Systemic IL-10 and IFN-γ Levels in Respiratory Syncytial Virus- and Rhinovirus-Infected Bulgarian Children with Acute Bronchiolitis and Their Impact on Clinical Manifestation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Nucleic Acid Extraction and Real-Time PCR Assay
2.3. Quantification of Serum IL-10 and IFN-γ Concentrations
2.4. Ethical Approval
2.5. Statistical Analysis
3. Results
3.1. Serum IL-10 and IFN-γ Levels in Bronchiolitis Children in Relation to the Type of Infecting Virus
3.2. Association Between IL-10 and IFN-γ Serum Levels in Children with Bronchiolitis in Relation to Respiratory Failure and Wheezing Severity
3.3. Correlation of Serum IL-10 and IFN-γ Levels According to the Type of Viral Infection and Clinical Characteristics in Bulgarian Children with Bronchiolitis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meissner, H.C. Viral Bronchiolitis in Children. N. Engl. J. Med. 2016, 374, 62–72. [Google Scholar] [CrossRef]
- Florin, T.A.; Plint, A.C.; Zorc, J.J. Viral bronchiolitis. Lancet 2017, 389, 211–224. [Google Scholar] [CrossRef]
- Stempel, H.E.; Martin, E.T.; Kuypers, J.; Englund, J.A.; Zerr, D.M. Multiple viral respiratory pathogens in children with bronchiolitis. Acta Paediatr. 2008, 98, 123–126. [Google Scholar] [CrossRef]
- Turunen, R.; Koistinen, A.; Vuorinen, T.; Arku, B.; Söderlund-Venermo, M.; Ruuskanen, O.; Jartti, T. The first wheezing episode: Respiratory virus etiology, atopic characteristics, and illness severity. Pediatr. Allergy Immunol. 2014, 25, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Øymar, K.; Skjerven, H.O.; Mikalsen, I.B. Acute bronchiolitis in infants, a review. Scand. J. Trauma. Resusc. Emerg. Med. 2014, 22, 23. [Google Scholar] [CrossRef] [PubMed]
- Kenmoe, S.; Kengne-Nde, C.; Ebogo-Belobo, J.T.; Mbaga, D.S.; Modiyinji, A.F.; Njouom, R. Systematic review and meta-analysis of the prevalence of common respiratory viruses in children <2 years with bronchiolitis in the pre-COVID-19 pandemic era. PLoS ONE 2020, 15, e0242302. [Google Scholar]
- Haddadin, Z.; Rankin, D.A.; Lipworth, L.; Suh, M.; McHenry, R.; Blozinski, A.; George, S.S.; Fernandez, K.N.; Varjabedian, R.; Spieker, A.J.; et al. Respiratory Virus Surveillance in Infants across Different Clinical Settings. J. Pediatr. 2021, 234, 164–171. [Google Scholar] [CrossRef]
- Ghazaly, M.; Nadel, S. Characteristics of children admitted to intensive care with acute bronchiolitis. Eur. J. Pediatr. 2018, 177, 913–920. [Google Scholar] [CrossRef]
- Brand, H.K.; Galama, M.D.; Brouwer, M.L.; Teuwen, K.; Hermans, W.M.; Melchers, J.G.; Warris, A. Infection with multiple viruses is not associated with increased disease severity in children with bronchiolitis. Pediatr. Pulmonol. 2012, 47, 393–400. [Google Scholar] [CrossRef]
- Stollar, F.; Alcoba, G.; Gervaix, A. Virologic testing in bronchiolitis: Does it change management decisions and predict outcomes? Eur. J. Pediatr. 2014, 173, 1429–1435. [Google Scholar] [CrossRef]
- Korsun, N.; Angelova, S.; Tzotcheva, I.; Georgieva, I.; Lazova, S.; Parina, S.; Alexiev, I.; Perenovska, P. Prevalence and genetic characterisation of respiratory syncytial viruses circulating in Bulgaria during the 2014/15 and 2015/16 winter seasons. Pathog. Glob. Health. 2017, 111, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Kostadinova, E.; Angelova, S. Prevalence of the respiratory syncytial virus infection in the winter and spring months among Bulgarian children younger than 2 years of age. Trakia J. Sci. 2024, 3, 219–227. [Google Scholar] [CrossRef]
