Global Epidemiology of Vector-Borne Parasitic Diseases: Burden, Trends, Disparities, and Forecasts (1990–2036)
Abstract
1. Introduction
2. Methods
2.1. Data Source and Extraction
2.2. Definition of the VBPDs
2.3. Statistical Analysis
3. Results
3.1. Global Burden of VBPDs
3.2. Regional Burden Disparities in the VBPDs
3.3. Age and Sex Disparities of VBPDs
3.4. Associations Between the Burden of VBPDs and the SDI
3.5. Forecasting the Global Burden of VBPDs with the ARIMA Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VBPDs | Vector-borne parasitic diseases |
GBD | Global Burden of Diseases |
DALYs | Disability-adjusted life years |
SDI | Socio-demographic Index |
EAPC | Estimated annual percentage change |
ARIMA | Autoregressive integrated moving average |
AIC | Akaike Information Criterion |
BIC | Bayesian Information Criterion |
WHO | World Health Organization |
ASR | Age-standardized rate |
ASPR | Age-standardized prevalence rate |
ASDR | Age-standardized death rate |
CI | Confidence interval |
References
- World Health Organization. Vector-Borne Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases#cms (accessed on 20 April 2025).
- Kassegne, K.; Zhou, X.-N.; Chen, J.-H. Editorial: Vectors and vector-borne parasitic diseases: Infection, immunity, and evolution. Front. Immunol. 2021, 12, 729415. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Wei, L.; Liang, H.; Yan, D.; Zhang, J.; Wang, Z. Trends of the global, regional and national incidence, mortality, and disability-adjusted life years of malaria, 1990–2019: An analysis of the Global Burden of Disease Study 2019. Risk Manag. Healthc. Policy 2023, 16, 1187–1201. [Google Scholar] [CrossRef]
- World Health Organization. World Malaria Report 2024: Addressing Inequity in the Global Malaria Response; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Cui, L.; Kim, K. Recent malaria outbreak in the USA: Risk of and response to malaria reintroduction in non-endemic regions. Decod. Infect. Transm. 2024, 2, 100018. [Google Scholar] [CrossRef]
- Krishnasastry, S. Three decades of research in lymphatic filariasis-lessons learned. Trop. Parasitol. 2024, 14, 65–70. [Google Scholar] [CrossRef]
- Lamula, S.Q.; Aladejana, E.B.; Aladejana, E.A.; Buwa-Komoreng, L.V. Prevalence of elephantiasis, an overlooked disease in Southern Africa: A comprehensive review. J. Venom. Anim. Toxins Incl. Trop. Dis. 2024, 30, e20240007. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Lymphatic Filariasis. Available online: https://www.who.int/news-room/fact-sheets/detail/lymphatic-filariasis (accessed on 20 April 2025).
- World Health Organization. Leishmaniasis. Available online: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed on 20 April 2025).
- de Sousa, A.S.; Vermeij, D.; Ramos, A.N.; Luquetti, A.O. Chagas disease. Lancet 2024, 403, 203–218. [Google Scholar] [CrossRef]
- World Health Organization. Chagas Disease (Also Known as American Trypanosomiasis). Available online: https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis%EF%BC%89 (accessed on 20 April 2025).
- World Health Organization. Trypanosomiasis, Human African (Sleeping Sickness). Available online: https://www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness%EF%BC%89 (accessed on 20 April 2025).
- Lejon, V.; Lindner, A.K.; Franco, J.R. Human African trypanosomiasis. Lancet 2025, 405, 937–950. [Google Scholar] [CrossRef]
- Shen, Z.; Luo, H. The impact of schistosomiasis on the Global Disease Burden: A systematic analysis based on the 2021 Global Burden of Disease study. Parasite 2025, 32, 12. [Google Scholar] [CrossRef]
- Buonfrate, D.; Ferrari, T.C.A.; Akim Adegnika, A.; Russell Stothard, J.; Gobbi, F.G. Human schistosomiasis. Lancet 2025, 405, 658–670. [Google Scholar] [CrossRef]
- World Health Organization. Onchocerciasis. Available online: https://www.who.int/news-room/fact-sheets/detail/onchocerciasis (accessed on 20 April 2025).
