Identification and Validation of Promising Targets and Inhibitors of Biofilm Formation in Pseudomonas aeruginosa: Bioinformatics, Virtual Screening, and Biological Evaluation
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Data Preprocessing
2.3. Gene Ontology and Pathway Enrichment Analysis
2.4. Construction of a Protein–Protein Interaction (PPI) Network and Identification of a Hub BF-DEGs
2.5. Analysis of Functional Roles and Signaling Pathways of Hub Genes
2.6. Preparation of Proteins and Ligands
2.7. Generation of the Receptor Grid
2.8. Molecular Docking
2.9. Molecular Dynamics Simulation Analysis
2.10. Bacterial Strains, Media, and Culture Conditions
2.11. Determination of Minimum Inhibitory Concentration (MIC)
2.12. Biofilm Quantification by Crystal Violet (CV) Assay
3. Results
3.1. Identification of DEGs Related to the Formation of Biofilms (BF-DEGs)
3.2. GO Term and KEGG Pathway Enrichment Analysis of BF-DEGs
3.3. PPI and Identification of the Hub BF-DEGs
3.4. Major Functions and Signaling Pathways of Hub Genes
3.5. Structure-Based Virtual Screening of FDA-Approved Drugs Identifies Potential GacS Inhibitors
3.6. Molecular Dynamics Simulations
3.7. Minimum Inhibitory Concentration (MIC) of Candidate Drugs and Antibiotics
3.8. Anti-Biofilm Efficacy of Drug Candidates Alone and in Combination with Antibiotics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mah, T.-F.; Pitts, B.; Pellock, B.; Walker, G.C.; Stewart, P.S.; O’Toole, G.A. A Genetic Basis for Pseudomonas aeruginosa Biofilm Antibiotic Resistance. Nature 2003, 426, 306–310. [Google Scholar] [CrossRef]
- Thi, M.T.T.; Wibowo, D.; Rehm, B.H.A. Pseudomonas aeruginosa Biofilms. Int. J. Mol. Sci. 2020, 21, 8671. [Google Scholar] [CrossRef]
- Chegini, Z.; Khoshbayan, A.; Moghadam, M.T.; Farahani, I.; Jazireian, P.; Shariati, A. Bacteriophage Therapy against Pseudomonas aeruginosa Biofilms: A Review. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 45. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.-J.; Cheng, Z. Antibiotic Resistance in Pseudomonas aeruginosa: Mechanisms and Alternative Therapeutic Strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Chi, J.; Yan, Y.; Luo, R.; Feng, X.; Zheng, Y.; Xian, D.; Li, X.; Quan, G.; Liu, D.; et al. Membrane-Disruptive Peptides/Peptidomimetics-Based Therapeutics: Promising Systems to Combat Bacteria and Cancer in the Drug-Resistant Era. Acta Pharm. Sin. B 2021, 11, 2609–2644. [Google Scholar] [CrossRef]
- Tuon, F.F.; Dantas, L.R.; Suss, P.H.; Tasca Ribeiro, V.S. Pathogenesis of the Pseudomonas aeruginosa Biofilm: A Review. Pathogens 2022, 11, 300. [Google Scholar] [CrossRef]
- Ma, L.; Conover, M.; Lu, H.; Parsek, M.R.; Bayles, K.; Wozniak, D.J.; Ausubel, F.M. Assembly and Development of the Pseudomonas aeruginosa Biofilm Matrix. PLoS Pathog. 2009, 5, e1000354. [Google Scholar] [CrossRef] [PubMed]
- Musk, D.J.; Hergenrother, P.J. Chemical Countermeasures for the Control of Bacterial Biofilms: Effective Compounds and Promising Targets. Curr. Med. Chem. 2006, 13, 2163–2177. [Google Scholar] [CrossRef]
- Sen, C.K.; Gordillo, G.M.; Roy, S.; Kirsner, R.; Lambert, L.; Hunt, T.K.; Gottrup, F.; Gurtner, G.C.; Longaker, M.T. Human Skin Wounds: A Major and Snowballing Threat to Public Health and the Economy. Wound Repair. Regen. 2009, 17, 763–771. [Google Scholar] [CrossRef]
- Ducret, V.; Perron, K.; Valentini, M. Role of Two-Component System Networks in Pseudomonas aeruginosa Pathogenesis. Adv. Exp. Med. Biol. 2022, 1386, 371–395. [Google Scholar] [CrossRef]
- Mitrophanov, A.Y.; Groisman, E.A. Signal Integration in Bacterial Two-Component Regulatory Systems. Genes Dev. 2008, 22, 2601–2611. [Google Scholar] [CrossRef]
