1575–1579. [Google Scholar] [CrossRef]
- Eichler, S.; Reintjes, N.; Jung, M.; Balczun, C.; Dotson, E.; Beard, C.B.; Schaub, G.A. Identification of Bacterial Isolates and the Mutualistic Symbiont of Triatoma infestans, Vector of Chagas Disease. 2025; manuscript in preparation. [Google Scholar]
- Drews, M. Die Cardia von Triatoma infestans (Reduviidae; Hemiptera). Untersuchungen zu ihrer Ultrastruktur und zur Lokalisation Symbiontischer Bakterien. Diploma Thesis, University Freiburg, Breisgau, Germany, 1988. (In German). [Google Scholar]
- Vieira, C.S.; Waniek, P.J.; Castro, D.P.; Mattos, D.P.; Moreira, O.C.; Azambuja, P. Impact of Trypanosoma cruzi on Antimicrobial Peptide Gene Expression and Activity in the Fat Body and Midgut of Rhodnius prolixus. Parasit. Vectors 2016, 9, 119. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.L.; Cury, J.C.; Gurgel-Gonçalves, R.; Bahia, A.C.; Monteiro, F.A. Field-Collected Triatoma sordida from Central Brazil Display High Microbiota Diversity that Varies with Regard to Developmental Stage and Intestinal Segmentation. PLoS Negl. Trop. Dis. 2018, 12, e0006709. [Google Scholar] [CrossRef]
- Eberhard, F.E.; Klimpel, S.; Guarneri, A.A.; Tobias, N.J. Exposure to Trypanosoma Parasites Induces Changes in the Microbiome of the Chagas Disease Vector Rhodnius prolixus. Microbiome 2022, 10, 45. [Google Scholar] [CrossRef]
- Gilliland, C.A.; Patel, V.; McCormick, A.C.; Mackett, B.M.; Vogel, K.J. Using Axenic and Gnotobiotic Insects to Examine the Role of Different Microbes on the Development and Reproduction of the Kissing Bug Rhodnius prolixus (Hemiptera: Reduviidae). Mol. Ecol. 2023, 32, 920–935. [Google Scholar] [CrossRef] [PubMed]
- Jung, M. Auswirkung der Infektion mit verschiedenen Bakterien auf die Entwicklung der Raubwanze Triatoma infestans (Reduviidae, Hemiptera). Diploma Thesis, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, Bochum, Germany, 1995. (In German). [Google Scholar]
- Eichler, S.; Schaub, G.A. The Effects of Aposymbiosis and of an Infection with Blastocrithidia triatomae (Trypanosomatidae) on the Tracheal System of the Reduviid Bugs Rhodnius prolixus and Triatoma infestans. J. Insect Physiol. 1998, 44, 131–140. [Google Scholar] [CrossRef]
- Salcedo-Porras, N.; Umaña-Diaz, C.; Bitencourt, R.O.B.; Lowenberger, C. The Role of Bacterial Symbionts in Triatomines: An Evolutionary Perspective. Microorganisms 2020, 8, 1438. [Google Scholar] [CrossRef]
- Wigglesworth, V.B. Symbiotic Bacteria in a Blood-Sucking Insect, Rhodnius prolixus Stål (Hemiptera, Triatomidae). Parasitology 1936, 28, 284–289. [Google Scholar] [CrossRef]
- Tobias, N.J.; Eberhard, F.E.; Guarneri, A.A. Enzymatic Biosynthesis of B-Complex Vitamins is Supplied by Diverse Microbiota in the Rhodnius prolixus Anterior Midgut Following Trypanosoma cruzi Infection. Comput. Struct. Biotechnol. J. 2020, 18, 3395–3401. [Google Scholar] [CrossRef]
- Eppinger, M.; Bunk, B.; Johns, M.A.; Edirisinghe, J.N.; Kutumbaka, K.K.; Koenig, S.S.; Creasy, H.H.; Rosovitz, M.J.; Riley, D.R.; Daugherty, S.; et al. Genome Sequences of the Biotechnologically Important Bacillus megaterium Strains QM B1551 and DSM319. J. Bacteriol. 2011, 193, 4199–42213. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Ordonez, T.; Flores-López, C.A.; Montejo-Lopez, R.; Cruz-Hernandez, A.; Conners, E.E. Cultivable Bacterial Diversity in the Gut of the Chagas Disease Vector Triatoma dimidiata: Identification of Possible Bacterial Candidates for a Paratransgenesis Approach. Front. Ecol. Evol. 2018, 5. [Google Scholar] [CrossRef]
- Hill, P.; Campbell, J.A.; Petrie, I.A. Rhodnius prolixus and its Symbiotic Actinomycete: A Microbiological, Physiological and Behavioural Study. Proc. R. Soc. Lond. B Biol. Sci. 1976, 194, 501–525. [Google Scholar] [CrossRef] [PubMed]
- Lake, P.; Friend, W.G. The Use of Artificial Diets to Determine some of the Effects of Nocardia rhodnii on the Development of Rhodnius prolixus. J. Insect Physiol. 1968, 14, 543–562. [Google Scholar] [CrossRef]
- de Souza, M.V.N.; Ferreira, M.d.L.; Pinheiro, A.C.; Saraiva, M.F.; de Almeida, M.V.; Valle, M.S. Synthesis and Biological Aspects of Mycolic Acids: An Important Target against Mycobacterium tuberculosis. Sci. World J. 2008, 8, 720–751. [Google Scholar] [CrossRef]