- Jartti, T.; Smits, H.H.; Bønnelykke, K.; Bircan, O.; Elenius, V.; Konradsen, J.R.; Maggina, P.; Makrinioti, H.; Stokholm, J.; Hedlin, G.; et al. Bronchiolitis needs a revisit: Distinguishing between virus entities and their treatments. Allergy Eur. J. Allergy Clin. Immunol. 2019, 74, 40–52. [Google Scholar] [CrossRef]
- Castro-Rodriguez, J.A.; Astudillo, P.; Puranik, S.; Brown, M.A.; Custovic, A.; Forno, E. New paradigms in acute viral bronchiolitis: Is it time to change our approach? Paediatr. Respir. Rev. 2024, 10, 4. [Google Scholar] [CrossRef]
- Hasegawa, K.; Dumas, O.; Hartert, T.V.; Camargo, C.A. Advancing our understanding of infant bronchiolitis through phenotyping and endotyping: Clinical and molecular approaches. Expert. Rev. Respir. Med. 2016, 10, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Fauroux, B.; Hascoët, M.; Jarreau, H.; Magny, F.; Rozé, C.; Saliba, E.; Schwarzinger, M. Risk factors for bronchiolitis hospitalization in infants: A French nationwide retrospective cohort study over four consecutive seasons (2009–2013). PLoS ONE 2020, 15, e0229766. [Google Scholar] [CrossRef]
- Heinonen, S.; Rodriguez-Fernandez, R.; Diaz, A.; Oliva Rodriguez-Pastor, S.; Ramilo, O.; Mejias, A. Infant Immune Response to Respiratory Viral Infections. Immunol. Allergy Clin. North. Am. 2019, 39, 361–376. [Google Scholar] [CrossRef]
- Vázquez, Y.; González, L.; Noguera, L.; González, P.A.; Riedel, C.A.; Bertrand, P.; Bueno, S.M. Cytokines in the Respiratory Airway as Biomarkers of Severity and Prognosis for Respiratory Syncytial Virus Infection: An Update. Front. Immunol. 2019, 10, 1154. [Google Scholar] [CrossRef]
- Christiaansen, A.F.; Knudson, C.J.; Weiss, K.A.; Varga, S.M. The CD4 T cell response to respiratory syncytial virus infection. Immunol. Res. 2014, 59, 109–117. [Google Scholar] [CrossRef]
- Fedele, G.; Schiavoni, I.; Nenna, R.; Pierangeli, A.; Frassanito, A.; Leone, P.; Petrarca, L.; Scagnolari, C.; Midulla, F. Analysis of the immune response in infants hospitalized with viral bronchiolitis shows different Th1/Th2 profiles associated with respiratory syncytial virus and human rhinovirus. Pediatr. Allergy Immunol. 2018, 29, 555–557. [Google Scholar] [CrossRef]
- Yuan, X.H.; Li, Y.M.; Shen, Y.Y.; Yang, J.; Jin, Y. Clinical and Th1/Th2 immune response features of hospitalized children with human rhinovirus infection. J. Med. Virol. 2020, 92, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Leahy, T.R.; McManus, R.; Doherty, D.G.; Grealy, R.; Carr, M.J.; Slattery, D.; Ryan, T. Viral Bronchiolitis is Associated with Altered Cytokine Gene Expression and Lymphocyte Activation Status. Pediatr. Infect. Dis. J. 2016, 35, e326–e338. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.Y.; Sung, C.H.; Wu, M.C.; Chang, Y.C.; Chang, J.C.; Fang, Y.P.; Wang, N.M.; Chou, T.Y.; Chan, Y.J. Clinical characteristics and differential cytokine expression in hospitalized Taiwanese children with respiratory syncytial virus and rhinovirus bronchiolitis. J. Microbiol. Immunol. Infect. 2023, 56, 282–291. [Google Scholar] [CrossRef]
- West, J.B. Respiratory Physiology: The Essentials, 8th ed.; Lippincott Williams and Wilkins: Baltimore, MA, USA, 2008. [Google Scholar]