- Kilmury, S.L.N.; Burrows, L.L. The Pseudomonas aeruginosa PilSR Two-Component System Regulates Both Twitching and Swimming Motilities. mBio 2018, 9, e01310-18. [Google Scholar] [CrossRef]
- Chen, L.; Fang, B.; Qiao, L.; Zheng, Y. Discovery of Anticancer Activity of Amentoflavone on Esophageal Squamous Cell Carcinoma: Bioinformatics, Structure-Based Virtual Screening, and Biological Evaluation. J. Microbiol. Biotechnol. 2022, 32, 718–729. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, W.; Tu, J.; Zheng, Y. Identification and Validation of Novel Biomarkers and Potential Targeted Drugs in Cholangiocarcinoma: Bioinformatics, Virtual Screening, and Biological Evaluation. J. Microbiol. Biotechnol. 2022, 32, 1262–1274. [Google Scholar] [CrossRef]
- Gooderham, W.J.; Hancock, R.E.W. Regulation of Virulence and Antibiotic Resistance by Two-Component Regulatory Systems in Pseudomonas aeruginosa. FEMS Microbiol. Rev. 2009, 33, 279–294. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Xiao, W.; Zhou, C.; Pu, Q.; Deng, X.; Lan, L.; Liang, H.; Song, X.; Wu, M. Pseudomonas aeruginosa: Pathogenesis, Virulence Factors, Antibiotic Resistance, Interaction with Host, Technology Advances and Emerging Therapeutics. Signal Transduct. Target. Ther. 2022, 7, 199. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Martínez, I.; Haas, D. Azithromycin Inhibits Expression of the GacA-Dependent Small RNAs RsmY and RsmZ in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2011, 55, 3399–3405. [Google Scholar] [CrossRef] [PubMed]
- Goswami, M.; Espinasse, A.; Carlson, E.E. Disarming the Virulence Arsenal of Pseudomonas aeruginosa by Blocking Two-Component System Signaling. Chem. Sci. 2018, 9, 7332–7337. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, S.-Y.; Hu, J.-Y.; Chen, Q.-X.; Jiao, S.-M.; Xiao, H.-C.; Zhang, Q.; Xu, J.; Zhao, J.-F.; Zhou, H.-B.; et al. Novel Coumarin Derivatives Inhibit the Quorum Sensing System and Iron Homeostasis as Antibacterial Synergists against Pseudomonas aeruginosa. J. Med. Chem. 2023, 66, 14735–14754. [Google Scholar] [CrossRef]
- Liu, J.; Meng, Y.; Yang, M.-H.; Zhang, X.-Y.; Zhao, J.-F.; Sun, P.-H.; Chen, W.-M. Design, Synthesis and Biological Evaluation of Novel 3-Hydroxypyridin-4(1H)-Ones Based Hybrids as Pseudomonas aeruginosa Biofilm Inhibitors. Eur. J. Med. Chem. 2023, 259, 115665. [Google Scholar] [CrossRef]
- Liu, J.; Hou, J.-S.; Li, Y.-B.; Miao, Z.-Y.; Sun, P.-H.; Lin, J.; Chen, W.-M. Novel 2-Substituted 3-Hydroxy-1,6-Dimethylpyridin-4(1H)-Ones as Dual-Acting Biofilm Inhibitors of Pseudomonas aeruginosa. J. Med. Chem. 2020, 63, 10921–10945. [Google Scholar] [CrossRef] [PubMed]
- Qiu, M.-N.; Wang, F.; Chen, S.-Y.; Wang, P.-C.; Fu, Y.-H.; Liu, Y.-Y.; Wang, X.; Wang, F.-B.; Wang, C.; Yang, H.-W.; et al. Novel 2, 8-Bit Derivatives of Quinolines Attenuate Pseudomonas aeruginosa Virulence and Biofilm Formation. Bioorg Med. Chem. Lett. 2019, 29, 749–754. [Google Scholar] [CrossRef]
- Anderson, G.G.; Moreau-Marquis, S.; Stanton, B.A.; O’Toole, G.A. In Vitro Analysis of Tobramycin-Treated Pseudomonas aeruginosa Biofilms on Cystic Fibrosis-Derived Airway Epithelial Cells. Infect. Immun. 2008, 76, 1423–1433. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Xing, Z.; Chu, C.; Chen, L.; Kong, X. The Use of Gene Ontology Terms and KEGG Pathways for Analysis and Prediction of Oncogenes. Biochim. Biophys. Acta 2016, 1860, 2725–2734. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Smoot, M.E.; Ono, K.; Ruscheinski, J.; Wang, P.-L.; Ideker, T. Cytoscape 2.8: New Features for Data Integration and Network Visualization. Bioinformatics 2011, 27, 431–432. [Google Scholar] [CrossRef]
- Schrödinger Release 2023-1: Protein Preparation Wizard; Epik, Schrödinger, LLC: New York, NY, USA; Impact, Schrödinger, LLC: New York, NY, USA; Prime, Schrödinger, LLC: New York, NY, USA, 2023.
