Environmental (Saprozoic) Pathogens of Engineered Water Systems: Understanding Their Ecology for Risk Assessment and Management
Abstract
:1. Introduction
2. Non-Enteric Environmental (Saprozoic) Pathogens (that Cause Sapronoses)
2.1. The Key Niche, Biofilms in Engineered Water Systems
Microbial Group | Agent | Problematic Niche | Sapronose | Ref. | |
---|---|---|---|---|---|
Bacteria | Acinetobacter baumannii* | Free-living within biofilms of health-care settings | Range of nosocomial respiratory & other infections (via biofilms) from drinking water, breathing tubes & urinary catheters; antimicrobial resistant strains. | [56] | |
Aeromonas hydrophila* | Ubiquitous in aquatic environments, colonize engineered water systems | Most strains do not appear to be of health concern (including enteric members), but some biofilm colonizers may cause wound infections | [57,58,59] | ||
Chlamydiales: Neochlamydia spp., Parachlamydia spp., Simkania negevensis, Waddlia chondrophila | Obligate amoeba-resisting bacteria of environmental biofilms | Community acquired pneumonia Abortions in humans (and bovines) | [60,61,62,63] | ||
Legionella longbeacheae L. micdadei L. pneumophila | Free-living within biofilms, but important pathogens within biofilm amoebae & other protozoa | Legionellosis (from mild Pontiac Fever to severe Legionnaires’ Disease); Community acquired pneumonia | [15,64,65,66] | ||
Non-tuberculous mycobacteria (NTM); (1) rapid-growers: Mycobacterium abscessus, M. chelonae, M. fortuitum; (2) slow-growers: M. avium complex (MAC), M. ulcerans | Free-living within biofilms, some appear facultative within biofilm amoebae and other protozoa | Community acquired pneumonia Lymphadenopathy, skin and soft tissue infection | [19,66,67,68] | ||
Pseudomonas aeruginosa | Ubiquitous in aquatic environments, colonize engineered water systems | Folliculitis from pools/spars and various nosocomial infections from plumbing biofilms | [8,69,70,71] | ||
Stenotrophomonas maltophilia | Ubiquitous in aquatic environments, colonize engineered water systems | Range of nosocomial respiratory & other infections (via biofilms) in drinking water, breathing tubes & urinary catheters; antimicrobial resistant strains | [72] | ||
Fungi | Aspergillus fumigatus A. terreus | Aspergillosis | [73,74] | ||
Candida albicans C. parapsilosis | Candidiasis | [75] | |||
Exophiala dermatitidis | Dermatitidis | [75] | |||
Protozoa | Acanthamoeba spp. | Many strains appear to only grow saprophyticly; ubiquitous to aquatic biofilm environments | Granulomatous amoebic encephalitis; keratitis; lung & skin infections | [30,76,77,78,79] | |
Balamuthia mandrillaris | Relatively rare but present in source and treated waters of temperate regions | Granulomatous amoebic encephalitis; lung & skin infections | |||
Hartmonella spp. Vahlkampfia spp. | Many strains appear to only grow saprophyticly; ubiquitous to aquatic biofilm environments | Keratitis | |||
Naegleria fowleri | Relatively rare but present in source and treated waters over 28 °C if inadequate residual disinfectant | Primary amoebic meningoencephalitis | |||
Viruses | Mimivirus (Shan virus) Mamavirus | Potentially in various biofilm amoebae, first described in A. polyphaga | Weak pneumonia? | [80,81,82] |
2.1.1. Legionellae, Non-Tuberculous Mycobacteria (NTM) and Pseudomonas aeruginosa
3. Risk Assessment and Risk Management of Engineered Water Systems
3.1. Quantitative Microbial Risk Assessment (QMRA)
3.2. Management of Sapronoses from Engineered Water Systems
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Snow, J. On the Mode of Communication of Cholera, 2nd ed.; much enlarged; John Churchill: London, UK, 1855. [Google Scholar]
- Pacini, F. Osservazioni microscopiche e deduzioni patologiche sul cholera asiatico (microscopic observations and pathological deductions on asiatic cholera). Gazz. Med. Ital. 1854, 4, 405–412. (In Italian) [Google Scholar]
- Koch, R. An address on cholera and its bacillus. Br. Med. J. 1884, 2, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Black, M.; Fawcett, B. The Last Taboo. Opening the Door on the Global Sanitation Crisis; Earthscan Publications Ltd.: London, UK, 2008. [Google Scholar]