- Trifonova, I.; Madzharova, I.; Christova, I.; Angelova, S.; Voleva, S.; Yordanova, R.; Tcherveniakova, T.; Krumova, S.; Korsun, N. Clinical significance and role of coinfections with respiratory pathogens among individuals with confirmed severe acute respiratory syndrome coronavirus-2 infection. Front. Public Health 2022, 10, 959319. [Google Scholar] [CrossRef] [PubMed]
- Joshi, P.; Shaw, A.; Kakakios, A.; Isaacs, D. Interferon-gamma levels in nasopharyngeal secretions of infants with respiratory syncytial virus and other respiratory viral infections. Clin. Exp. Immunol. 2003, 131, 143–147. [Google Scholar] [CrossRef]
- Roh, D.E.; Park, S.H.; Choi, H.J.; Kim, Y.H. Comparison of cytokine expression profiles in infants with a rhinovirus induced lower respiratory tract infection with or without wheezing: A comparison with respiratory syncytial virus. Korean J. Pediatr. 2017, 60, 296–301. [Google Scholar] [CrossRef]
- Russell, C.D.; Unger, S.A.; Walton, M.; Schwarze, J. The Human Immune Response to Respiratory Syncytial Virus Infection. Clin. Microbiol. Rev. 2017, 30, 481–502. [Google Scholar] [CrossRef]
- Larkin, E.K.; Hartert, T.V. Genes associated with RSV lower respiratory tract infection and asthma: The application of genetic epidemiological methods to understand causality. Future Virol. 2015, 10, 883–897. [Google Scholar] [CrossRef]
- Weiss, K.A.; Christiaansen, A.F.; Fulton, R.B.; Meyerholz, D.K.; Varga, S.M. Multiple CD4+ T cell subsets produce immunomodulatory IL-10 during respiratory syncytial virus infection. J. Immunol. 2011, 187, 3145–3154. [Google Scholar] [CrossRef]
- Loebbermann, J.; Schnoeller, C.; Thornton, H.; Durant, L.; Sweeney, N.P.; Schuijs, M.; O’Garra, A.; Johansson, C.; Openshaw, P.J. IL-10 regulates viral lung immunopathology during acute respiratory syncytial virus infection in mice. PLoS ONE 2012, 7, e32371. [Google Scholar] [CrossRef]
- Alonso, F.J.; Roine, I.; Vasquez, A.; Caneo, M. Soluble interleukin-2 receptor (sCD25) and interleukin-10 plasma concentrations are associated with severity of primary respiratory syncytial virus (RSV) infection. Eur. Cytokine Netw. 2005, 16, 81–90. [Google Scholar]
- Hoebee, B.; Bont, L.; Rietveld, E.; van Oosten, M.; Hodemaekers, H.M.; Nagelkerke, N.J.; Neijens, H.J.; Kimpen, J.L.; Kimman, T.G. Influence of promoter variants of interleukin-10, interleukin-9, and tumor necrosis factor-alpha genes on respiratory syncytial virus bronchiolitis. J. Infect. Dis. 2004, 189, 239–247. [Google Scholar] [CrossRef]
- Mella, C.; Suarez-Arrabal, M.C.; Lopez, S.; Stephens, J.; Fernandez, S.; Hall, M.W.; Ramilo, O.; Mejias, A. Innate immune dysfunction is associated with enhanced disease severity in infants with severe respiratory syncytial virus bronchiolitis. J. Infect. Dis. 2013, 207, 564–573. [Google Scholar] [CrossRef]
- Bont, L.; Heijnen, C.J.; Kavelaars, A.; van Aalderen, W.M.; Brus, F.; Draaisma, J.T.; Geelen, S.M.; Kimpen, J.L. Monocyte IL-10 production during respiratory syncytial virus bronchiolitis is associated with recurrent wheezing in a one-year follow-up study. Am. J. Respir. Crit. Care Med. 2000, 161, 1518–1523. [Google Scholar] [CrossRef] [PubMed]
- Schuurhof, A.; Janssen, R.; de Groot, H.; Hodemaekers, H.M.; de Klerk, A.; Kimpen, J.L.; Bont, L. Local interleukin-10 production during respiratory syncytial virus bronchiolitis is associated with post-bronchiolitis wheeze. Respir. Res. 2011, 12, 121. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Cornell, T.T.; LeVine, A.; Berlin, A.A.; Hinkovska-Galcheva, V.; Fleszar, A.J.; Lukacs, N.W.; Shanley, T.P. Dual role of interleukin-10 in the regulation of respiratory syncitial virus (RSV)-induced lung inflammation. Clin. Exp. Immunol. 2013, 172, 263–279. [Google Scholar] [CrossRef]