- Schrödinger Release 2023-1; LigPrep, Schrödinger, LLC: New York, NY, USA, 2023.
- Ali-Ahmad, A.; Fadel, F.; Sebban-Kreuzer, C.; Ba, M.; Pélissier, G.D.; Bornet, O.; Guerlesquin, F.; Bourne, Y.; Bordi, C.; Vincent, F. Structural and Functional Insights into the Periplasmic Detector Domain of the GacS Histidine Kinase Controlling Biofilm Formation in Pseudomonas aeruginosa. Sci. Rep. 2017, 7, 11262. [Google Scholar] [CrossRef]
- Schrödinger Release 2023-1; Glide, Schrödinger, LLC: New York, NY, USA, 2023.
- Desmond Molecular Dynamics System. In Schrödinger Release 2023-1; Maestro-Desmond Interoperability Tools; D.E. Shaw Research: New York, NY, USA, 2023.
- Reimmann, C.; Beyeler, M.; Latifi, A.; Winteler, H.; Foglino, M.; Lazdunski, A.; Haas, D. The Global Activator GacA of Pseudomonas aeruginosa PAO Positively Controls the Production of the Autoinducer N-Butyryl-Homoserine Lactone and the Formation of the Virulence Factors Pyocyanin, Cyanide, and Lipase. Mol. Microbiol. 1997, 24, 309–319. [Google Scholar] [CrossRef]
- Goodman, A.L.; Kulasekara, B.; Rietsch, A.; Boyd, D.; Smith, R.S.; Lory, S. A Signaling Network Reciprocally Regulates Genes Associated with Acute Infection and Chronic Persistence in Pseudomonas aeruginosa. Dev. Cell 2004, 7, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Ventre, I.; Goodman, A.L.; Vallet-Gely, I.; Vasseur, P.; Soscia, C.; Molin, S.; Bleves, S.; Lazdunski, A.; Lory, S.; Filloux, A. Multiple Sensors Control Reciprocal Expression of Pseudomonas aeruginosa Regulatory RNA and Virulence Genes. Proc. Natl. Acad. Sci. USA 2006, 103, 171–176. [Google Scholar] [CrossRef]
- Goodman, A.L.; Merighi, M.; Hyodo, M.; Ventre, I.; Filloux, A.; Lory, S. Direct Interaction between Sensor Kinase Proteins Mediates Acute and Chronic Disease Phenotypes in a Bacterial Pathogen. Genes Dev. 2009, 23, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Records, A.R.; Gross, D.C. Sensor Kinases RetS and LadS Regulate Pseudomonas Syringae Type VI Secretion and Virulence Factors. J. Bacteriol. 2010, 192, 3584–3596. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Li, Y.; Wang, Y. Two-Component System GacS/GacA, a Global Response Regulator of Bacterial Physiological Behaviors. Eng. Microbiol. 2023, 3, 100051. [Google Scholar] [CrossRef] [PubMed]
- Brinkman, F.S.; Macfarlane, E.L.; Warrener, P.; Hancock, R.E. Evolutionary Relationships among Virulence-Associated Histidine Kinases. Infect. Immun. 2001, 69, 5207–5211. [Google Scholar] [CrossRef]
- Valentini, M.; Gonzalez, D.; Mavridou, D.A.; Filloux, A. Lifestyle Transitions and Adaptive Pathogenesis of Pseudomonas aeruginosa. Curr. Opin. Microbiol. 2018, 41, 15–20. [Google Scholar] [CrossRef]
- Song, W.S.; Yoon, S. Crystal Structure of FliC Flagellin from Pseudomonas aeruginosa and Its Implication in TLR5 Binding and Formation of the Flagellar Filament. Biochem. Biophys. Res. Commun. 2014, 444, 109–115. [Google Scholar] [CrossRef]
- Bradley, D.E. A Function of Pseudomonas aeruginosa PAO Polar Pili: Twitching Motility. Can. J. Microbiol. 1980, 26, 146–154. [Google Scholar] [CrossRef]