- Meiser, C.K.; Pausch, J.K.; Schaub, G.A. Feeding-Induced Changes of Bacteriolytic Activity and of the Pattern of Bacteriolytic Compounds in the Stomach and Small Intestine of the Haematophagous Bug Triatoma infestans (Klug, 1834) (Reduviidae, Triatominae). Parasitologia 2022, 2, 13–26. [Google Scholar] [CrossRef]
- Vieira, C.S.; Waniek, P.J.; Mattos, D.P.; Castro, D.P.; Mello, C.B.; Ratcliffe, N.A.; Garcia, E.S.; Azambuja, P. Humoral Responses in Rhodnius prolixus: Bacterial Feeding Induces Differential Patterns of Antibacterial Activity and Enhances mRNA Levels of Antimicrobial Peptides in the Midgut. Parasit. Vectors 2014, 7, 232. [Google Scholar] [CrossRef]
- Ribeiro, J.M.C.; Pereira, M.E.A. Midgut Glycosidases of Rhodnius prolixus. Insect Biochem. 1984, 14, 103–108. [Google Scholar] [CrossRef]
- González-Rete, B.; Salazar-Schettino, P.M.; Bucio-Torres, M.I.; Córdoba-Aguilar, A.; Cabrera-Bravo, M. Activity of the Prophenoloxidase System and Survival of Triatomines Infected with Different Trypanosoma cruzi Strains under Different Temperatures: Understanding Chagas Disease in the Face of Climate Change. Parasit. Vectors 2019, 12, 219. [Google Scholar] [CrossRef]
- Kollien, A.H.; Fechner, S.; Waniek, P.J.; Schaub, G.A. Isolation and Characterization of a cDNA Encoding for a Lysozyme from the Gut of the Reduviid Bug Triatoma infestans. Arch. Insect Biochem. Physiol. 2003, 53, 134–145. [Google Scholar] [CrossRef]
- Araújo, C.A.C.; Waniek, P.J.; Stock, P.; Mayer, C.; Jansen, A.M.; Schaub, G.A. Sequence Characterization and Expression Patterns of Defensin and Lysozyme Encoding Genes from the Gut of the Reduviid Bug Triatoma brasiliensis. Insect Biochem. Mol. Biol. 2006, 36, 547–560. [Google Scholar] [CrossRef] [PubMed]
- Waniek, P.J.; Jansen, A.M.; Araújo, C.A.C. Trypanosoma cruzi Infection Modulates the Expression of Triatoma brasiliensis def1 in the Midgut. Vector-Borne Zoonotic Dis. 2011, 1, 845–847. [Google Scholar] [CrossRef]
- Gumiel, M.; de Mattos, D.P.; Vieira, C.S.; Moraes, C.S.; Moreira, C.J.C.; Gonzalez, M.S.; Teixeira-Ferreira, A.; Waghabi, M.; Azambuja, P.; Carels, N. Proteome of the Triatomine Digestive Tract: From Catalytic to Immune Pathways; Focusing on Annexin Expression. Front. Mol. Biosci. 2020, 7, 589435. [Google Scholar] [CrossRef]
- Meiser, C.K.; Klenner, L.; Balczun, C.; Schaub, G.A. Bacteriolytic Activity in Saliva of the Haematophagous Triatoma infestans (Reduviidae) and Novel Characterization and Expression Site of a Third Lysozyme. Arch. Insect Biochem. Physiol. 2023, 113, e22013. [Google Scholar] [CrossRef] [PubMed]
- Araújo, C.A.C.; Waniek, P.J.; Jansen, A.M. Development of a Trypanosoma cruzi (TcI) Isolate in the Digestive Tract of an Unfamiliar Vector, Triatoma brasiliensis (Hemiptera, Reduviidae). Acta Trop. 2008, 107, 195–199. [Google Scholar] [CrossRef]
- Noireau, F.; Diosque, P.; Jansen, A.M. Trypanosoma cruzi: Adaptation to its Vectors and its Hosts. Vet. Res. 2009, 40, 26. [Google Scholar] [CrossRef] [PubMed]
- Mejía-Jaramillo, A.M.; Peña, V.H.; Triana-Chávez, O. Trypanosoma cruzi: Biological Characterization of Lineages I and II Supports the Predominance of Lineage I in Colombia. Exp. Parasitol. 2009, 121, 83–91. [Google Scholar] [CrossRef]
- Sandoval-Rodríguez, A.; Rojo, G.; López, A.; Ortiz, S.; Saavedra, M.; Botto-Mahan, C.; Cattan, P.E.; Solari, A. Comparing Vector Competence of Mepraia gajardoi and Triatoma infestans by Genotyping Trypanosoma cruzi Discrete Typing Units Present in Naturally Infected Octodon degus. Acta Trop. 2019, 190, 119–122. [Google Scholar] [CrossRef]
- Garcia, E.S.; Genta, F.A.; de Azambuja, P.; Schaub, G.A. Interactions between intestinal compounds of triatomines and Trypanosoma cruzi. Trends Parasitol. 2010, 26, 499–505. [Google Scholar] [CrossRef]
- Valença-Barbosa, C.; Finamore-Araujo, P.; Moreira, O.C.; Vergara-Meza, J.G.; Alvarez, M.V.N.; Nascimento, J.R.; Borges-Veloso, A.; Viana, M.C.; Lilioso, M.; Miguel, D.C.; et al. Genotypic Trypanosoma cruzi Distribution and Parasite Load Differ Ecotypically and According to Parasite Genotypes in Triatoma brasiliensis from Endemic and Outbreak Areas in Northeastern Brazil. Acta Trop. 2021, 222, 106054. [Google Scholar] [CrossRef]