- Ekpo, U.F.; Bienvenu Nwane, P.; Nana-Djeunga, H.C.; Toche, N.N.; Domché, A.; Bertrand, F.N.; Niamsi, Y.E.; Njitchuang, G.R.; Tsasse, M.A.F.; Bopda, J.; et al. Status of human onchocerciasis transmission in the Adamaoua region of Cameroon after 20 years of ivermectin mass distribution. PLoS Neglected Trop. Dis. 2025, 19, e0011511. [Google Scholar] [CrossRef]
- Dennis, T.P.W.; Pescod, P.; Barasa, S.; Cerdeira, L.T.; Lucas, E.R.; Clarkson, C.S.; Miles, A.; Asidi, A.; Manzambi, E.Z.; Metelo, E.; et al. Cryptic population structure and insecticide resistance in Anopheles gambiae from the southern Democratic Republic of Congo. Sci. Rep. 2024, 14, 21782. [Google Scholar] [CrossRef] [PubMed]
- Hanboonkunupakarn, B.; White, N.J. Advances and roadblocks in the treatment of malaria. Br. J. Clin. Pharmacol. 2020, 88, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Ooko, M.; Bela, N.R.; Leonard, M.; Maye, V.O.N.; Efiri, P.B.E.; Ekoko, W.; Rivas, M.R.; Galick, D.S.; DeBoer, K.R.; Donfack, O.T.; et al. Malaria burden and residual transmission: Two thirds of mosquito bites may not be preventable with current vector control tools on Bioko Island, Equatorial Guinea. Int. J. Infect. Dis. 2024, 147, 107197. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Vector Control Response 2017–2030; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Zhang, W.-X.; Zhao, T.-Y.; Wang, C.-C.; He, Y.; Lu, H.-Z.; Zhang, H.-T.; Wang, L.-M.; Zhang, M.; Li, C.-X.; Deng, S.-Q. Assessing the global dengue burden: Incidence, mortality, and disability trends over three decades. PLoS Neglected Trop. Dis. 2025, 19, e0012932. [Google Scholar] [CrossRef] [PubMed]
- Lv, C.; Chen, Y.; Cheng, Z.; Zhu, Y.; Chen, W.; Zhou, N.; Chen, Y.; Li, Y.; Deng, W.; Guo, X.; et al. Global burden of zoonotic infectious diseases of poverty, 1990–2021. Infect. Dis. Poverty 2024, 13, 82. [Google Scholar] [CrossRef]
- Xie, Y.; Shi, D.; Wang, X.; Guan, Y.; Wu, W.; Wang, Y. Prevalence trend and burden of neglected parasitic diseases in China from 1990 to 2019: Findings from global burden of disease study. Front. Public Health 2023, 11, 1077723. [Google Scholar] [CrossRef]
- Zhang, S.; Ren, J.; Chai, R.; Yuan, S.; Hao, Y. Global burden of low vision and blindness due to age-related macular degeneration from 1990 to 2021 and projections for 2050. BMC Public Health 2024, 24, 3510. [Google Scholar] [CrossRef]
- Tidman, R.; Abela-Ridder, B.; de Castañeda, R.R. The impact of climate change on neglected tropical diseases: A systematic review. Trans. R. Soc. Trop. Med. Hyg. 2021, 115, 147–168. [Google Scholar] [CrossRef]
- Kirchgatter, K.; Caron, F.S.; Rivadeneira, D.; Rabinovich, J.; Pie, M.R.; Morimoto, J. Range size positively correlates with temperature and precipitation niche breadths but not with dietary niche breadth in triatomine insects, vectors of Chagas disease. PLoS Neglected Trop. Dis. 2024, 18, e0012430. [Google Scholar] [CrossRef]
- Zavaleta-Monestel, E.; Rojas-Chinchilla, C.; Molina-Sojo, P.; Murillo-Castro, M.F.; Rojas-Molina, J.P.; Martínez-Vargas, E. Impact of climate change on the global dynamics of vector-borne infectious diseases: A narrative review. Cureus 2025, 17, e77972. [Google Scholar] [CrossRef]
- de Souza, W.M.; Weaver, S.C. Effects of climate change and human activities on vector-borne diseases. Nat. Rev. Microbiol. 2024, 22, 476–491. [Google Scholar] [CrossRef]
- George, A.M.; Ansumana, R.; de Souza, D.K.; Niyas, V.K.M.; Zumla, A.; Bockarie, M.J. Climate change and the rising incidence of vector-borne diseases globally. Int. J. Infect. Dis. 2024, 139, 143–145. [Google Scholar] [CrossRef] [PubMed]