- Jeevan, J.; Nandini, D.; Reuben, R. FleQ, the Major Flagellar Gene Regulator in Pseudomonas aeruginosa, Binds to Enhancer Sites Located Either Upstream or Atypically Downstream of the RpoN Binding Site. J. Bacteriol. 2002, 184, 5251–5260. [Google Scholar] [CrossRef]
- Talà, L.; Fineberg, A.; Kukura, P.; Persat, A. Pseudomonas aeruginosa Orchestrates Twitching Motility by Sequential Control of Type IV Pili Movements. Nat. Microbiol. 2019, 4, 774–780. [Google Scholar] [CrossRef]
- Khan, F.; Pham, D.T.N.; Oloketuyi, S.F.; Kim, Y.-M. Regulation and Controlling the Motility Properties of Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 2020, 104, 33–49. [Google Scholar] [CrossRef]
- Bjarnsholt, T.; Givskov, M. Quorum-Sensing Blockade as a Strategy for Enhancing Host Defences against Bacterial Pathogens. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2007, 362, 1213–1222. [Google Scholar] [CrossRef]
- Poulsen, B.E.; Yang, R.; Clatworthy, A.E.; White, T.; Osmulski, S.J.; Li, L.; Penaranda, C.; Lander, E.S.; Shoresh, N.; Hung, D.T. Defining the Core Essential Genome of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 2019, 116, 10072–10080. [Google Scholar] [CrossRef] [PubMed]
- Stover, C.K.; Pham, X.Q.; Erwin, A.L.; Mizoguchi, S.D.; Warrener, P.; Hickey, M.J.; Brinkman, F.S.; Hufnagle, W.O.; Kowalik, D.J.; Lagrou, M.; et al. Complete Genome Sequence of Pseudomonas aeruginosa PAO1, an Opportunistic Pathogen. Nature 2000, 406, 959–964. [Google Scholar] [CrossRef]
- Sultan, M.; Arya, R.; Kim, K.K. Roles of Two-Component Systems in Pseudomonas aeruginosa Virulence. Int. J. Mol. Sci. 2021, 22, 12152. [Google Scholar] [CrossRef]
- Francis, V.I.; Stevenson, E.C.; Porter, S.L. Two-Component Systems Required for Virulence in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 2017, 364, fnx104. [Google Scholar] [CrossRef] [PubMed]
- Chambonnier, G.; Roux, L.; Redelberger, D.; Fadel, F.; Filloux, A.; Sivaneson, M.; de Bentzmann, S.; Bordi, C. The Hybrid Histidine Kinase LadS Forms a Multicomponent Signal Transduction System with the GacS/GacA Two-Component System in Pseudomonas aeruginosa. PLoS Genet. 2016, 12, e1006032. [Google Scholar] [CrossRef]
- Nolan, L.M.; Cavaliere, R.; Turnbull, L.; Whitchurch, C.B. Extracellular ATP Inhibits Twitching Motility-Mediated Biofilm Expansion by Pseudomonas aeruginosa. BMC Microbiol. 2015, 15, 55. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, H.; Sivaneson, M.; Filloux, A. Key Two-Component Regulatory Systems That Control Biofilm Formation in Pseudomonas aeruginosa. Environ. Microbiol. 2011, 13, 1666–1681. [Google Scholar] [CrossRef]
- Tiwari, S.; Jamal, S.B.; Hassan, S.S.; Carvalho, P.V.S.D.; Almeida, S.; Barh, D.; Ghosh, P.; Silva, A.; Castro, T.L.P.; Azevedo, V. Two-Component Signal Transduction Systems of Pathogenic Bacteria As Targets for Antimicrobial Therapy: An Overview. Front. Microbiol. 2017, 8, 1878. [Google Scholar] [CrossRef]
- Parkins, M.D.; Ceri, H.; Storey, D.G. Pseudomonas aeruginosa GacA, a Factor in Multihost Virulence, Is Also Essential for Biofilm Formation. Mol. Microbiol. 2001, 40, 1215–1226. [Google Scholar] [CrossRef]
- Averill-Bates, D.A. The Antioxidant Glutathione. Vitam. Horm. 2023, 121, 109–141. [Google Scholar] [CrossRef]