- Valença-Barbosa, C.; Finamore-Araujo, P.; Moreira, O.C.; Alvarez, M.V.N.; Borges-Veloso, A.; Barbosa, S.E.; Diotaiuti, L.; de Souza, R.C.M. High Parasitic Loads Quantified in Sylvatic Triatoma melanica, a Chagas Disease Vector. Pathogens 2022, 11, 1498. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.d.S.; de Lana, M.; Bastrenta, B.; Barnabé, C.; Quesney, V.; Noël, S.; Tibayrenc, M. Compared Vectorial Transmissibility of Pure and Mixed Clonal Genotypes of Trypanosoma cruzi in Triatoma infestans. Parasitol. Res. 1998, 84, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Araújo, C.A.C.; Cabello, P.H.; Jansen, A.M. Growth Behaviour of Two Trypanosoma cruzi Strains in Single and Mixed Infections: In Vitro and in the Intestinal Tract of the Blood-Sucking Bug, Triatoma brasiliensis. Acta Trop. 2007, 101, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Schaub, G.A.; Böker, C.A. Colonization of the Rectum of Triatoma infestans by Trypanosoma cruzi Studied by Scanning Electron Microscopy: Influence of Blood Uptake by the Bug. Parasitol. Res. 1987, 73, 417–420. [Google Scholar] [CrossRef]
- Schaub, G.A.; Grünfelder, C.; Zimmermann, D.; Peters, W. Binding of Lectin-Gold Conjugates by Two Trypanosoma cruzi Strains in Ampullae and Rectum of Triatoma infestans. Acta Trop. 1989, 46, 291–301. [Google Scholar] [CrossRef]
- Ferreira, R.C.; Kessler, R.L.; Lorenzo, M.G.; Paim, R.M.M.; Ferreira, L.L.; Probst, C.M.; Alves-Silva, J.; Guarneri, A.A. Colonization of Rhodnius prolixus Gut by Trypanosoma cruzi Involves an Extensive Parasite Killing. Parasitology 2016, 143, 434–443. [Google Scholar] [CrossRef]
- Schaub, G.A.; Lösch, P. Trypanosoma cruzi: Origin of Metacyclic Trypomastigotes in the Urine of the Vector Triatoma infestans. Exp. Parasitol. 1988, 65, 174–186. [Google Scholar] [CrossRef]
- Mwangi, V.I.; Martinez, E.G.; Leda, R.L.; Catunda, M.E.S.L.A.; Dias, A.d.S.; Padron Antonio, Y.; Guerra, M.d.G.V.B. Resisting an Invasion: A Review of the Triatomine Vector (Kissing bug) Defense Strategies against a Trypanosoma sp. Infection. Acta Trop. 2023, 238, 106745. [Google Scholar] [CrossRef]
- Urbina, J.A. Intermediary Metabolism of Trypanosoma cruzi. Parasitol. Today 1994, 10, 107–110. [Google Scholar] [CrossRef]
- Conzelmann, K.K. Die Entwicklung von Trypanosoma (S.) cruzi Chagas, 1909 (Protozoa: Kinetoplastida) in Dipetalogaster maxima Uhler 1894 und Triatoma pallidipennis Stal, 1872 (Hemiptera: Triatominae). Diploma Thesis, Faculty Biology, University Tübingen, Tübingen, Germany, 1983. (In German). [Google Scholar]
- Schaub, G.A. Trypanosoma cruzi: Quantitative Studies of Development of Two Strains in Small Intestine and Rectum of the Vector Triatoma infestans. Exp. Parasitol. 1989, 68, 260–273. [Google Scholar] [CrossRef]
- Kollien, A.H.; Schaub, G.A. The Development of Trypanosoma cruzi (Trypanosomatidae) in the Reduviid Bug Triatoma infestans (Insecta): Influence of Starvation. J. Eukaryot. Microbiol. 1998, 45, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Tamayo, L.D.; Guhl, F.; Vallejo, G.A.; Ramírez, J.D. The Effect of Temperature Increase on the Development of Rhodnius prolixus and the Course of Trypanosoma cruzi Metacyclogenesis. PLoS Negl. Trop. Dis. 2018, 12, e0006735. [Google Scholar] [CrossRef] [PubMed]
- Kleffmann, T.; Schmidt, J.; Schaub, G.A. Attachment of Trypanosoma cruzi Epimastigotes to Hydrophobic Substrates and Use of this Property to Separate Stages and Promote Metacyclogenesis. J. Eukaryot. Microbiol. 1998, 45, 548–555. [Google Scholar] [CrossRef]
- Schmidt, J.; Kleffmann, T.; Schaub, G.A. Hydrophobic Attachment of Trypanosoma cruzi to a Superficial Layer of the Rectal Cuticle in the Bug Triatoma infestans. Parasitol. Res. 1998, 84, 527–536. [Google Scholar] [CrossRef]
- Won, M.M.; Baublis, A.; Burleigh, B.A. Proximity-Dependent Biotinylation and Identification of Flagellar Proteins in Trypanosoma cruzi. mSphere 2023, 8, e0008823. [Google Scholar] [CrossRef] [PubMed]
- Yanase, R.; Pruzinova, K.; Owino, B.O.; Rea, E.; Moreira-Leite, F.; Taniguchi, A.; Nonaka, S.; Sádlová, J.; Vojtkova, B.; Volf, P.; et al. Discovery of Essential Kinetoplastid-Insect Adhesion Proteins and their Function in Leishmania-Sand Fly Interactions. Nat. Commun. 2024, 15, 6960. [Google Scholar] [CrossRef]
- Perdomo-Gómez, C.D.; Ruiz-Uribe, N.E.; González, J.M.; Forero-Shelton, M. Extensible Membrane Nanotubules Mediate Attachment of Trypanosoma cruzi Epimastigotes under Flow. PLoS ONE 2023, 18, e0283182. [Google Scholar] [CrossRef]
