Oral Fluid Sampling in Group-Housed Sows: Field Observations
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Oral Fluid Collection
2.3. Objective 1: Sow Behavior During Oral Fluid Collection
2.4. Objective 2: Transfer of an Environmental Target into an Oral Fluid Sample
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McGlone, J. Gestation Stall Design and Space: Care of Pregnant Sows in Individual Gestation Housing; Fact Sheet #04891-7/13; National Pork Board: Des Moines, IA, USA, 2013. [Google Scholar]
- Harris, D.L. Multi-Site Pig Production; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Rodenburg, T.B.; van Gerwen, M.; Meijer, E.; Tobias, T.J.; Giersberg, M.F.; Goerlich, V.C.; Nordquist, R.E.; Meijboom, F.L.B.; Arndt, S.S. End the Cage Age: Looking for Alternatives: Overview of Alternatives to Cage Systems and the Impact on Animal Welfare and Other Aspects of Sustainability; European Parliament, Directorate General for Internal Policies, Policy Department C: Citizen’s Rights and Constitutional Affairs: Brussels, Belgium, 2020; 50p. [Google Scholar]
- Tarasiuk, G.; Zaabel, P.; Remmenga, M.D.; O’Hara, K.C.; Ye, F.; Rotolo, M.; Zimmerman, J.J. The evolving US swine history. J. Swine Health Prod. 2024, 32, 105–110. [Google Scholar] [CrossRef]
- Magalhães, E.S.; Zimmerman, J.J.; Thomas, P.; Moura, C.A.A.; Trevisan, G.; Schwartz, K.J.; Burrough, E.; Holtkamp, D.J.; Wang, C.; Rademacher, C.J.; et al. Utilizing productivity and health breeding-to-market information along with disease diagnostic data to identify pig mortality risk factors in a U.S. swine production system. Front. Vet. Sci. 2024, 10, 1301392. [Google Scholar] [CrossRef] [PubMed]
- Munguía-Ramírez, B.; Armenta-Leyva, B.; Giménez-Lirola, L.; Wang, C.; Zimmerman, J. Surveillance on swine farms using antemortem specimens. In Optimising Pig Herd Health and Production; Maes, D., Segalés, J., Eds.; Burleigh Dodds Science Publishing: Cambridge, UK, 2022; pp. 97–138. [Google Scholar] [CrossRef]
- Tarasiuk, G.; Remmenga, M.D.; O’Hara, K.C.; Talbert, M.K.; Rotolo, M.L.; Zaabel, P.; Zhang, D.; Gimenez-Lirola, L.G.; Zimmerman, J.J. Pen-based swine oral fluid samples contain both environmental and pig-derived targets. Animals 2024, 14, 766. [Google Scholar] [CrossRef] [PubMed]
- Tarasiuk, G.; Remmenga, M.D.; O’Hara, K.C.; Talbert, M.K.; Mielke, S.; Rotolo, M.L.; Zaabel, P.; Zhang, D.; Zimmerman, J.J. Optimizing swine oral fluid sampling procedures for growing pigs in commercial settings. Pathogens 2024, 13, 1097. [Google Scholar] [CrossRef]
- EFSA panel on food additives and nutrient sources added to food (ANS). Scientific opinion on the re-evaluation of erythrosine (E 127) as a food additive. EFSA J. 2011, 9, 1854. [Google Scholar] [CrossRef]
- EFSA panel on food additives and nutrient sources added to food (ANS). Scientific opinion on the re-evaluation of Allura Red AC (E 129) as a food additive. EFSA J. 2009, 7, 1327. [Google Scholar] [CrossRef]
- Chib, R.; Shah, S.; Gryczynski, Z.; Fudala, R.; Borejdo, J.; Zelent, B.; Corradini, M.G.; Ludescher, R.D.; Gryczynski, I. Standard reference for instrument response function in fluorescence lifetime measurements in visible and near infrared. Meas. Sci. Technol. 2015, 27, 027001. [Google Scholar] [CrossRef]
- Gamble, G.R.; Lawrence, K.C.; Park, B.; Yoon, S.C.; Heitschmidt, G.W. Food grade dye for assessment of biofilm removal from stainless steel by cleaning and sanitizing agents. Food Prot. Trends 2019, 39, 442–448. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models Usinglme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed., R Package Version 3.1-2; Sage Publications: Thousand Oaks, CA, USA, 2019. Available online: https://CRAN.R-project.org/package=car (accessed on 20 January 2025).