- Ashbolt, N.J. Microbial contamination of drinking water and human health from community water systems. Curr. Environ. Health Rep. 2015, 2, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Falkinham, J.O., 3rd; Hilborn, E.D.; Arduino, M.J.; Pruden, A.; Edwards, M.A. Epidemiology and ecology of opportunistic premise plumbing pathogens: Legionella pneumophila, mycobacterium avium, and pseudomonas aeruginosa. Environ. Health Perspect. 2015. [Google Scholar] [CrossRef]
- Proctor, C.R.; Hammes, F. Drinking water microbiology-from measurement to management. Curr. Opin. Biotechnol. 2015, 33, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Bloomfield, S.; Exner, M.; Flemming, H.C.; Goroncy-Bermes, P.; Hartemann, P.; Heeg, P.; Ilschner, C.; Krämer, I.; Merkens, W.; Oltmanns, P.; et al. Lesser-known or hidden reservoirs of infection and implications for adequate prevention strategies: Where to look and what to look for. GMS Hyg. Infect. Control 2015. [CrossRef]
- American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE). Standard 188p Proposed New Standard 188, Prevention of Legionellosis Associated with Building Water Systems (Complete Draft for Full Review); American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE): Atlanta, GA, USA, 2013. [Google Scholar]
- Cunliffe, D.; Ashbolt, N.; D’Anglada, L.; Greiner, P.; Gupta, R.; Hearn, J.; Jayaratne, A.; Cheong, K.; O’Connor, N.; Purkiss, D.; et al. Water Safety in Distribution Systems, WHO/FWC/WSH/14.03; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Hubálek, Z. Emerging human infectious diseases: Anthroponoses, zoonoses, and sapronoses. Emerg. Infect. Dis. 2003, 9, 403–404. [Google Scholar] [CrossRef] [PubMed]
- Douterelo, I.; Boxall, J.B.; Deines, P.; Sekar, R.; Fish, K.E.; Biggs, C.A. Methodological approaches for studying the microbial ecology of drinking water distribution systems. Water Res. 2014, 65, 134–156. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency (US-EPA). Drinking water; national primary drinking water regulations; filtration, disinfection, turbidity, Giardia lamblia, viruses, Legionella, and heterotrophic bacteria. Fed. Regist. 1989, 54, 27485–27541. [Google Scholar]
- Loret, J.F.; Greub, G. Free-living amoebae: Biological by-passes in water treatment. Int. J. Hyg. Environ. Health 2010, 213, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Struewing, I.; Yelton, S.; Ashbolt, N.J. Molecular survey of occurrence and quantity of Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa and amoeba hosts in municipal drinking water storage tank sediments. J. Appl. Microbiol. 2015, 119, 278–288. [Google Scholar]
- Schoen, M.E.; Ashbolt, N.J. An in-premise model for Legionella exposure during showering events. Water Res. 2011, 45, 5826–5836. [Google Scholar] [CrossRef] [PubMed]
- Vaerewijck, M.J.M.; Baré, J.; Lambrecht, E.; Sabbe, K.; Houf, K. Interactions of foodborne pathogens with free-living protozoa: Potential consequences for food safety. Compr. Rev. Food Sci. Food Saf. 2014, 13, 924–944. [Google Scholar] [CrossRef]
- Abu Khweek, A.; Fernandez Dávila, N.S.; Caution, K.; Akhter, A.; Abdulrahman, B.A.; Tazi, M.; Hassan, H.; Novotny, L.A.; Bakaletz, L.O.; Amer, A.O. Biofilm-derived Legionella pneumophila evades the innate immune response in macrophages. Front. Cell. Infect. Microbiol. 2013, 3, 18. [Google Scholar] [CrossRef] [PubMed]
- Kendall, B.A.; Winthrop, K.L. Update on the epidemiology of pulmonary nontuberculous mycobacterial infections. Semin. Respir. Crit. Care Med. 2013, 34, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Shomaker, T.S.; Green, E.M.; Yandow, S.M. Perspective: One health: A compelling convergence. Acad. Med. 2013, 88, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Stewart, P.S. Biophysics of biofilm infection. Pathog. Dis. 2014, 70, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhang, J.; Mi, Z.; Xie, S.; Chen, C.; Zhang, X. Biofilm bacterial communities in urban drinking water distribution systems transporting waters with different purification strategies. Appl. Microbiol. Biotechnol. 2015, 99, 1947–1955. [Google Scholar] [CrossRef]
- Jin, J.; Wu, G.; Guan, Y. Effect of bacterial communities on the formation of cast iron corrosion tubercles in reclaimed water. Water Res. 2015, 71, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Van Lieverloo, J.H.M.; van der Kooij, D.; Hoogenboezem, W. Invertebrates and protozoa (free-living) in drinking water distribution systems. In Encylopedia of Environmental Microbiology; Bitton, G., Ed.; John Wiley & Sons: New York, NY, USA, 2002; pp. 1718–1733. [Google Scholar]