- Anikeeva, O.; Hansen, A.; Varghese, B.; Borg, M.; Zhang, Y.; Xiang, J.; Bi, P. The impact of increasing temperatures due to climate change on infectious diseases. BMJ 2024, 387, e079343. [Google Scholar] [CrossRef]
- Leal Filho, W.; Nagy, G.J.; Gbaguidi, G.J.; Paz, S.; Dinis, M.A.P.; Luetz, J.M.; Sharifi, A. The role of climatic changes in the emergence and re-emergence of infectious diseases: Bibliometric analysis and literature-supported studies on zoonoses. One Health Outlook 2025, 7, 12. [Google Scholar] [CrossRef]
- Naal, H.; El Koussa, M.; El Hamouch, M.; Hneiny, L.; Saleh, S. Evaluation of global health capacity building initiatives in low-and middle-income countries: A systematic review. J. Glob. Health 2020, 10, 020412. [Google Scholar] [CrossRef]
- Jex, A.R.; Fazal, O.; Hotez, P.J. NTDs in the age of urbanization, climate change, and conflict: Karachi, Pakistan as a case study. PLoS Neglected Trop. Dis. 2020, 14, e0008791. [Google Scholar] [CrossRef] [PubMed]
- Ncogo, P.; Giesen, C.; Perteguer, M.J.; Rebollo, M.P.; Nguema, R.; Benito, A.; Herrador, Z. The impact of onchocerciasis elimination measures in Africa: A systematic review. Trop. Med. Infect. Dis. 2024, 10, 7. [Google Scholar] [CrossRef] [PubMed]
- Khaemba, C.; Njenga, S.M.; Omondi, W.P.; Kirui, E.; Oluka, M.; Guantai, A.; Aklillu, E. Safety and effectiveness of triple-drug therapy with ivermectin, diethylcarbamazine, and albendazole in reducing lymphatic filariasis prevalence and clearing circulating filarial antigens in Mombasa, Kenya. Infect. Dis. Poverty 2025, 14, 11. [Google Scholar] [CrossRef]
- Lv, S.; Xu, J.; Li, Y.-L.; Bao, Z.-P.; Zhang, L.-J.; Yang, K.; Lin, D.-D.; Liu, J.-B.; Wang, T.-P.; Ren, G.-H.; et al. Snail control as a crucial approach to schistosomiasis elimination: Evidence from the People’s Republic of China. Infect. Dis. Poverty 2025, 14, 10. [Google Scholar] [CrossRef]
- Price, H.P.; Franco, J.R.; Priotto, G.; Paone, M.; Cecchi, G.; Ebeja, A.K.; Simarro, P.P.; Sankara, D.; Metwally, S.B.A.; Argaw, D.D. The elimination of human African trypanosomiasis: Monitoring progress towards the 2021–2030 WHO road map targets. PLoS Neglected Trop. Dis. 2024, 18, e0012111. [Google Scholar] [CrossRef]
- Tablado Alonso, S.; Biéler, S.; Inocêncio da Luz, R.; Verlé, P.; Büscher, P.; Hasker, E. Retrospective clinical performance evaluation of the Abbott Bioline HAT 2.0, a rapid diagnostic test for human African trypanosomiasis based on recombinant antigens. Trop. Med. Int. Health 2024, 30, 135–142. [Google Scholar] [CrossRef]
- Brodskyn, C.I.; Camara, O.; Kaboré, J.W.; Soumah, A.; Leno, M.; Bangoura, M.S.; N’Diaye, D.; Belem, A.M.G.; Biéler, S.; Camara, M.; et al. Conducting active screening for human African trypanosomiasis with rapid diagnostic tests: The Guinean experience (2016–2021). PLoS Neglected Trop. Dis. 2024, 18, e0011985. [Google Scholar] [CrossRef]
- Longbottom, J.; Esterhuizen, J.; Hope, A.; Lehane, M.J.; Mangwiro, T.N.C.; Mugenyi, A.; Dunkley, S.; Selby, R.; Tirados, I.; Torr, S.J.; et al. Impact of a national tsetse control programme to eliminate Gambian sleeping sickness in Uganda: A spatiotemporal modelling study. BMJ Glob. Health 2024, 9, e015374. [Google Scholar] [CrossRef] [PubMed]
- Mirieri, C.K.; Uzel, G.D.; Parker, A.G.; Bouyer, J.; De Vooght, L.; Ros, V.I.D.; van Oers, M.M.; Abd-Alla, A.M.M. Rearing of Glossina morsitans morsitans tsetse flies for the sterile insect technique: Evaluating the impact of irradiation and transportation during early and late-stage pupal development on the quality of emerging adults. Parasite 2024, 31, 73. [Google Scholar] [CrossRef]