- Lenth, R.V. emmeans: Estimated Marginal Means, aka Least-Squares Means, R package Version 1.10.0; 2025. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 23 January 2025).
- Knowles, J.E.; Frederick, C. merTools: Tools for Analyzing Mixed Effect Regression Models, R Package Version 0.6.2; 2024. Available online: https://github.com/jknowles/mertools (accessed on 15 January 2025).
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.; Müller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef]
- Ranke, J. chemCal: Calibration Functions for Analytical Chemistry, R Package Version 0.2.3; 2022. Available online: https://CRAN.R-project.org/package=chemCal (accessed on 20 January 2025).
- Prickett, J.R.; Zimmerman, J.J. The development of oral fluid-based diagnostics and applications in veterinary medicine. Anim. Health Res. Rev. 2010, 11, 207–216. [Google Scholar] [CrossRef]
- Boroumand, M.; Olianas, A.; Cabras, T.; Manconi, B.; Fanni, D.; Faa, G.; Desiderio, C.; Messana, I.; Castagnola, M. Saliva, a bodily fluid with recognized and potential diagnostic applications. J. Sep. Sci. 2021, 44, 3677–3690. [Google Scholar] [CrossRef]
- Oliveira Neta, N.F.; Caixeta, R.A.; Zerbinati, R.M.; Zarpellon, A.C.; Caetano, M.W.; Pallos, D.; Junges, R.; Costa, A.L.; Aitken-Saavedra, J.; Giannecchini, S.; et al. The emergence of saliva as a diagnostic and prognostic tool for viral infections. Viruses 2024, 16, 1759. [Google Scholar] [CrossRef] [PubMed]
- Laxton, C.S.; Peno, C.; Hahn, A.M.; Allicock, O.M.; Perniciaro, S.; Wyllie, A.L. The potential of saliva as an accessible and sensitive sample type for the detection of respiratory pathogens and host immunity. Lancet Microbe 2023, 4, e837–e850. [Google Scholar] [CrossRef] [PubMed]
- Surdu, A.; Foia, L.G.; Luchian, I.; Trifan, D.; Tatarciuc, M.S.; Scutariu, M.M.; Ciuplilan, C.; Budala, D.G. Saliva as a diagnostic tool for systemic diseases—A narrative review. Medicina 2025, 61, 243. [Google Scholar] [CrossRef]
- Tan, S.H.; Allicock, O.; Armstrong-Hough, M.; Wyllie, A.L. Saliva as a gold standard sample for SARS-CoV-2 detection. Lancet Respir Med. 2021, 19, 562. [Google Scholar] [CrossRef]
- Zimmerman, J. Research Report: An Improved Method for PRRSV Surveillance and Monitoring; NPB Project #05-146; National Pork Board: Des Moines, IA, USA, 2006. [Google Scholar]
- Cezar, G.; Magalhães, E.; Rupasinghe, K.; Chandra, S.; Silva, G.; Almeida, M.; Crim, B.; Burrough, E.; Gauger, P.; Siepker, C.; et al. Using diagnostic data from veterinary diagnostic laboratories to unravel macroepidemiological aspects of porcine circoviruses 2 and 3 in the United States from 2002–2023. PLoS ONE 2024, 19, 0311807. [Google Scholar] [CrossRef]
- Moraes, D.C.; Cezar, G.A.; Magalhães, E.S.; Nicolino, R.R.; Rupasinghe, K.; Chandra, S.; Silva, G.S.; Almeida, M.N.; Crim, B.; Burrough, E.R.; et al. Macroepidemiological trends of Influenza A virus detection through reverse transcription real-time polymerase chain reaction (RT-rtPCR) in porcine samples in the United States over the last 20 years. Front. Vet. Sci. 2025, 12, 1572237. [Google Scholar] [CrossRef]