- Han, L.; Li, D.; Wang, C.; Ren, L.; Guo, L.; Wang, J. Infection of nonclassic monocytes by respiratory syncytial virus induces an imbalance in the CD4+ T-cell subset response. Microbiol. Spectr. 2025, 13, e02073-24. [Google Scholar] [CrossRef]
- Ding, Q.; Xu, L.; Zhu, Y.; Xu, B.; Chen, X.; Duan, Y.; Xie, Z.; Shen, K. Comparison of clinical features of acute lower respiratory tract infections in infants with RSV/HRV infection, and incidences of subsequent wheezing or asthma in childhood. BMC Infect. Dis. 2020, 20, 387. [Google Scholar] [CrossRef]
- Hurme, P.; Komulainen, M.; Tulkki, M.; Leino, A.; Rückert, B.; Turunen, R.; Vuorinen, T.; Akdis, M.; Akdis, C.A.; Jartti, T. Cytokine expression in rhinovirus- vs. respiratory syncytial virus-induced first wheezing episode and its relation to clinical course. Front. Immunol. 2022, 13, 1044621. [Google Scholar] [CrossRef]
- Hurme, P.; Kähkönen, M.; Rückert, B.; Vahlberg, T.; Turunen, R.; Vuorinen, T.; Akdis, M.; Akdis, C.A.; Jartti, T. Disease Severity and Cytokine Expression in the Rhinovirus-Induced First Wheezing Episode. Viruses 2024, 16, 924. [Google Scholar] [CrossRef]
- Löfgren, J.; Marttila, R.; Renko, M.; Rämet, M.; Hallman, M. Toll-like receptor 4 Asp299Gly polymorphism in respiratory syncytial virus epidemics. Pediatr. Pulmonol. 2010, 45, 687–692. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, A.E.; Marson, F.A.L.; Bertuzzo, C.S.; Bastos, J.C.S.; Baracat, E.C.E.; Brandão, M.B.; Tresoldi, A.T.; das Neves Romaneli, M.T.; Almeida, C.C.B.; de Oliveira, T.; et al. Association between single nucleotide polymorphisms in TLR4, TLR2, TLR9, VDR, NOS2 and CCL5 genes with acute viral bronchiolitis. Gene 2018, 645, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Caballero, M.T.; Serra, M.E.; Acosta, P.L.; Marzec, J.; Gibbons, L.; Salim, M.; Rodriguez, A.; Reynaldi, A.; Garcia, A.; Bado, D.; et al. TLR4 genotype and environmental LPS mediate RSV bronchiolitis through Th2 polarization. J. Clin. Investig. 2015, 125, 571–582. [Google Scholar] [CrossRef] [PubMed]
RSV | RV | Others | Undetected Virus | Intergroup | |
---|---|---|---|---|---|
n = 36 | n = 22 | n = 6 | n = 24 | Significance | |
Sex | |||||
Male | 22 | 13 | 4 | 13 | p = 0.935 |
female | 14 | 9 | 2 | 11 | |
Age (months) | 8.94 | 12.32 | 9 | 11.79 | p = 0.313 |
Respiratory failure | |||||
No | 0 | 0 | 0 | 8 | RSV vs. RV |
I degree | 21 | 7 | 2 | 7 | p = 0.05 |
II degree | 15 | 15 | 4 | 9 | |
Wheezing | RSV vs. no | ||||
Mild | 3 | 0 | 0 | 10 | p = 0.003 |
Moderate | 25 | 16 | 5 | 10 | RSV vs. no |
Severe | 8 | 6 | 1 | 4 | p = 0.003 |
Duration in hospital (days) | 7 (6–8) | 6 (5–7.25) | 6 (5–7) | 6.5 (5.2–7) | RSV vs. RV p = 0.037 |
Recurrence | |||||
Yes | 17 | 12 | 0 | 12 | |
No | 19 | 10 | 6 | 12 | |
CRP | 7.93 ± 19.93 | 15.74 ± 26.8 | 7.25 ± 6.88 | 4.32 ± 4.66 | p = 0.173 |
Leukocytes | 11.05 ± 4.07 | 13.42 ± 3.95 | 9.42 ± 3.36 | 12.01 ± 3.71 | p = 0.079 |
IL-10 (pg/mL) | IFN-γ (pg/mL) | |||
---|---|---|---|---|
Median IQR (25–75%) | p-Value | Median IQR (25–75%) | p-Value | |
Type of Virus | ||||
RSV | 14.4 (12.2–24.0) | 3.21 (1.58–6.78) | ||
RV | 8.9 (7.2–12.5) | <0.001 * | 2.85 (1.12–7.32) | 0.781 |
Other viruses | ||||
6.65 (3.9–15.3) | 0.003 * | 6.1 (1.34–7.28) | 0.496 | |