- Ojo, K.K.; Ouma, J.O.; Kayembe, S.; Bessell, P.R.; Makana, D.P.; Dala, A.D.C.P.; Peliganga, L.B.; Ndung’u, J.M.; Machado, C.P.F. Bold strides towards the elimination of gambiense human African trypanosomiasis (gHAT) as a public health problem—A case study of Angola. PLoS Neglected Trop. Dis. 2025, 19, e0012847. [Google Scholar] [CrossRef]
- Werneck, G.L.; Babalola, A.S.; Adeogun, A.O.; Thabet, H.S.; TagEldin, R.A.; Oyeniyi, T.; Adekunle, O.; Izekor, R.; Adetunji, O.; Olalekan, O.; et al. Geospatial modeling of geographical spread of Aedes species, in relation to climatic and topographical factors in Lagos State, Nigeria. PLoS Neglected Trop. Dis. 2025, 19, e0012860. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.; Harbin, S.; Irvin, E.; Johnston, H.; Begum, M.; Tiong, M.; Apedaile, D.; Koehoorn, M.; Smith, P. Sex and gender differences in occupational hazard exposures: A scoping review of the recent literature. Curr. Environ. Health Rep. 2021, 8, 267–280. [Google Scholar] [CrossRef]
- Coffeng, L.E.; Ssali, S.N.; Morgan, R.; Nakiranda, S.; Opio, C.K.; Otmani del Barrio, M. Gendered lives, gendered Vulnerabilities: An intersectional gender analysis of exposure to and treatment of schistosomiasis in Pakwach district, Uganda. PLoS Neglected Trop. Dis. 2023, 17, e0010639. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, Y.C.; Liu, F.F.; Li, K. The immunomodulatory role of estrogen in malaria: A review of sex differences and therapeutic implications. Immun. Inflamm. Dis. 2025, 13, e70148. [Google Scholar] [CrossRef]
- Ranjha, R.; Singh, K.; Baharia, R.K.; Mohan, M.; Anvikar, A.R.; Bharti, P.K. Age-specific malaria vulnerability and transmission reservoir among children. Glob. Pediatr. 2023, 6, 100085. [Google Scholar] [CrossRef]
- Martins-Melo, F.R.; Carneiro, M.; Ribeiro, A.L.P.; Bezerra, J.M.T.; Werneck, G.L. Burden of Chagas disease in Brazil, 1990–2016: Findings from the Global Burden of Disease Study 2016. Int. J. Parasitol. 2019, 49, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Tian, X.; Guo, D.; Gu, H.; Duan, Y.; Li, D. Global trends and burdens of neglected tropical diseases and malaria from 1990 to 2021: A systematic analysis of the Global Burden of Disease Study 2021. BMC Public Health 2025, 25, 1307. [Google Scholar] [CrossRef] [PubMed]
- Alim, M.; Ye, G.-H.; Guan, P.; Huang, D.-S.; Zhou, B.-S.; Wu, W. Comparison of ARIMA model and XGBoost model for prediction of human brucellosis in mainland China: A time-series study. BMJ Open 2020, 10, e039676. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.-C.; Zhang, W.-X.; He, Y.; Liu, J.-H.; Ju, C.-S.; Wu, Q.-L.; He, F.-H.; Peng, C.-S.; Zhang, M.; Deng, S.-Q. Global Epidemiology of Vector-Borne Parasitic Diseases: Burden, Trends, Disparities, and Forecasts (1990–2036). Pathogens 2025, 14, 844. https://doi.org/10.3390/pathogens14090844
Wang C-C, Zhang W-X, He Y, Liu J-H, Ju C-S, Wu Q-L, He F-H, Peng C-S, Zhang M, Deng S-Q. Global Epidemiology of Vector-Borne Parasitic Diseases: Burden, Trends, Disparities, and Forecasts (1990–2036). Pathogens. 2025; 14(9):844. https://doi.org/10.3390/pathogens14090844
Chicago/Turabian StyleWang, Cun-Chen, Wei-Xian Zhang, Yong He, Jia-Hua Liu, Chang-Shan Ju, Qi-Long Wu, Fang-Hang He, Cheng-Sheng Peng, Mao Zhang, and Sheng-Qun Deng. 2025. "Global Epidemiology of Vector-Borne Parasitic Diseases: Burden, Trends, Disparities, and Forecasts (1990–2036)" Pathogens 14, no. 9: 844. https://doi.org/10.3390/pathogens14090844
APA StyleWang, C.-C., Zhang, W.-X., He, Y., Liu, J.-H., Ju, C.-S., Wu, Q.-L., He, F.-H., Peng, C.-S., Zhang, M., & Deng, S.-Q. (2025). Global Epidemiology of Vector-Borne Parasitic Diseases: Burden, Trends, Disparities, and Forecasts (1990–2036). Pathogens, 14(9), 844. https://doi.org/10.3390/pathogens14090844