- Trevisan, G.; Linhares, L.C.M.; Crim, B.; Dubey, P.; Schwartz, K.J.; Burrough, E.R.; Main, R.G.; Sundberg, P.; Thurn, M.; Lages, P.T.F.; et al. Macroepidemiological aspects of porcine reproductive and respiratory syndrome virus detection by major United States veterinary diagnostic laboratories over time, age group, and specimen. PLoS ONE 2019, 14, e0223544. [Google Scholar] [CrossRef]
- Trevisan, G.; Linhares, L.C.; Schwartz, K.J.; Burrough, E.R.; Magalhães, E.S.; Crim, B.; Dubey, P.; Main, R.G.; Gauger, P.; Thurn, M.; et al. Data standardization implementation and applications within and among diagnostic laboratories: Integrating and monitoring enteric coronaviruses. J. Vet. Diagn. Investig. 2021, 33, 457–468. [Google Scholar] [CrossRef] [PubMed]
- Devillers, N.; Farmer, C.; Mounier, A.-M.; Dividich, J.L.; Prunier, A. Hormones, IgG and lactose changes around parturition in plasma, and colostrum or saliva of multiparous sows. Reprod. Nutr. Dev. 2004, 44, 381–396. [Google Scholar] [CrossRef]
- Giergiel, M.; Olejnik, M.; Jabloński, A.; Posyniak, A. The markers of stress in swine oral fluid. J. Vet. Res. 2021, 65, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Nowacka-Kozak, E.; Gajda, A.; Gbylik-Sikorska, M. Simultaneous determination of 68 antimicrobial compounds in pigs oral fluid by ultra-high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2024, 1729, 465053. [Google Scholar] [CrossRef]
- Kittawornrat, A.; Engle, M.; Panyasing, Y.; Olsen, C.; Schwartz, K.; Ballagi, A.; Rice, A.; Lizano, S.; Wang, C.; Zimmerman, J. Kinetics of the porcine reproductive and respiratory syndrome virus (PRRSV) humoral immune response in swine serum and oral fluids collected from individual boars. BMS Vet. Res. 2013, 9, 61. [Google Scholar] [CrossRef]
- Kittawornrat, A.; Zimmerman, J.J. Toward a better understanding of pig behavior and pig welfare. Anim. Health Res. Rev. 2010, 12, 25–32. [Google Scholar] [CrossRef]
- Held, S.; Mendl, M.; Devereux, C.; Byrne, W. Social tactics of pigs in a competitive foraging task: The “informed forager” paradigm. Anim Behav. 2000, 59, 569–576. [Google Scholar] [CrossRef]
- White, D.; Rotolo, M.; Olsen, C.; Wang, C.; Prickett, P.; Kittawornrat, A.; Panyasing, Y.; Main, R.; Rademacher, C.; Hoogland, M.; et al. Recommendations for pen-based oral-fluid collection in growing pigs. J. Swine Health Prod. 2014, 22, 138–141. [Google Scholar] [CrossRef]
- Graage, R.; Hennig-Pauka, I.; Arbinger, H.; Ritzmann, M.; Ladinig, A. Influence of age, group size and the presence of porcine reproductive and respiratory syndrome virus on the collection of oral fluids. Vet. J. 2019, 244, 13–15. [Google Scholar] [CrossRef]
- Seddon, Y.M.; Guy, J.H.; Edwards, S.A. Optimising oral fluid collection from groups of pigs: Effect of housing system and provision of ropes. Vet. J. 2012, 193, 180–184. [Google Scholar] [CrossRef] [PubMed]
- Pepin, B.J.; Kittawornrat, A.; Liu, F.; Gauger, P.C.; Harmon, K.; Abate, S.; Main, R.; Garton, C.; Hargrove, J.; Rademacher, C.; et al. Comparison of specimens for detection of porcine reproductive and respiratory syndrome virus infection in boar studs. Transbound. Emerg. Dis. 2015, 62, 295–304. [Google Scholar] [CrossRef]
- Pierdon, M.K.; Martell, A.L.; Parsons, T.D. Use of ropes to collect oral fluids from gestating sows housed in dynamic groups and fed via electronic sow feeder. J. Swine Health Prod. 2016, 24, 246–252. [Google Scholar] [CrossRef]