- Denecke, S.; Malfara, M.F.; Hodges, K.R.; Holmes, N.A.; Williams, A.R.; Gallagher-Teske, J.H.; Pascarella, J.M.; Daniels, A.M.; Sterk, G.J.; Leurs, R.; et al. Adhesion of Crithidia fasciculata Promotes a Rapid Change in Developmental Fate Driven by cAMP Signaling. mSphere 2024, 9, e0061724. [Google Scholar] [CrossRef]
- Schaub, G.A. The Effects of Trypanosomatids on Insects. Adv. Parasitol. 1992, 31, 255–319. [Google Scholar] [CrossRef]
- Martínez-Ibarra, J.A.; Nogueda-Torres, B.; Montañez-Valde, O.D.; Michel-Parra, J.G.; Ambriz-Santos, M.A. Behavioral Parameters of Six Populations of Meccus phyllosomus longipennis (Heteroptera: Reduviidae) from Areas with High and Low Prevalences of Trypanosoma cruzi Human Infection. Insect Sci. 2021, 28, 850–860. [Google Scholar] [CrossRef]
- Martínez-Ibarra, J.A.; Grant-Guillén, Y.; Nogueda-Torres, B.; Meraz-Medina, T.; Martínez-Grant, D.M. Life History Data of a Triatoma protracta nahuatlae, T. sinaloensis, and their Laboratory Hybrids (Hemiptera: Reduviidae). J. Med. Entomol. 2024, 61, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Nogueda-Torres, B.; Montañez-Valdez, O.D.; Michel-Parra, J.G.; Martínez-Grant, D.M.; Martínez-Ibarra, J.A. Biological Parameters of Three Populations of Triatoma dimidiata s. s. (Hemiptera: Reduviidae) from Western Mexico. J. Med. Entomol. 2021, 58, 2114–2123. [Google Scholar] [CrossRef]
- Meraz-Medina, T.; Grant-Guillén, Y.; Mercado-Trujillo, J.R.; Nogueda-Torres, B.; Martínez-Ibarra, J.A. Behavioral and Biological Parameters of Six Populations of Triatoma pallidipennis (Heteroptera: Reduviidae) from Areas with High and Low Prevalence Rates of Trypanosoma cruzi Human Infection. Acta Trop. 2024, 256, 107259. [Google Scholar] [CrossRef] [PubMed]
- Padilla, N.A.; Moncayo, A.L.; Keil, C.B.; Grijalva, M.J.; Villacís, A.G. Life Cycle, Feeding, and Defecation Patterns of Triatoma carrioni (Hemiptera: Reduviidae), under Laboratory Conditions. J. Med. Entomol. 2019, 6, 617–624. [Google Scholar] [CrossRef]
- Kleffmann, T. Mechanismen der Anheftung und Induktion der Metazyklogenese von Trypanosoma cruzi in Triatoma infestans. Ph.D. Thesis, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, Bochum, Germany, 1999. (In German). [Google Scholar]
- Maissner, F.F.; Silva, C.A.O.; Farias, A.B.; Costa, E.P.; Nepomuceno-Silva, J.L.; da Silva, J.R.; Mury, F.B. α-Glucosidase Isoform G Contributes to Heme Detoxification in Rhodnius prolixus and its Knockdown Affects Trypanosoma cruzi Metacyclogenesis. Curr. Res. Insect Sci. 2024, 6, 100100. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, V.; Miranda, K.; Augusto, I. The Old and the New about the Contractile Vacuole of Trypanosoma cruzi. J. Eukaryot. Microbiol. 2022, 69, e12939. [Google Scholar] [CrossRef]
- Docampo, R. Advances in the Cellular Biology, Biochemistry, and Molecular Biology of Acidocalcisomes. Microbiol. Mol. Biol. Rev. 2024, 88, e0004223. [Google Scholar] [CrossRef]
- Augusto, I.; Girard-Dias, W.; Schoijet, A.; Alonso, G.D.; Portugal, R.V.; de Souza, W.; Jimenez, V.; Miranda, K. Quantitative Assessment of the Nanoanatomy of the Contractile Vacuole Complex in Trypanosoma cruzi. Life Sci. Alliance 2024, 7, e202402826. [Google Scholar] [CrossRef]
- Kollien, A.H.; Schaub, G.A. Trypanosoma cruzi in the Rectum of the Bug Triatoma infestans: Effects of Blood Ingestion by the Starved Vector. Am. J. Trop. Med. Hyg. 1998, 59, 166–170. [Google Scholar] [CrossRef]
- Brack, C. Elektronenmikroskopische Untersuchungen zum Lebenszyklus von Trypanosoma cruzi unter besonderer Berücksichtigung der Entwicklungsformen im Übertrager Rhodnius prolixus. Acta Trop. 1968, 25, 289–356. (In German) [Google Scholar]
- Loshouarn, H.; Guarneri, A.A. Effects of Fasting on the Interplay between Temperature and Trypanosoma cruzi Infection on the Life Cycle of the Chagas Disease Vector Rhodnius prolixus. PLoS Negl. Trop. Dis. 2024, 18, e0012665. [Google Scholar] [CrossRef]
- Schaub, G.A.; Böker, C.A. Colonization of the Rectum of Triatoma infestans by Trypanosoma cruzi: Influence of Starvation Studied by Scanning Electron Microscopy. Acta Trop. 1986, 43, 349–354. [Google Scholar] [PubMed]
- Moreira, O.C.; Verly, T.; Finamore-Araujo, P.; Gomes, S.A.O.; Lopes, C.M.; Sousa, D.M.; Azevedo, L.R.; Mota, F.F.; D’Avila-Levy, C.M.; Santos-Mallet, J.R.; et al. Development of Conventional and Real-Time Multiplex PCR-Based Assays for Estimation of Natural Infection Rates and Trypanosoma cruzi Load in Triatomine Vectors. Parasit. Vectors 2017, 10, 404. [Google Scholar] [CrossRef] [PubMed]