- Ingerson-Mahar, M.; Reid, A. Microbes in Pipes: The Microbiology of the Water Distribution System. A Report on An Amercian Academy of Microbiology Colloquium April 2012, Boulder, Colorado; American Academy of Microbiology: Washington, DC, USA, 2013; p. 28. [Google Scholar]
- Shen, Y.; Monroy, G.L.; Derlon, N.; Janjaroen, D.; Huang, C.; Morgenroth, E.; Boppart, S.A.; Ashbolt, N.J.; Liu, W.T.; Nguyen, T.H. Role of biofilm roughness and hydrodynamic conditions in legionella pneumophila adhesion to and detachment from simulated drinking water biofilms. Environ. Sci. Technol. 2015, 49, 4274–4282. [Google Scholar] [CrossRef] [PubMed]
- Hwang, G.; Liang, J.; Kang, S.; Tong, M.; Liu, Y. The role of conditioning film formation in Pseudomonas aeruginosa PAO1 adhesion to inert surfaces in aquatic environments. Biochem. Eng. J. 2013, 76, 90–98. [Google Scholar] [CrossRef]
- Lautenschlager, K.; Hwang, C.; Ling, F.; Liu, W.T.; Boon, N.; Koster, O.; Egli, T.; Hammes, F. Abundance and composition of indigenous bacterial communities in a multi-step biofiltration-based drinking water treatment plant. Water Res. 2014, 62, 40–52. [Google Scholar] [CrossRef] [PubMed]
- Buse, H.Y.; Lu, J.; Lu, X.; Mou, X.; Ashbolt, N.J. Microbial diversities (16S and 18S rRNA gene pyrosequencing) and environmental pathogens within drinking water biofilms grown on the common premise plumbing materials unplasticized polyvinylchloride and copper. FEMS Microbiol. Ecol. 2014, 88, 280–295. [Google Scholar] [CrossRef]
- Cope, J.R.; Ratard, R.C.; Hill, V.R.; Sokol, T.; Causey, J.J.; Yoder, J.S.; Mirani, G.; Mull, B.; Mukerjee, K.A.; Narayanan, J.; et al. The first association of a primary amebic meningoencephalitis death with culturable Naegleria fowleri in tap water from a us treated public drinking water system. Clin. Infect. Dis. 2015, 60, e36–e42. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.E.; Stout, J.E.; Yu, V.L. Controlling Legionella in hospital drinking water: An evidence-based review of disinfection methods. Infect. Control Hosp. Epidemiol. 2011, 32, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Bakker, G.L.; Li, S.; Vreeburg, J.H.; Verberk, J.Q.; Medema, G.J.; Liu, W.T.; van Dijk, J.C. Pyrosequencing reveals bacterial communities in unchlorinated drinking water distribution system: An integral study of bulk water, suspended solids, loose deposits, and pipe wall biofilm. Environ. Sci. Technol. 2014, 48, 5467–5476. [Google Scholar] [CrossRef] [PubMed]
- Inkinen, J.; Kaunisto, T.; Pursiainen, A.; Miettinen, I.T.; Kusnetsov, J.; Keinanen-Toivola, M.M.; Riihinen, K. Drinking water quality and formation of biofilms in an office building during its first year of operation, a full scale study. Water Res. 2014, 49, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Lehtola, M.J.; Juhna, T.; Miettinen, I.T.; Vartiainen, T.; Martikainen, P.J. Formation of biofilms in drinking water distribution networks, a case study in two cities in Finland and Latvia. J. Ind. Microbiol. Biotechnol. 2004, 31, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-K.; Hu, J.Y. Interaction between phosphorus and biodegradable organic carbon on drinking water biofilm subject to chlorination. J. Appl. Microbiol. 2010, 108, 2077–2087. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Buse, H.; Gomez-Alvarez, V.; Struewing, I.; Santo Domingo, J.; Ashbolt, N.J. Impact of drinking water conditions and copper materials on downstream biofilm microbial communities and Legionella pneumophila colonization. J. Appl. Microbiol. 2014, 117, 905–918. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, B.; Sekar, R.; Boxall, J.B.; Biggs, C.A. Aggregation and biofilm formation of bacteria isolated from domestic drinking water. Water Sci. Technol. Water Supply 2013, 13, 1016–1023. [Google Scholar] [CrossRef]