- Fablet, C.; Renson, P.; Pol, F.; Dorenlor, V.; Mahé, S.; Eono, F.; Eveno, E.; Le Dimna, M.; Liegard-Vanhecke, D.; Eudier, S.; et al. Oral fluid versus blood sampling in group-housed sows and finishing pigs: Feasibility and performance of antibody detection for porcine reproductive and respiratory syndrome virus (PRRSV). Vet. Microbiol. 2017, 204, 25–34. [Google Scholar] [CrossRef]
- Pol, F.; Dorenlor, V.; Eono, F.; Eudier, S.; Eveno, E.; Liégard-Vanhecke, D.; Rose, N.; Fablet, C. Individual and pen-based oral fluid sampling: A welfare-friendly sampling method for group-housed gestating sows. Prev. Vet. Med. 2017, 147, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Blois-Heulin, C.; Rochais, C.; Camus, S.; Fureix, C.; Lemasson, A.; Lunel, C.; Bezard, E.; Hausberger, M. Animal welfare: Could adult play be a false friend? Anim. Behav. Cogn. 2015, 2, 156–185. [Google Scholar] [CrossRef]
- Bjustrom-Kraft, J.; Christopher-Hennings, J.; Daly, R.; Main, R.; Torrison, J.; Thurn, M.; Zimmerman, J. The use of oral fluid diagnostics in swine medicine. J. Swine Health Prod. 2018, 26, 262–269. [Google Scholar] [CrossRef] [PubMed]
Sow Parity Group | Sampling Day | Data Source | Mean Sow Participation (95% CI or 95% PI) | ||
---|---|---|---|---|---|
30 min | 60 min | 90 min | |||
Gilts | Day 1 | Field data Predicted | 40% (10, 70) 42% (9, 85) | 44% (18, 71) 53% (13, 89) | 53% (39, 68) 58% (15, 91) |
Day 2 | Field data Predicted | 43% (29, 58) 43% (9, 85) | 59% (22, 96) 54% (13, 90) | 60% (27, 93) 59% (15, 92) | |
Day 3 | Field data Predicted | 42% (13, 71) 41% (8, 84) | 56% (46, 65) 51% (12, 89) | 58% (53, 63) 56% (15, 90) | |
Parity one sows | Day 1 | Field data Predicted | 40% (11, 69) 34% (6, 79) | 42% (11, 74) 44% (10, 85) | 47% (11, 83) 50% (12, 88) |
Day 2 | Field data Predicted | 36% (10, 61) 35% (7, 80) | 44% (21, 68) 45% (10, 85) | 49% (14, 83) 50% (12, 88) | |
Day 3 | Field data Predicted | 33% (25, 42) 33% (6, 79) | 42% (21, 63) 43% (9, 85) | 50% (14, 86) 48% (11, 87) | |
Multiparous sows | Day 1 | Field data Predicted | 29% (14, 45) 27% (5, 73) | 39% (26, 53) 36% (8, 80) | 44% (30, 59) 41% (9, 83) |
Day 2 | Field data Predicted | 25% (15, 35) 28% (5, 73) | 38% (22, 54) 37% (8, 80) | 43% (22, 65) 42% (10, 84) | |
Day 3 | Field data Predicted | 26% (15, 38) 26% (5, 72) | 33% (18, 48) 35% (7, 79) | 39% (24, 55) 40% (9, 82) |
Sow Parity Group | Sampling Day | Data Source | Mean Contact Time (95% CI or 95% PI) | ||
---|---|---|---|---|---|
30 min | 60 min | 90 min | |||
Gilts | Day 1 | Field data Predicted | 9 min (5, 14) 9 min (4, 15) | 15 min (13, 16) 12 min (7, 18) | 15 min (11, 19) 14 min (9, 19) |
Day 2 | Field data Predicted | 7 min (6, 9) 9 min (4, 14) | 10 min (8, 12) 12 min (7, 17) | 14 min (11, 17) 14 min (8, 19) | |
Day 3 | Field data Predicted | 9 min (3, 15) 8 min (3, 13) | 10 min (9, 11) 11 min (5, 16) | 13 min (8, 17) 13 min (7, 18) | |
Parity one sows | Day 1 | Field data Predicted | 6 min (1, 11) 7 min (2, 13) | 11 min (1, 21) 10 min (5, 15) | 13 min (4, 23) 12 min (7, 17) |
Day 2 | Field data Predicted | 7 min (2, 11) 7 min (2, 12) | 10 min (8, 11) 10 min (4, 15) | 11 min (8, 15) 12 min (6, 17) | |