- Richie, J.P.; Nichenametla, S.; Neidig, W.; Calcagnotto, A.; Haley, J.S.; Schell, T.D.; Muscat, J.E. Randomized Controlled Trial of Oral Glutathione Supplementation on Body Stores of Glutathione. Eur. J. Nutr. 2015, 54, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shao, X.; Wang, S.; Zhang, S. Effect of Glutathione on Pyocyanin Production in Pseudomonas aeruginosa. Asian J. Chem. 2014, 26, 3265–3269. [Google Scholar] [CrossRef]
- Ye, D.; Li, X.; Zhao, L.; Liu, S.; Jia, X.; Wang, Z.; Du, J.; Ge, L.; Shen, J.; Xia, X. Oxidized Glutathione Reverts Carbapenem Resistance in blaNDM-1-Carrying Escherichia coli. EMBO Mol. Med. 2024, 16, 1051–1062. [Google Scholar] [CrossRef]
- Klare, W.; Das, T.; Ibugo, A.; Buckle, E.; Manefield, M.; Manos, J. Glutathione-Disrupted Biofilms of Clinical Pseudomonas aeruginosa Strains Exhibit an Enhanced Antibiotic Effect and a Novel Biofilm Transcriptome. Antimicrob. Agents Chemother. 2016, 60, 4539–4551. [Google Scholar] [CrossRef]
- Bollu, V.; Ernst, F.R.; Karafilidis, J.; Rajagopalan, K.; Robinson, S.B.; Braman, S.S. Hospital Readmissions Following Initiation of Nebulized Arformoterol Tartrate or Nebulized Short-Acting Beta-Agonists among Inpatients Treated for COPD. Int. J. Chronic Obstr. Pulm. Dis. 2013, 8, 631–639. [Google Scholar] [CrossRef]
- Celli, B.R.; Navaie, M.; Xu, Z.; Cho-Reyes, S.; Dembek, C.; Gilmer, T.P. Medication Management Patterns among Medicare Beneficiaries with Chronic Obstructive Pulmonary Disease Who Initiate Nebulized Arformoterol Treatment. Int. J. Chronic Obstr. Pulm. Dis. 2019, 14, 1019–1031. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Wang, J.; Cai, S.; Smyth, H.; Cui, Z. Pulmonary Biofilm-Based Chronic Infections and Inhaled Treatment Strategies. Int. J. Pharm. 2021, 604, 120768. [Google Scholar] [CrossRef]
- Monsó, E.; Ruiz, J.; Rosell, A.; Manterola, J.; Fiz, J.; Morera, J.; Ausina, V. Bacterial Infection in Chronic Obstructive Pulmonary Disease. A Study of Stable and Exacerbated Outpatients Using the Protected Specimen Brush. Am. J. Respir. Crit. Care Med. 1995, 152, 1316–1320. [Google Scholar] [CrossRef] [PubMed]
- Pomares, X.; Montón, C.; Espasa, M.; Casabon, J.; Monsó, E.; Gallego, M. Long-Term Azithromycin Therapy in Patients with Severe COPD and Repeated Exacerbations. Int. J. Chronic Obstr. Pulm. Dis. 2011, 6, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Naderi, N.; Assayag, D.; Mostafavi-Pour-Manshadi, S.-M.-Y.; Kaddaha, Z.; Joubert, A.; Ouellet, I.; Drouin, I.; Li, P.Z.; Bourbeau, J. Long-Term Azithromycin Therapy to Reduce Acute Exacerbations in Patients with Severe Chronic Obstructive Pulmonary Disease. Respir. Med. 2018, 138, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Shinkai, M.; Henke, M.O.; Rubin, B.K. Macrolide Antibiotics as Immunomodulatory Medications: Proposed Mechanisms of Action. Pharmacol. Ther. 2008, 117, 393–405. [Google Scholar] [CrossRef]
- Liu, J.; Yu, M.; Ge, Y.; Tian, Y.; Hu, B.; Zhao, Y. The RsmA RNA-Binding Proteins in Pseudomonas Syringae Exhibit Distinct and Overlapping Roles in Modulating Virulence and Survival Under Different Nutritional Conditions. Front. Plant Sci. 2021, 12, 637595. [Google Scholar] [CrossRef]
- Kay, E.; Dubuis, C.; Haas, D. Three Small RNAs Jointly Ensure Secondary Metabolism and Biocontrol in Pseudomonas fluorescens CHA0. Proc. Natl. Acad. Sci. USA 2005, 102, 17136–17141. [Google Scholar] [CrossRef] [PubMed]