- Schaub, G.A. Does Trypanosoma cruzi Stress its Vector? Parasitol. Today 1989, 5, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Schaub, G.A.; Meiser, C.K.; Balczun, C. Interactions of Trypanosoma cruzi and Triatomines. In Parasitology Research Monographs. Progress in Parasitology; Mehlhorn, H., Ed.; Springer: Berlin, Germany, 2011; Volume 2, pp. 155–178. [Google Scholar]
- Guarneri, A.A.; Pereira, M.H.; Diotaiuti, L. Influence of the Blood Meal Source on the Development of Triatoma infestans, Triatoma brasiliensis, Triatoma sordida and Triatoma pseudomaculata (Heteroptera, Reduviidae). J. Med. Entomol. 2000, 37, 373–379. [Google Scholar] [CrossRef]
- Heger, T.J.; Guerin, P.M.; Eugster, W. Microclimatic Factors Influencing Refugium Suitability for Rhodnius prolixus. Physiol. Entomol. 2006, 31, 248–256. [Google Scholar] [CrossRef]
- Rolandi, C.; Schilman, P.E. The Costs of Living in a Thermal Fluctuating Environment for the Tropical Haematophagous Bug, Rhodnius prolixus. J. Therm. Biol. 2018, 74, 92–99. [Google Scholar] [CrossRef]
- Peterson, J.K.; Graham, A.L.; Dobson, A.P.; Chavez, O.T. Rhodnius prolixus Life History Outcomes Differ when Infected with Different Trypanosoma cruzi I Strains. Am. J. Trop. Med. Hyg. 2015, 93, 564–572. [Google Scholar] [CrossRef]
- Mc Cabe, A.; Yañez, F.; Pinto, R.; López, A.; Ortiz, S.; Muñoz-San Martin, C.; Botto-Mahan, C.; Solari, A. Survivorship of Wild Caught Mepraia spinolai Nymphs: The Effect of Seasonality and Trypanosoma cruzi Infection after Feeding and Fasting in the Laboratory. Infect. Genet. Evol. 2019, 71, 197–204. [Google Scholar] [CrossRef]
- Estay-Olea, D.; Correa, J.P.; de Bona, S.; Bacigalupo, A.; Quiroga, N.; San Juan, E.; Solari, A.; Botto-Mahan, C. Trypanosoma cruzi could Affect Wild Triatomine Approaching Behaviour to Humans by Altering Vector Nutritional Status: A Field Test. Acta Trop. 2020, 210, 105574. [Google Scholar] [CrossRef]
- Eberhard, F.E.; Klimpel, S.; Guarneri, A.A.; Tobias, N.J. Metabolites as Predictive Biomarkers for Trypanosoma cruzi Exposure in Triatomine Bugs. Comput. Struct. Biotech. J. 2021, 19, 3051–3057. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, I.C.; Cazzulo, J.J.; Sánchez, D.O. Gp63 Homologues in Trypanosoma cruzi: Surface Antigens with Metalloprotease Activity and a Possible Role in Host Cell Infection. Infect. Immun. 2003, 71, 5739–5749. [Google Scholar] [CrossRef]
- Botzotz, J.; Méndez-Valdés, G.; Ortiz, S.; López, A.; Botto-Mahan, C.; Solari, A. Natural Trypanosoma cruzi Infection and Climatic Season Influence the Developmental Capacity in Field-Caught Mepraia spinolai Nymphs. Insects 2023, 14, 272. [Google Scholar] [CrossRef] [PubMed]
- Cordero-Montoya, G.; Flores-Villegas, A.L.; Salazar-Schettino, P.M.; Vences-Blanco, M.O.; Rocha-Ortega, M.; Gutiérrez-Cabrera, A.E.; Rojas-Ortega, E.; Córdoba-Aguilar, A. The Cost of being a Killer’s Accomplice: Trypanosoma cruzi Impairs the Fitness of Kissing Bugs. Parasitol. Res. 2019, 118, 2523–2529. [Google Scholar] [CrossRef]
- Lobbia, P.A.; Rodríguez, C.; Remón, C.; Manteca-Acosta, M. Reproductive Consequences of the Interaction Trypanosoma cruzi−Triatoma infestans and its Trade-Off with Survival. J. Invertebr. Pathol. 2024, 206, 108183. [Google Scholar] [CrossRef]
- De Bona, S.; Correa, J.P.; San Juan, E.; Estay-Olea, D.; Quiroga, N.; Bacigalupo, A.; Araya-Donoso, R.; Botto-Mahan, C. Opportunistic or Selective? Stage-Dependent Feeding Behavior in a Wild Vector of Chagas Disease. Int. J. Parasitol. 2023, 53, 55–64. [Google Scholar] [CrossRef]
- May-Concha, I.J.; Escalante-Talavera, M.J.; Dujardin, J.P.; Waleckx, E. Does Trypanosoma cruzi (Chagas, 1909) (Kinetoplastida: Trypanosomatidae) Modify the Antennal Phenotype of Triatoma dimidiata (Latreille, 1811) (Hemiptera: Triatominae)? Parasit. Vectors 2022, 15, 466. [Google Scholar] [CrossRef]
- Ramírez-González, M.G.; Flores-Villegas, A.L.; Salazar-Schettino, P.M.; Gutiérrez-Cabrera, A.E.; Rojas Ortega, E.; Córdoba-Aguilar, A. Zombie Bugs? Manipulation of Kissing Bug Behavior by the Parasite Trypanosoma cruzi. Acta Trop. 2019, 200, 105177. [Google Scholar] [CrossRef] [PubMed]
- Chacón, F.; Muñoz-San Martín, C.; Bacigalupo, A.; Álvarez-Duhart, B.; Solís, R.; Cattan, P.E. Trypanosoma cruzi Parasite Load Modulates the Circadian Activity Pattern of Triatoma infestans. Insects 2022, 13, 76. [Google Scholar] [CrossRef]