- Basson, A.; Flemming, L.A.; Chenia, H.Y. Evaluation of adherence, hydrophobicity, aggregation, and biofilm development of Flavobacterium johnsoniae-like isolates. Microb. Ecol. 2008, 55, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Korea, C.G.; Badouraly, R.; Prevost, M.C.; Ghigo, J.M.; Beloin, C. Escherichia coli K-12 possesses multiple cryptic but functional chaperone-usher fimbriae with distinct surface specificities. Environ. Microbiol. 2010, 12, 1957–1977. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Nour, M.; Duncan, C.; Prashar, A.; Rao, C.; Ginevra, C.; Jarraud, S.; Low, D.E.; Guyard, C.; Ensminger, A.W.; Terebiznik, M.R. The Legionella pneumophila collagen-like protein mediates sedimentation, autoaggregation, and pathogen-phagocyte interactions. Appl. Environ. Microbiol. 2014, 80, 1441–1454. [Google Scholar] [CrossRef] [PubMed]
- Lau, H.Y.; Ashbolt, N.J. The role of biofilms and protozoa in Legionella pathogenesis: Implications for drinking water. J. Appl. Microbiol. 2009, 107, 368–378. [Google Scholar] [CrossRef] [PubMed]
- Gomes, I.B.; Simões, M.; Simões, L.C. An overview on the reactors to study drinking water biofilms. Water Res. 2014, 62, 63–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deines, P.; Sekar, R.; Husband, P.S.; Boxall, J.B.; Osborn, A.M.; Biggs, C.A. A new coupon design for simultaneous analysis of in situ microbial biofilm formation and community structure in drinking water distribution systems. Appl. Microbiol. Biotechnol. 2010, 87, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Neu, T.R.; Lawrence, J.R. Advanced techniques for in situ analysis of the biofilm matrix (structure, composition, dynamics) by means of laser scanning microscopy. Methods Mol. Biol. 2014, 1147, 43–64. [Google Scholar] [PubMed]
- Revetta, R.P.; Gomez-Alvarez, V.; Gerke, T.L.; Santo Domingo, J.W.; Ashbolt, N.J. Changes in microbial community structure associated with monochloramine-treated drinking water biofilms. FEMS Microbiol. Ecol. 2013, 86, 404–414. [Google Scholar] [CrossRef] [PubMed]
- Baron, J.L.; Vikram, A.; Duda, S.; Stout, J.E.; Bibby, K. Shift in the microbial ecology of a hospital hot water system following the introduction of an on-site monochloramine disinfection system. PLoS ONE 2014, 9, e102679. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Alvarez, V.; Humrighouse, B.W.; Revetta, R.P.; Santo Domingo, J.W. Bacterial composition in a metropolitan drinking water distribution system utilizing different source waters. J. Water Health 2015, 13, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Zhu, J.; Yu, Z.; Joshi, D.; Zhang, H.; Lin, W.; Yang, M. Molecular analysis of long-term biofilm formation on pvc and cast iron surfaces in drinking water distribution system. J. Environ. Sci. China 2014, 26, 865–874. [Google Scholar] [CrossRef]
- Buse, H.Y.; Lu, J.; Struewing, I.T.; Ashbolt, N.J. Preferential colonization and release of Legionella pneumophila from mature drinking water biofilms grown on copper versus unplasticized polyvinylchloride coupons. Int. J. Hyg. Environ. Health 2014, 217, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Gião, M.S.; Wilks, S.A.; Keevil, C.W. Influence of copper surfaces on biofilm formation by Legionella pneumophila in potable water. Biometals 2015, 28, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Sekar, R.; Deines, P.; Machell, J.; Osborn, A.M.; Biggs, C.A.; Boxall, J.B. Bacterial water quality and network hydraulic characteristics: A field study of a small, looped water distribution system using culture-independent molecular methods. J. Appl. Microbiol. 2012, 112, 1220–1234. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.J.; Schroeder, J.; Lunn, M.; Sloan, W.; Raskin, L. Spatial-temporal survey and occupancy-abundance modeling to predict bacterial community dynamics in the drinking water microbiome. mBio 2014, 5, e01135–e01114. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Struewing, I.; Buse, H.Y.; Kou, J.; Shuman, H.A.; Faucher, S.P.; Ashbolt, N.J. Legionella pneumophila transcriptional response following exposure to CuO nanoparticles. Appl. Environ. Microbiol. 2013, 79, 2713–2720. [Google Scholar] [CrossRef] [PubMed]
- Aliaga Goltsman, D.S.; Comolli, L.R.; Thomas, B.C.; Banfield, J.F. Community transcriptomics reveals unexpected high microbial diversity in acidophilic biofilm communities. ISME J. 2015, 9, 1014–1023. [Google Scholar] [CrossRef] [PubMed]
- Landstorfer, R.; Simon, S.; Schober, S.; Keim, D.; Scherer, S.; Neuhaus, K. Comparison of strand-specific transcriptomes of enterohemorrhagic Escherichia coli O157:H7 EDL933 (EHEC) under eleven different environmental conditions including radish sprouts and cattle feces. BMC Genomics 2014, 15, 353. [Google Scholar] [CrossRef] [PubMed]