Day 3 | Field data Predicted | 6 min (3, 8) 6 min (0, 11) | 9 min (7, 11) 8 min (3, 14) | 9 min (5, 13) 10 min (5, 16) | |
Multiparous sows | Day 1 | Field data Predicted | 6 min (3, 10) 7 min (1, 12) | 9 min (7, 11) 9 min (4, 15) | 10 min (8, 12) 11 min (6, 17) |
Day 2 | Field data Predicted | 7 min (6, 8) 6 min (1, 12) | 9 min (5, 14) 9 min (4, 14) | 12 min (5, 19) 11 min (6, 16) | |
Day 3 | Field data Predicted | 6 min (5, 8) 5 min (0, 10) | 8 min (5, 10) 8 min (3, 13) | 9 min (7, 12) 10 min (5, 15) |
Sow Parity Group | Sampling | Data Source | Both Ropes Contacted (95% CI or 95% PI) | ||
---|---|---|---|---|---|
30 min | 60 min | 90 min | |||
Gilts | Day 1 | Field data Predicted | 23% (2, 45) 22% (4, 68) | 30% (5, 55) 30% (5, 77) | 33% (11, 55) 34% (6, 80) |
Day 2 | Field data Predicted | 22% (17, 27) 24% (4, 71) | 36% (18, 53) 34% (6, 80) | 40% (23, 57) 39% (8, 84) | |
Day 3 | Field data Predicted | 28% (9, 47) 27% (5, 74) | 34% (8, 61) 35% (7, 81) | 41% (29, 54) 41% (8, 84) | |
Parity one sows | Day 1 | Field data Predicted | 14% (2, 27) 15% (2, 59) | 19% (2, 36) 20% (3, 66) | 28% (0, 57) 26% (4, 73) |
Day 2 | Field data Predicted | 14% (10, 19) 12% (2, 53) | 18% (8, 27) 17% (3, 62) | 22% (10, 35) 24% (4, 71) | |
Day 3 | Field data Predicted | 11% (6, 16) 12% (2, 52) | 17% (8, 25) 15% (2, 59) | 22% (3, 41) 22% (3, 69) | |
Multiparous sows | Day 1 | Field data Predicted | 11% (2, 19) 10% (2, 48) | 21% (10, 32) 19% (3, 65) | 24% (13, 36) 24% (4, 71) |
Day 2 | Field data Predicted | 7% (2, 11) 6% (1, 35) | 12% (5, 19) 12% (2, 52) | 18% (7, 30) 17% (3, 60) | |
Day 3 | Field data Predicted | 7% (5, 10) 7% (1, 36) | 12% (6, 19) 12% (2, 51) | 17% (3, 30) 16% (3, 59) |
Step-Wise Analysis | 1st Gestation (3 pens) | 2nd Gestation (3 pens) | Multiparous Sows (6 pens) |
---|---|---|---|
1. Pre-treatment (day 3 sample) lnRFU means (95% CI) for each production group | 10.61 (10.45,10.78) | 10.38 (9.81,10.94) | 10.06 (9.72,10.39) |
2. Post-treatment (day 4 sample) LnRFU means (95% CI) for each production group | 11.24 (11.10, 11.38) | 10.75 (9.23, 12.27) | 10.74 (10.39, 11.08) |
3. Number of positive samples based on ROC analysis 3 a. Pre-treatment pen oral fluid samples b. Post-treatment pen oral fluid samples (lnRFU mean, 95% CI) 1 | 0/3 3/3 11.24 (11.10, 11.38) | 0/3 1/3 11.45 | 0/6 4/6 10.93 (10.65, 11.21) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarasiuk, G.; Connor, J.F.; Zhang, D.; Zimmerman, J.J. Oral Fluid Sampling in Group-Housed Sows: Field Observations. Pathogens 2025, 14, 942. https://doi.org/10.3390/pathogens14090942
Tarasiuk G, Connor JF, Zhang D, Zimmerman JJ. Oral Fluid Sampling in Group-Housed Sows: Field Observations. Pathogens. 2025; 14(9):942. https://doi.org/10.3390/pathogens14090942
Chicago/Turabian StyleTarasiuk, Grzegorz, Joseph F. Connor, Danyang Zhang, and Jeffrey J. Zimmerman. 2025. "Oral Fluid Sampling in Group-Housed Sows: Field Observations" Pathogens 14, no. 9: 942. https://doi.org/10.3390/pathogens14090942
APA StyleTarasiuk, G., Connor, J. F., Zhang, D., & Zimmerman, J. J. (2025). Oral Fluid Sampling in Group-Housed Sows: Field Observations. Pathogens, 14(9), 942. https://doi.org/10.3390/pathogens14090942