- Marliére, N.P.; Lorenzo, M.G.; Guarneri, A.A. Trypanosoma cruzi-Infected Rhodnius prolixus Endure Increased Predation Facilitating Parasite Transmission to Mammal Hosts. PLoS Negl. Trop. Dis. 2021, 15, e0009570. [Google Scholar] [CrossRef]
- Verly, T.; Costa, S.; Lima, N.; Mallet, J.; Odêncio, F.; Pereira, M.; Moreira, C.J.C.; Britto, C.; Pavan, M.G. Vector Competence and Feeding-Excretion Behavior of Triatoma rubrovaria (Blanchard, 1843) (Hemiptera: Reduviidae) Infected with Trypanosoma cruzi TcVI. PLoS Negl. Trop. Dis. 2020, 14, e0008712. [Google Scholar] [CrossRef]
- Depickère, S.; Ramírez-Ávila, G.M.; Deneubourg, J.-L. Alteration of the Aggregation and Spatial Organization of the Vector of Chagas Disease, Triatoma infestans, by the Parasite Trypanosoma cruzi. Sci. Rep. 2019, 9, 17432. [Google Scholar] [CrossRef]
- Alavez-Rosas, D.; Gutiérrez-Cabrera, A.E.; Cruz-López, L.; Córdoba-Aguilar, A. Lessons to be Popular: The Chemical Basis of Aggregation in Trypanosoma cruzi-Infected and Non-infected Chagasic Bugs. R. Soc. Open Sci. 2024, 11, 231271. [Google Scholar] [CrossRef]
- Ouali, R.; Vieira, L.R.; Salmon, D.; Bousbata, S. Trypanosoma cruzi Reprograms Mitochondrial Metabolism within the Anterior Midgut of its Vector Rhodnius prolixus during the Early Stages of Infection. Parasit. Vectors 2024, 17, 381. [Google Scholar] [CrossRef]
- de Araujo, M.F.C.; Cardoso, L.S.; Pereira, M.H.; Pereira, M.G.; Atella, G.C. Trypanosoma cruzi Infection Modulates Secreted Phospholipase A2 Expression in the Salivary Glands of Rhodnius prolixus. Acta Trop. 2024, 257, 107281. [Google Scholar] [CrossRef] [PubMed]
- Buarque, D.S.; Spindola, L.M.; Martins, R.M.; Braz, G.R.; Tanaka, A.S. Tigutcystatin, a Cysteine Protease Inhibitor from Triatoma infestans Midgut Expressed in Response to Trypanosoma cruzi. Biochem. Biophys. Res. Comm. 2011, 413, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Buarque, D.S.; Braz, G.R.C.; Martins, R.M.; Tanaka-Azevedo, A.M.; Gomes, C.M.; Oliveira, F.A.A.; Schenkman, S.; Tanaka, A.S. Differential Expression Profiles in the Midgut of Triatoma infestans Infected with Trypanosoma cruzi. PLoS ONE 2013, 8, e61203. [Google Scholar] [CrossRef] [PubMed]
- Pausch, J.K. Characterization of Intestinal Antibacterial Factors of Triatoma infestans (Reduviidae, Insecta) and their Interaction with Trypanosoma cruzi (Trypanosomatidae, Kinetoplastida). Ph.D. Thesis, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, Bochum, Germany, 2012. [Google Scholar]
- Ursic-Bedoya, R.J.; Nazzari, H.; Cooper, D.; Triana, O.; Wolff, M.; Lowenberger, C. Identification and Characterization of Two Novel Lysozymes from Rhodnius prolixus, a Vector of Chagas Disease. J. Insect Physiol. 2008, 54, 593–603. [Google Scholar] [CrossRef]
- Reynoso-Ducoing, O.A.; González-Rete, B.; Díaz, E.; Candelas-Otero, F.N.; López-Aviña, J.A.; Cabrera-Bravo, M.; Bucio-Torres, M.I.; Torres-Gutiérrez, E.; Salazar-Schettino, P.M. Expression of Proteins, Glycoproteins, and Transcripts in the Guts of Fasting, Fed, and Trypanosoma cruzi-Infected Triatomines: A Systematic Review. Pathogens 2023, 12, 1124. [Google Scholar] [CrossRef]
- Carvalho-Costa, T.M.; Tiveron, R.D.R.; Mendes, M.T.; Barbosa, C.G.; Nevoa, J.C.; Roza, G.A.; Silva, M.V.; Figueiredo, H.C.P.; Rodrigues, V.; Soares, S.C.; et al. Salivary and Intestinal Transcriptomes Reveal Differential Gene Expression in Starving, Fed and Trypanosoma cruzi-Infected Rhodnius neglectus. Front. Cell. Infect. Microbiol. 2021, 11, 773357. [Google Scholar] [CrossRef]
- Díaz-Garrido, P.; Cárdenas-Guerra, R.E.; Martínez, I.; Poggio, S.; Rodríguez-Hernández, K.; Rivera-Santiago, L.; Ortega-López, J.; Sánchez-Esquivel, S.; Espinoza, B. Differential Activity on Trypanosomatid Parasites of a Novel Recombinant Defensin Type 1 from the Insect Triatoma (Meccus) pallidipennis. Insect Biochem. Mol. Biol. 2021, 139, 103673. [Google Scholar] [CrossRef] [PubMed]
- da Mota, F.F.; Castro, D.P.; Vieira, C.S.; Gumiel, M.; de Albuquerque, J.P.; Carels, N.; Azambuja, P. In Vitro Trypanocidal Activity, Genomic Analysis of Isolates, and In Vivo Transcription of Type VI Secretion System of Serratia marcescens Belonging to the Microbiota of Rhodnius prolixus Digestive Tract. Front. Microbiol. 2019, 9, 3205. [Google Scholar] [CrossRef]