- Weigel, K.M.; Jones, K.L.; Do, J.S.; Melton Witt, J.; Chung, J.H.; Valcke, C.; Cangelosi, G.A. Molecular viability testing of bacterial pathogens from a complex human sample matrix. PLoS ONE 2013, 8, e54886. [Google Scholar] [CrossRef]
- Kühn, I.; Allestam, G.; Huys, G.; Janssen, P.; Kersters, K.; Krovacek, K.; Stenström, T.-A. Diversity, persistence, and virulence of Aeromonas strains isolated from drinking water distribution systems in Sweden. Appl. Environ. Microbiol. 1997, 63, 2708–2715. [Google Scholar] [PubMed]
- Borchardt, M.A. Aeromonas isolates from human diarrheic stool and groundwater compared by pulsed-field gel electrophoresis. Emerg. Infect. Dis. 2003, 9, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Van der Kooij, D. Nutritional requirements of aeromonads and their multiplication in drinking water. Experientia 1991, 47, 444–446. [Google Scholar] [PubMed]
- Codony, F.; Fittipaldi, M.; Lopez, E.; Morato, J.; Agusti, G. Well water as a possible source of Waddlia chondrophila infections. Microbes Environ. 2012, 27, 529–532. [Google Scholar] [CrossRef] [PubMed]
- Corsaro, D.; Feroldi, V.; Saucedo, G.; Ribas, F.; Loret, J.F.; Greub, G. Novel Chlamydiales strains isolated from a water treatment plant. Environ. Microbiol. 2009, 11, 188–200. [Google Scholar] [CrossRef] [PubMed]
- Perez, L.M.; Codony, F.; Rios, K.; Penuela, G.; Adrados, B.; Fittipaldi, M.; de Dios, G.; Morato, J. Searching Simkania negevensis in environmental waters. Folia Microbiol. Praha 2012, 57, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Donati, M.; Cremonini, E.; di Francesco, A.; Dallolio, L.; Biondi, R.; Muthusamy, R.; Leoni, E. Prevalence of Simkania negevensis in chlorinated water from spa swimming pools and domestic supplies. J. Appl. Microbiol. 2015, 118, 1076–1082. [Google Scholar] [CrossRef] [PubMed]
- Buse, H.Y.; Schoen, M.E.; Ashbolt, N.J. Legionellae in engineered systems and use of quantitative microbial risk assessment to predict exposure. Water Res. 2012, 46, 921–933. [Google Scholar] [CrossRef] [PubMed]
- Wingender, J.; Flemming, H.C. Biofilms in drinking water and their role as reservoir for pathogens. Int. J. Hyg. Environ. Health 2011, 214, 417–423. [Google Scholar] [CrossRef]
- Whiley, H.; Keegan, A.; Fallowfield, H.; Bentham, R. The presence of opportunistic pathogens, Legionella spp., L. pneumophila and Mycobacterium avium complex, in south australian reuse water distribution pipelines. J. Water Health 2014, 13, 553–561. [Google Scholar] [CrossRef]
- Behr, M.A.; Falkinham, J.O., 3rd. Molecular epidemiology of nontuberculous mycobacteria. Future Microbiol. 2009, 4, 1009–1020. [Google Scholar] [CrossRef] [PubMed]
- Brode, S.K.; Daley, C.L.; Marras, T.K. The epidemiologic relationship between tuberculosis and non-tuberculous mycobacterial disease: A systematic review. Int. J. Tuberc. Lung Dis. 2014, 18, 1370–1377. [Google Scholar] [CrossRef] [PubMed]
- Roser, D.J.; van Den Akker, B.; Boase, S.; Haas, C.N.; Ashbolt, N.J.; Rice, S.A. Dose-response algorithms for water-borne Pseudomonas aeruginosa folliculitis. Epidemiol. Infect. 2015, 143, 1524–1537. [Google Scholar] [CrossRef] [PubMed]
- Makovcova, J.; Slany, M.; Babak, V.; Slana, I.; Kralik, P. The water environment as a source of potentially pathogenic mycobacteria. J. Water Health 2014, 12, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Exner, M.; Kramer, A.; Lajoie, L.; Gebel, J.; Engelhart, S.; Hartemann, P. Prevention and control of health care-associated waterborne infections in health care facilities. Am. J. Infect. Control 2005, 33, S26–S40. [Google Scholar] [CrossRef] [PubMed]
- Guyot, A.; Turton, J.F.; Garner, D. Outbreak of Stenotrophomonas maltophilia on an intensive care unit. J. Hosp. Infect. 2013, 85, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.J.; Marques, R.; Marques, M.; Benoliel, M.J.; Barreto Crespo, M.T. Free chlorine inactivation of fungi in drinking water sources. Water Res. 2013, 47, 517–523. [Google Scholar] [CrossRef]