Undetected viruses | ||||
9.1 (6.35–10.45) | <0.001 * | 4.66 (1.57–8.68) | 0.376 | |
p-Value within the group | <0.001 ** | 0.660 | ||
** Kruskal–Wallis test | ||||
* Mann–Whitney U-test |
IL-10 | RSV | RV | Others | Undetected Virus | Intergroup |
---|---|---|---|---|---|
n = 36 | n = 22 | n = 6 | n = 24 | Significance | |
Respiratory failure | |||||
No | - | - | - | 10.2 (6.3–10.4) | |
I degree | 14.4 (12.8–27.9) | 9.9 (8.9–11.1) | 11.1 (6.8–15.3) | 8.2 (7.2–9.1) | p = 0.005 |
II degree | 14.4 (10.3–18.4) | 8.3 (7.1–14.8) | 5.2 (3.6–13.4) | 9.4 (6.1–13.2) | |
Wheezing | |||||
Mild | 12.8 (12.4–15.6) | - | - | 9.5 (6.6–10.3) | |
Moderate | 14.4 (12.6–27.9) | 8.9 (7.4–11.1) | 6.5 (3.9–6.8) | 10.1 (5.0–13.2) | p = 0.017 |
Severe | 14.1 (10.3–19.8) | 9.8 (7.0–27.0) | 20.20 | 7.5 (6.5–8.5) | |
IFN-γ | |||||
Respiratory failure | |||||
No | - | - | - | 4.7 (2.2–5.7) | |
I degree | 5.2 (1.6–10.4) | 3.4 (1.2–5.8) | 12.1 (5.5–18.7) | 8.2 (2.0–13.7) | p = 0.441 |
II degree | 2.5 (1.6–3.3) | 2.8 (1.6–8.2) | 4.05 ± 3.41 | 4.6 (1.0–8.6) | |
Wheezing | 5.4 (5.3–7.9) | - | - | 4.8 (2.2–25.4) | |
Mild | 3.3 (1.5–8.6) | 3.3 (1.9–8.0) | 5.5 (1.3–6.7) | 4.3 (1.0–6.0) | |
Moderate Severe | 2.0 (1.4–3.1) | 1.5 (0.6–2.6) | 7.28 | 8.7 (4.4–13.7) | p = 0.189 |
CRP | 7.93 ± 19.93 | 15.74 ± 26.80 | 7.25 ± 6.88 | 4.32 ± 4.66 | p = 0.173 |
Leucocytes | 11.05 ± 4.07 | 13.42 ± 3.95 | 9.42 ± 3.36 | 12.01 ± 3.71 | p = 0.079 |
IL-10 | IFN-γ | Type of Virus | Respiratory Failure | Wheezing | Recurrence | |
---|---|---|---|---|---|---|
IL-10 | 1.000 | 0.055 | 0.546 ** p < 0.001 | 0.055 | 0.098 | 0.002 |
IFN-γ | 0.055 | 1.000 | 0.097 | 0.163 | 0.192 | 0.1 |
Type of virus | 0.546 ** p < 0.001 | 0.097 | 1.000 | 0.110 | 0.219 * p = 0.041 | 0.021 |
Respiratory failure | 0.055 | 0.163 | 0.110 | 1.000 | 0.523 ** p < 0.001 | 0.055 |
Wheezing | 0.098 | 0.192 | 0.218 | 0.523 ** p < 0.001 | 1.000 | 0.350 ** p < 0.001 |
Recurrence | 0.002 | 0.1 | 0.021 | 0.055 | 0.350 ** p < 0.001 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostadinova, E.; Angelova, S.; Tsonkova-Popova, T.; Zlateva, D.; Yordanova, R.; Stanilova, S. Systemic IL-10 and IFN-γ Levels in Respiratory Syncytial Virus- and Rhinovirus-Infected Bulgarian Children with Acute Bronchiolitis and Their Impact on Clinical Manifestation. Pathogens 2025, 14, 426. https://doi.org/10.3390/pathogens14050426
Kostadinova E, Angelova S, Tsonkova-Popova T, Zlateva D, Yordanova R, Stanilova S. Systemic IL-10 and IFN-γ Levels in Respiratory Syncytial Virus- and Rhinovirus-Infected Bulgarian Children with Acute Bronchiolitis and Their Impact on Clinical Manifestation. Pathogens. 2025; 14(5):426. https://doi.org/10.3390/pathogens14050426
Chicago/Turabian StyleKostadinova, Emiliya, Svetla Angelova, Tsvetana Tsonkova-Popova, Dima Zlateva, Rozalina Yordanova, and Spaska Stanilova. 2025. "Systemic IL-10 and IFN-γ Levels in Respiratory Syncytial Virus- and Rhinovirus-Infected Bulgarian Children with Acute Bronchiolitis and Their Impact on Clinical Manifestation" Pathogens 14, no. 5: 426. https://doi.org/10.3390/pathogens14050426
APA StyleKostadinova, E., Angelova, S., Tsonkova-Popova, T., Zlateva, D., Yordanova, R., & Stanilova, S. (2025). Systemic IL-10 and IFN-γ Levels in Respiratory Syncytial Virus- and Rhinovirus-Infected Bulgarian Children with Acute Bronchiolitis and Their Impact on Clinical Manifestation. Pathogens, 14(5), 426. https://doi.org/10.3390/pathogens14050426