- Gumiel, M.; da Mota, F.F.; de Sousa Rizzo, V.; Sarquis, O.; De Castro, D.P.; Lima, M.M.; de Souza Garcia, E.; Carels, N.; Azambuja, P. Characterization of the Microbiota in the Guts of Triatoma brasiliensis and Triatoma pseudomaculata Infected by Trypanosoma cruzi in Natural Conditions Using Culture Independent Methods. Parasit. Vectors 2015, 8, 245. [Google Scholar] [CrossRef]
- Beard, C.B.; Cordon-Rosales, C.; Durvasula, R.V. Bacterial Symbionts of the Triatominae and their Potential Use in Control of Chagas Disease Transmission. Annu. Rev. Entomol. 2002, 47, 123–141. [Google Scholar] [CrossRef] [PubMed]
- Durvasula, R.V.; Sundaram, R.K.; Kirsch, P.; Hurwitz, I.; Crawford, C.V.; Dotson, E.; Beard, C.B. Genetic Transformation of a Corynebacterial Symbiont from the Chagas Disease Vector Triatoma infestans. Exp. Parasitol. 2008, 119, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Jose, C.; Klein, N.; Wyss, S.; Fieck, A.; Hurwitz, I.; Durvasula, R. Recombinant Arthrobacter β-1, 3-Glucanase as a Potential Effector Molecule for Paratransgenic Control of Chagas Disease. Parasit. Vectors 2013, 6, 65. [Google Scholar] [CrossRef]
- Taracena, M.L.; Oliveira, P.L.; Almendares, O.; Umaña, C.; Lowenberger, C.; Dotson, E.M.; Paiva-Silva, G.O.; Pennington, P.M. Genetically Modifying the Insect Gut Microbiota to Control Chagas Disease Vectors through Systemic RNAi. PLoS Negl. Trop. Dis. 2015, 9, e0003358. [Google Scholar] [CrossRef]
- Whitten, M.M.; Facey, P.D.; Del Sol, R.; Fernández-Martínez, L.T.; Evans, M.C.; Mitchell, J.J.; Bodger, O.G.; Dyson, P.J. Symbiont-Mediated RNA Interference in Insects. Proc. Biol. Sci. 2016, 283, 20160042. [Google Scholar] [CrossRef]
- Rupawate, P.S.; Roylawar, P.; Khandagale, K.; Gawande, S.; Ade, A.B.; Jaiswal, D.K.; Borgave, S. Role of Gut Symbionts of Insect Pests: A Novel Target for Insect-Pest Control. Front. Microbiol. 2023, 14, 1146390. [Google Scholar] [CrossRef]
- Azambuja, P.; Garcia, E.S.; Ratcliffe, N.A. Gut Microbiota and Parasite Transmission by Insect Vectors. Trends Parasitol. 2005, 21, 568–572. [Google Scholar] [CrossRef]
- Teotônio, I.M.S.N.; Dias, N.; Hagström-Bex, L.; Nitz, N.; Francisco, A.F.; Hecht, M. Intestinal Microbiota—A Modulator of the Trypanosoma cruzi-Vector-Host Triad. Microb. Pathog. 2019, 137, 103711. [Google Scholar] [CrossRef] [PubMed]
- Duarte-Silva, E.; Morais, L.H.; Clarke, G.; Savino, W.; Peixoto, C. Targeting the Gut Microbiota in Chagas Disease: What do we Know so Far? Front. Microbiol. 2020, 11, 585857. [Google Scholar] [CrossRef] [PubMed]
- Castro, D.P.; Moraes, C.S.; Gonzalez, M.S.; Ratcliffe, N.A.; Azambuja, P.; Garcia, E.S. Trypanosoma cruzi Immune Response Modulation Decreases Microbiota in Rhodnius prolixus Gut and is Crucial for Parasite Survival and Development. PLoS ONE 2012, 7, e36591. [Google Scholar] [CrossRef] [PubMed]
- Batista, K.K.S.; Vieira, C.S.; Florentino, E.B.; Caruso, K.F.B.; Teixeira, P.T.P.; da Silva Moraes, C.; Genta, F.A.; de Azambuja, P.; de Castro, D.P. Nitric Oxide Effects on Rhodnius prolixus’s Immune Responses, Gut Microbiota and Trypanosoma cruzi Development. J. Insect Physiol. 2020, 126, 104100. [Google Scholar] [CrossRef]
- Buarque, D.S.; Gomes, C.M.; Araújo, R.N.; Pereira, M.H.; Ferreira, R.C.; Guarneri, A.A.; Tanaka, A.S. A New Antimicrobial Protein from the Anterior Midgut of Triatoma infestans Mediates Trypanosoma cruzi Establishment by Controlling the Microbiota. Biochimie 2016, 123, 138–143. [Google Scholar] [CrossRef]
- Waltmann, A.; Willcox, A.C.; Balasubramanian, S.; Mayori, K.B.; Guerrero, S.M.; Sanchez, R.S.; Roach, J.; Pino, C.C.; Gilman, R.H.; Bern, C.; et al. Hindgut Microbiota in Laboratory-Reared and Wild Triatoma infestans. PLoS Negl. Trop. Dis. 2019, 13, e0007383. [Google Scholar] [CrossRef]
- Soares, T.S.; Buarque, D.S.; Queiroz, B.R.; Gomes, C.M.; Braz, G.R.; Araújo, R.N.; Pereira, M.H.; Guarneri, A.A.; Tanaka, A.S. A Kazal-Type Inhibitor is Modulated by Trypanosoma cruzi to Control Microbiota inside the Anterior Midgut of Rhodnius prolixus. Biochimie 2015, 112, 41–48. [Google Scholar] [CrossRef]
- Castro, D.P.; Moraes, C.S.; Gonzalez, M.S.; Ribeiro, I.M.; Tomassini, T.C.B.; Azambuja, P.; Garcia, E.S. Physalin B Inhibits Trypanosoma cruzi Infection in the Gut of Rhodnius prolixus by Affecting the Immune System and Microbiota. J. Insect Physiol. 2012, 58, 1620–1625. [Google Scholar] [CrossRef]