- Van der Wielen, P.W.; van der Kooij, D. Nontuberculous mycobacteria, fungi, and opportunistic pathogens in unchlorinated drinking water in the netherlands. Appl. Environ. Microbiol. 2013, 79, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Heinrichs, G.; Hubner, I.; Schmidt, C.K.; de Hoog, G.S.; Haase, G. Analysis of black fungal biofilms occurring at domestic water taps. I: Compositional analysis using tag-encoded FLX amplicon pyrosequencing. Mycopathologia 2013, 175, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.M.; Ashbolt, N.J. Do free-living amoebae in treated drinking water systems present an emerging health risk? Environ. Sci. Technol. 2011, 45, 860–869. [Google Scholar] [CrossRef] [PubMed]
- Thomas, V.; McDonnel, G.; Denyer, S.P.; Maillard, J.-Y. Freeliving amoebae and their intracellular pathogenic microorganisms: Risk for water quality. FEMS Microbiol. Rev. 2010, 34, 231–259. [Google Scholar] [CrossRef] [PubMed]
- Baquero, R.A.; Reyes-Batlle, M.; Nicola, G.G.; Martin-Navarro, C.M.; Lopez-Arencibia, A.; Guillermo Esteban, J.; Valladares, B.; Martinez-Carretero, E.; Pinero, J.E.; Lorenzo-Morales, J. Presence of potentially pathogenic free-living amoebae strains from well water samples in guinea-bissau. Pathog. Glob. Health 2014, 108, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Magnet, A.; Fenoy, S.; Galván, A.L.; Izquierdo, F.; Rueda, C.; Fernandez Vadillo, C.; del Aguila, C. A year long study of the presence of free living amoeba in spain. Water Res. 2013, 47, 6966–6972. [Google Scholar] [CrossRef] [PubMed]
- Boratto, P.V.; Dornas, F.P.; Andrade, K.R.; Rodrigues, R.; Peixoto, F.; Silva, L.C.; la Scola, B.; Costa, A.O.; de Almeida, G.M.; Kroon, E.G.; et al. Amoebas as mimivirus bunkers: Increased resistance to uv light, heat and chemical biocides when viruses are carried by amoeba hosts. Arch. Virol. 2014, 159, 1039–1043. [Google Scholar] [PubMed]
- Colson, P.; Fancello, L.; Gimenez, G.; Armougom, F.; Desnues, C.; Fournous, G.; Yoosuf, N.; Million, M.; la Scola, B.; Raoult, D. Evidence of the megavirome in humans. J. Clin. Virol. 2013, 57, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Saadi, H.; Reteno, D.G.; Colson, P.; Aherfi, S.; Minodier, P.; Pagnier, I.; Raoult, D.; la Scola, B. Shan virus: A new mimivirus isolated from the stool of a tunisian patient with pneumonia. Intervirology 2013, 56, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Mendis, N.; Trigui, H.; Oliver, J.D.; Faucher, S.P. The importance of the viable but non-culturable state in human bacterial pathogens. Front. Microbiol. 2014, 5, 258. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Chen, X.; Hu, J.; Shen, C.; Ding, L. Exploring the potential environmental functions of viable but non-culturable bacteria. World J. Microbiol. Biotechnol. 2013, 29, 2213–2218. [Google Scholar] [CrossRef] [PubMed]
- Pinto, D.; Santos, M.A.; Chambel, L. Thirty years of viable but nonculturable state research: Unsolved molecular mechanisms. Crit. Rev. Microbiol. 2013, 41, 61–76. [Google Scholar] [CrossRef] [PubMed]
- Epalle, T.; Girardot, F.; Allegra, S.; Maurice-Blanc, C.; Garraud, O.; Riffard, S. Viable but not culturable forms of Legionella pneumophila generated after heat shock treatment are infectious for macrophage-like and alveolar epithelial cells after resuscitation on Acanthamoeba polyphaga. Microb. Ecol. 2015, 69, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Bédard, E.; Fey, S.; Charron, D.; Laferrière, C.; Cantin, P.; Dolcé, P.; Laferriere, C.; Déziel, E.; Prévost, M. Temperature diagnostic to identify high risk areas and optimize Legionella pneumophila surveillance in hot water distribution systems. Water Res. 2015, 71, 244–256. [Google Scholar] [CrossRef] [PubMed]
- Manina, G.; McKinney, J.D. A single-cell perspective on non-growing but metabolically active (ngma) bacteria. Curr. Top. Microbiol. Immunol. 2013, 374, 135–161. [Google Scholar] [PubMed]
- Gião, M.S.; Azevedo, N.F.; Wilks, S.A.; Vieira, M.J.; Keevil, C.W. Interaction of Legionella pneumophila and Helicobacter pylori with bacterial species isolated from drinking water biofilms. BMC Microbiol. 2011, 11, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiao, T.H.; Clancy, T.M.; Pinto, A.; Xi, C.; Raskin, L. Differential resistance of drinking water bacterial populations to monochloramine disinfection. Environ. Sci. Technol. 2014, 48, 4038–4047. [Google Scholar] [CrossRef] [PubMed]