DEGs | Gene Symbol |
---|---|
Up-regulated | PA0165 PA0975 metX PA0087 pscP PA0169 PA1855 PA1020 PA1271 kefB PA0040 PA0951 PA0046 PA0578 pscR PA1689 estX PA1237 PA0086 PA1274 tig micA PA0244 PA1845 sdhD cobB PA1302 PA1922 PA0172 cobC PA0170 thiG PA1791 PA0380 aspS PA0277 PA0202 PA0045 PA1918 cobQ |
Down-regulated | PA1414 PA1673 PA1746 PA0960 PA0713 PA0109 gcdH PA0656 aer PA0141 PA1429 PA0745 PA0744 PA1076 cheY PA1745 aer2 PA0449 PA1474 PA1749 PA1736 PA1245 PA1041 PA0565 rpoH PA0586 PA0250 PA0177 mvfR PA1860 PA0484 PA1117 PA1789 xdhA PA0588 ackA napD fleQ PA1517 napF |
Degree | EPC | MNC | Betweenness | Closeness | Overlap |
---|---|---|---|---|---|
gacS | gacS | gacS | gacS | gacS | gacS |
PA1243 | fliS | PA1243 | PA1243 | PA1243 | PA1243 |
fliC | fliC | fliC | pta | pta | fliC |
chpA | PA1458 | chpA | PA1737 | fliC | |
cheY | flgC | cheY | putA | rpoD | |
fliG | cheY | fliG | rpoD | chpA | |
fliM | PA1243 | fliM | PA0943 | PA1737 | |
flgG | fliA | flgG | oprF | fliM | |
PA1458 | flhB | PA1458 | PA1191 | fliG | |
PA1463 | chpA | PA0178 | fliC | cheY |
Cluster | Drug Candidates | CAS | Docking Score |
---|---|---|---|
Cluster 1 | Glutathione oxidized (GSSG) | 27025-41-8 | −7.905 |
Cluster 2 | Arformoterol tartrate (ARF) | 200815-49-2 | −6.803 |
Cluster 3 | Framycetin sulfate (FRS) | 4146-30-9 | −6.201 |
Cluster 4 | Desmopressin acetate (DDAVP) | 62288-83-9 | −7.900 |
Cluster 5 | Lanreotide acetate (LAN) | 2378114-72-6 | −6.777 |
Drug Candidates | dG Average | dG Standard Deviation |
---|---|---|
Glutathione oxidized (GSSG) | −56.1831 | 4.26 |
Arformoterol tartrate (ARF) | −53.9521 | 5.97 |
Desmopressin acetate (DDAVP) | −41.5773 | 5.25 |
Lanreotide acetate (LAN) | −48.6991 | 4.76 |
Drug | MIC |
---|---|
GSSG | >256 μg/mL |
ARF | >256 μg/mL |
AZM | 32 μg/mL |
CAM | 64 μg/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, T.-T.; Wen, J.-Q.; Chen, G.-P.; Wang, R.; Xu, J.; Chen, W.-Y. Identification and Validation of Promising Targets and Inhibitors of Biofilm Formation in Pseudomonas aeruginosa: Bioinformatics, Virtual Screening, and Biological Evaluation. Pathogens 2025, 14, 855. https://doi.org/10.3390/pathogens14090855
Liang T-T, Wen J-Q, Chen G-P, Wang R, Xu J, Chen W-Y. Identification and Validation of Promising Targets and Inhibitors of Biofilm Formation in Pseudomonas aeruginosa: Bioinformatics, Virtual Screening, and Biological Evaluation. Pathogens. 2025; 14(9):855. https://doi.org/10.3390/pathogens14090855
Chicago/Turabian StyleLiang, Ting-Ting, Ju-Qi Wen, Ge-Ping Chen, Rui Wang, Jun Xu, and Wen-Ying Chen. 2025. "Identification and Validation of Promising Targets and Inhibitors of Biofilm Formation in Pseudomonas aeruginosa: Bioinformatics, Virtual Screening, and Biological Evaluation" Pathogens 14, no. 9: 855. https://doi.org/10.3390/pathogens14090855
APA StyleLiang, T.-T., Wen, J.-Q., Chen, G.-P., Wang, R., Xu, J., & Chen, W.-Y. (2025). Identification and Validation of Promising Targets and Inhibitors of Biofilm Formation in Pseudomonas aeruginosa: Bioinformatics, Virtual Screening, and Biological Evaluation. Pathogens, 14(9), 855. https://doi.org/10.3390/pathogens14090855