- Araújo, C.A.C.; Pacheco, J.P.F.; Waniek, P.J.; Geraldo, R.B.; Sibajev, A.; Dos Santos, A.L.; Evangelho, V.G.O.; Dyson, P.J.; Azambuja, P.; Ratcliffe, N.A.; et al. A Rhamnose-Binding Lectin from Rhodnius prolixus and the Impact of its Silencing on Gut Bacterial Microbiota and Trypanosoma cruzi. Dev. Comp. Immunol. 2021, 114, 103823. [Google Scholar] [CrossRef]
- Rodríguez-Ruano, S.M.; Škochová, V.; Rego, R.O.M.; Schmidt, J.O.; Roachell, W.; Hypša, V.; Nováková, E. Microbiomes of North American Triatominae: The Grounds for Chagas Disease Epidemiology. Front. Microbiol. 2018, 9, 1167. [Google Scholar] [CrossRef]
- Jiménez-Cortés, J.G.; García-Contreras, R.; Bucio-Torres, M.I.; Cabrera-Bravo, M.; López-Jácome, L.E.; Franco-Cendejas, R.; Vences-Blanco, M.O.; Salazar-Schettino, P.M. Bacteria Cultured from the Gut of Meccus pallidipennis (Hemiptera: Reduviidae), a Triatomine Species Endemic to Mexico. Med. Vet. Entomol. 2021, 35, 478–483. [Google Scholar] [CrossRef] [PubMed]
- Eichler, S. Interaktionen von Triatominen mit ihren Symbionten und Trypanosomatiden. Ph.D. Thesis, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, Bochum, Germany, 1998. (In German). [Google Scholar]
- Mühlpfordt, H. Der Einfluß der Darmsymbionten von Rhodnius prolixus auf Trypanosoma cruzi. Z. Tropenmed. Parasitol. 1959, 10, 314–327. (In German) [Google Scholar]
- Jensen, C.; Schaub, G.A. Development of Blastocrithidia triatomae (Trypanosomatidae) in Triatoma infestans after Vitamin B-Supplementation of the Blood-Diet of the Bug. Europ. J. Protistol. 1991, 27, 17–20. [Google Scholar] [CrossRef]
- de Almeida Dias, F.; Guerra, B.; Vieira, L.R.; Perdomo, H.D.; Gandara, A.C.; Amaral, R.J.; Vollu, R.E.; Gomes, S.A.; Lara, F.A.; Sorgine, M.H.; et al. Monitoring of the Parasite Load in the Digestive Tract of Rhodnius prolixus by Combined qPCR Analysis and Imaging Techniques Provides New Insights into the Trypanosome Life Cycle. PLoS Negl. Trop. Dis. 2015, 9, e0004186. [Google Scholar] [CrossRef]
- Mesquita, R.D.; Vionette-Amaral, R.J.; Lowenberger, C.; Rivera-Pomar, R.; Monteiro, F.A.; Minx, P.; Spieth, J.; Carvalho, A.B.; Panzera, F.; Lawson, D.; et al. Genome of Rhodnius prolixus, an Insect Vector of Chagas Disease, Reveals Unique Adaptations to Hematophagy and Parasite Infection. Proc. Natl. Acad. Sci. USA 2015, 112, 14936–14941, Erratum in: Proc. Natl. Acad. Sci. USA 2016, 113, E1415–E1416. [Google Scholar] [CrossRef]
- Schaub, G.A.; Schottelius, J. Identification of Trypanosomes Isolated from Reduviidae from North Chile. Z. Parasitenkd. 1984, 70, 3–9. [Google Scholar] [CrossRef]
- Brener, Z. The Behavior of Slender and Stout Forms of Trypanosoma cruzi in the Blood-Stream of Normal and Immune Mice. Ann. Trop. Med. Parasitol. 1969, 63, 215–220. [Google Scholar] [CrossRef]
- Kulkarni, M.M.; Karafova, A.; Kamysz, W.; Schenkman, S.; Pelle, R.; McGwire, B.S. Secreted Trypanosome Cyclophilin Inactivates Lytic Insect Defense Peptides and Induces Parasite Calcineurin Activation and Infectivity. J. Biol. Chem. 2013, 288, 8772–8784. [Google Scholar] [CrossRef] [PubMed]
- Isoe, J.; Riske, B.F.; Dobson, M.E.; Kaylor, H.L.; Brady, J.C.; Debebe, Y.; Saavedra, L.M.; Luckhart, S.; Riehle, M.A. Characterization of the Sodium Multi-Vitamin Transporter in the Mosquito Anopheles stephensi and its Capacity to Mobilize Pantothenate and Biotin. Biomolecules 2025, 15, 59. [Google Scholar] [CrossRef]
- Caulier, S.; Nannan, C.; Gillis, A.; Licciardi, F.; Bragard, C.; Mahillon, J. Overview of the Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group. Front. Microbiol. 2019, 10, 302. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. 2025 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In any reproduction of this article there should not be any suggestion that WHO or this article endorse any specific organisation or products. The use of the WHO logo is not permitted.
Share and Cite
Schaub, G.A. Trypanosoma cruzi/Triatomine Interactions—A Review. Pathogens 2025, 14, 392. https://doi.org/10.3390/pathogens14040392
Schaub GA. Trypanosoma cruzi/Triatomine Interactions—A Review. Pathogens. 2025; 14(4):392. https://doi.org/10.3390/pathogens14040392
Chicago/Turabian StyleSchaub, Günter A. 2025. "Trypanosoma cruzi/Triatomine Interactions—A Review" Pathogens 14, no. 4: 392. https://doi.org/10.3390/pathogens14040392
APA StyleSchaub, G. A. (2025). Trypanosoma cruzi/Triatomine Interactions—A Review. Pathogens, 14(4), 392. https://doi.org/10.3390/pathogens14040392