- Fittipaldi, M.; Codony, F.; Adrados, B.; Camper, A.K.; Morató, J. Viable real-time pcr in environmental samples: Can all data be interpreted directly? Microb. Ecol. 2011, 61, 7–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashbolt, N.J.; Amézquita, A.; Backhaus, T.; Borriello, S.P.; Brandt, K.; Collignon, P.; Coors, A.; Finley, R.; Gaze, W.H.; Heberer, T.; et al. Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environ. Health Perspect. 2013, 121, 993–1001. [Google Scholar] [PubMed]
- Moliner, C.; Fournier, P.E.; Raoult, D. Genome analysis of microorganisms living in amoebae reveals a melting pot of evolution. FEMS Microbiol. Rev. 2010, 34, 281–294. [Google Scholar] [CrossRef]
- Tossa, P.; Deloge-Abarkan, M.; Zmirou-Navier, D.; Hartemann, P.; Mathieu, L. Pontiac fever: An operational definition for epidemiological studies. BMC Public Health 2006, 6, 112. [Google Scholar] [CrossRef] [PubMed]
- Collier, S.A.; Stockman, L.J.; Hicks, L.A.; Garrison, L.E.; Zhou, F.J.; Beach, M.J. Direct healthcare costs of selected diseases primarily or partially transmitted by water. Epidemiol. Infect. 2012, 140, 2003–2013. [Google Scholar] [CrossRef] [PubMed]
- Whiley, H.; Taylor, M. Legionella detection by culture and qPCR: Comparing apples and oranges. Crit. Rev. Microbiol. 2014. [Google Scholar] [CrossRef]
- Whiley, H.; Keegan, A.; Fallowfield, H.; Bentham, R. Detection of Legionella, L. neumophila and Mycobacterium avium complex (MAC) along potable water distribution pipelines. Int. J. Environ. Res. Public Health 2014, 11, 7393–7405. [Google Scholar] [CrossRef] [PubMed]
- Pitre, C.A.; Tanner, J.R.; Patel, P.; Brassinga, A.K. Regulatory control of temporally expressed integration host factor (IHF) in Legionella pneumophila. Microbiology 2013, 159, 475–492. [Google Scholar] [CrossRef] [PubMed]
- Hussein, Z.; Landt, O.; Wirths, B.; Wellinghausen, N. Detection of non-tuberculous mycobacteria in hospital water by culture and molecular methods. Int. J. Med. Microbiol. 2009, 299, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Yáñez, M.A.; Nocker, A.; Soria-Soria, E.; Múrtula, R.; Martínez, L.; Catalán, V. Quantification of viable Legionella pneumophila cells using propidium monoazide combined with quantitative pcr. J. Microbiol. Methods 2011, 85, 124–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berk, S.G.; Garduño, R.A. The Tetrahymena and Acanthamoeba model systems. Methods Mol. Biol. 2013, 954, 393–416. [Google Scholar] [PubMed]
- Brassinga, A.K.; Kinchen, J.M.; Cupp, M.E.; Day, S.R.; Hoffman, P.S.; Sifri, C.D. Caenorhabditis is a metazoan host for Legionella. Cell. Microbiol. 2010, 12, 343–361. [Google Scholar] [CrossRef] [PubMed]
- Delafont, V.; Mougari, F.; Cambau, E.; Joyeux, M.; Bouchon, D.; Hechard, Y.; Moulin, L. First evidence of amoebae-mycobacteria association in drinking water network. Environ. Sci. Technol. 2014, 48, 11872–11882. [Google Scholar] [CrossRef] [PubMed]
- Feazel, L.M.; Baumgartner, L.K.; Peterson, K.L.; Frank, D.N.; Harris, J.K.; Pace, N.R. Opportunistic pathogens enriched in showerhead biofilms. Proc. Natl. Acad. Sci. USA 2009, 106, 16393–16399. [Google Scholar] [CrossRef] [PubMed]
- Falkinham, J.O., 3rd. Hospital water filters as a source of Mycobacterium avium complex. J. Med. Microbiol. 2010, 59, 1198–1202. [Google Scholar] [CrossRef] [PubMed]
- Falkinham, J.O.I.; Iseman, M.D.; de Haas, P.; van Soolingen, D. Mycobacterium avium in a shower linked to pulmonary disease. J. Water Health 2008, 6, 209–213. [Google Scholar] [PubMed]
- Sales-Ortells, H.; Medema, G. Screening-level microbial risk assessment of urban water locations: A tool for prioritization. Environ. Sci. Technol. 2014, 48, 9780–9789. [Google Scholar] [CrossRef] [PubMed]
- Schoen, M.E.; Xue, X.; Hawkins, T.R.; Ashbolt, N.J. Comparative human health risk analysis of coastal community water and waste service options. Environ. Sci. Technol. 2014, 48, 9728–9736. [Google Scholar] [CrossRef] [PubMed]
- US-EPA; USDA/FSIS. Microbial Risk Assessment Guideline: Pathogenic Microorganisms with Focus on Food and Water; EPA/100/J-12/001, USDA/FSIS/2012–001; Prepared by the interagency microbiological risk assessment guideline workgroup; U.S. Environmental Protection Agency (EPA); U.S. Department of Agriculture/Food Safety and Inspection Service (USDA/FSIS): Washington, DC, USA, 2012.
- Teunis, P.F.; Xu, M.; Fleming, K.K.; Yang, J.; Moe, C.L.; LeChevallier, M.W. Enteric virus infection risk from intrusion of sewage into a drinking water distribution network. Environ. Sci. Technol. 2010, 44, 8561–8566. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.; Hamilton, K.; Hamilton, M.; Haas, C.N. Evaluating the potential for a Helicobacter pylori drinking water guideline. Risk Anal. 2014, 34, 1651–1662. [Google Scholar] [CrossRef] [PubMed]
- Gião, M.S.; Azevedo, N.F.; Wilks, S.A.; Vieira, M.J.; Keevil, C.W. Persistence of Helicobacter pylori in heterotrophic drinking-water biofilms. Appl. Environ. Microbiol. 2008, 74, 5898–5904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angenent, L.T.; Kelley, S.T.; St Amand, A.; Pace, N.R.; Hernandez, M.T. Molecular identification of potential pathogens in water and air of a hospital therapy pool. PNAS 2005, 102, 4860–4865. [Google Scholar] [CrossRef] [PubMed]
- Parker, B.C.; Ford, M.A.; Gruft, H.; Falkinham, J.O., 3rd. Epidemiology of infection by nontuberculous mycobacteria. IV. Preferential aerosolization of Mycobacterium intracellulare from natural waters. Am. Rev. Respir. Dis. 1983, 128, 652–656. [Google Scholar] [PubMed]
- Lee, E.S.; Yoon, T.H.; Lee, M.Y.; Han, S.H.; Ka, J.O. Inactivation of environmental mycobacteria by free chlorine and uv. Water Res. 2010, 44, 1329–1334. [Google Scholar] [CrossRef]
- Sheffer, P.J.; Stout, J.E.; Wagener, M.M.; Muder, R.R. Efficacy of new point-of-use water filter for preventing exposure to Legionella and waterborne bacteria. Am. J. Infect. Control 2005, 33, S20–S25. [Google Scholar] [CrossRef] [PubMed]
- Barna, Z.; Antmann, K.; Pászti, J.; Bánfi, R.; Kádár, M.; Szax, A.; Németh, M.; Szegö, E.; Vargha, M. Infection control by point-of-use water filtration in an intensive care unit—A Hungarian case study. J. Water Health 2014, 12, 858–867. [Google Scholar] [CrossRef] [PubMed]
- Holinger, E.P.; Ross, K.A.; Robertson, C.E.; Stevens, M.J.; Harris, J.K.; Pace, N.R. Molecular analysis of point-of-use municipal drinking water microbiology. Water Res. 2014, 49, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Edwards, M.A.; Falkinham, J.O., 3rd; Pruden, A. Probiotic approach to pathogen control in premise plumbing systems? A review. Environ. Sci. Technol. 2013, 47, 10117–10128. [Google Scholar] [PubMed]
- Amaro, F.; Wang, W.; Gilbert, J.A.; Roger Anderson, O.; Shuman, H.A. Diverse protist grazers select for virulence-related traits in Legionella. ISME J. 2015. [CrossRef] [PubMed]
- Codony, F.; Pérez, L.M.; Adrados, B.; Agustí, G.; Fittipaldi, M.; Morató, J. Amoeba-related health risk in drinking water systems: Could monitoring of amoebae be a complementary approach to current quality control strategies? Future Microbiol. 2012, 7, 25–31. [Google Scholar] [CrossRef] [PubMed]
- South Australian Dept. of Health. Control of Legionella in Manufactured Water Systems in South Australia. SA Health: Adelaide, Australia, 2008. [Google Scholar]
- Health and Safety Executive (HSE). Legionnaires’ Disease. The Control of Legionella Bacteria in Water Systems. Approved Code of Practice and Guidance. Health and Safety Executive: London, UK, 2013. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashbolt, N.J. Environmental (Saprozoic) Pathogens of Engineered Water Systems: Understanding Their Ecology for Risk Assessment and Management. Pathogens 2015, 4, 390-405. https://doi.org/10.3390/pathogens4020390
Ashbolt NJ. Environmental (Saprozoic) Pathogens of Engineered Water Systems: Understanding Their Ecology for Risk Assessment and Management. Pathogens. 2015; 4(2):390-405. https://doi.org/10.3390/pathogens4020390
Chicago/Turabian StyleAshbolt, Nicholas J. 2015. "Environmental (Saprozoic) Pathogens of Engineered Water Systems: Understanding Their Ecology for Risk Assessment and Management" Pathogens 4, no. 2: 390-405. https://doi.org/10.3390/pathogens4020390
APA StyleAshbolt, N. J. (2015). Environmental (Saprozoic) Pathogens of Engineered Water Systems: Understanding Their Ecology for Risk Assessment and Management. Pathogens, 4(2), 390-405. https://doi.org/10.3390/pathogens4020390