Recombinant PrP and Its Contribution to Research on Transmissible Spongiform Encephalopathies
Abstract
:1. Introduction
2. Molecular Mechanisms
3. Diagnosis
4. Screening
5. Therapy
Author Contributions
Conflicts of Interest
References
- Aguzzi, A.; Calella, A.M. Prions: Protein aggregation and infectious diseases. Physiol. Rev. 2009, 89, 1105–1152. [Google Scholar] [CrossRef] [PubMed]
- Liberski, P.P.; Sikorska, B.; Brown, P. Kuru: The first prion disease. Adv. Exp. Med. Biol. 2012, 724, 143–153. [Google Scholar] [PubMed]
- Hsiao, K.; Prusiner, S.B. Molecular genetics and transgenic model of gertsmann-straussler-scheinker disease. Alzheimer Dis. Assoc. Disord. 1991, 5, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Gallassi, R.; Morreale, A.; Montagna, P.; Cortelli, P.; Avoni, P.; Castellani, R.; Gambetti, P.; Lugaresi, E. Fatal familial insomnia: Behavioral and cognitive features. Neurology 1996, 46, 935–939. [Google Scholar] [CrossRef] [PubMed]
- Jackson, G.S.; Collinge, J. The molecular pathology of cjd: Old and new variants. Mol. Pathol. 2001, 54, 393–399. [Google Scholar] [PubMed]
- Zou, W.Q.; Puoti, G.; Xiao, X.; Yuan, J.; Qing, L.; Cali, I.; Shimoji, M.; Langeveld, J.P.; Castellani, R.; Notari, S.; et al. Variably protease-sensitive prionopathy: A new sporadic disease of the prion protein. Ann. Neurol. 2010, 68, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, A.G. Scrapie in sheep and goats. Front. Biol. 1976, 44, 209–241. [Google Scholar] [PubMed]
- Marsh, R.F.; Hadlow, W.J. Transmissible mink encephalopathy. Rev. Sci. Tech. 1992, 11, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Kimberlin, R.H. An overview of bovine spongiform encephalopathy. Dev. Biol. Stand. 1991, 75, 75–82. [Google Scholar] [PubMed]
- Williams, E.S.; Young, S. Spongiform encephalopathies in cervidae. Rev. Sci Tech. 1992, 11, 551–567. [Google Scholar] [CrossRef] [PubMed]
- Pattison, I.H. Resistance of the scrapie agent to formalin. J. Comp. Pathol. 1965, 75, 159–164. [Google Scholar] [CrossRef]
- Alper, T. The nature of the scrapie agent. J. Clin. Pathol. Suppl. (R. Coll. Pathol.) 1972, 6, 154–155. [Google Scholar] [CrossRef]
- Prusiner, S.B. Novel proteinaceous infectious particles cause scrapie. Science 1982, 216, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Soto, C. Prion hypothesis: The end of the controversy? Trends Biochem. Sci. 2011, 36, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.M.; Donnelly, C.A.; Ferguson, N.M.; Woolhouse, M.E.; Watt, C.J.; Udy, H.J.; MaWhinney, S.; Dunstan, S.P.; Southwood, T.R.; Wilesmith, J.W.; et al. Transmission dynamics and epidemiology of bse in british cattle. Nature 1996, 382, 779–788. [Google Scholar] [CrossRef] [PubMed]
- Collinge, J.; Whitfield, J.; McKintosh, E.; Beck, J.; Mead, S.; Thomas, D.J.; Alpers, M.P. Kuru in the 21st century—An acquired human prion disease with very long incubation periods. Lancet 2006, 367, 2068–2074. [Google Scholar] [CrossRef]
- Hilton, D.A. Pathogenesis and prevalence of variant creutzfeldt-jakob disease. J. Pathol. 2006, 208, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, M.; Dittmar, K.; Llorens, F.; Gelpi, E.; Ferrer, I.; Schulz-Schaeffer, W.J.; Zerr, I. Hereditary human prion diseases: An update. Mol. Neurobiol. 2017, 54, 4138–4149. [Google Scholar] [CrossRef] [PubMed]
- Will, R.G.; Ironside, J.W. Sporadic and infectious human prion diseases. Cold Spring Harb. Perspect. Med. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Westergard, L.; Christensen, H.M.; Harris, D.A. The cellular prion protein (prp(c)): Its physiological function and role in disease. Biochim. Biophys. Acta 2007, 1772, 629–644. [Google Scholar] [CrossRef] [PubMed]
- Riek, R.; Hornemann, S.; Wider, G.; Glockshuber, R.; Wuthrich, K. NMR characterization of the full-length recombinant murine prion protein, mPrP(23-231). FEBS Lett. 1997, 413, 282–288. [Google Scholar] [CrossRef]
- Meyer, R.K.; McKinley, M.P.; Bowman, K.A.; Braunfeld, M.B.; Barry, R.A.; Prusiner, S.B. Separation and properties of cellular and scrapie prion proteins. Proc. Natl. Acad. Sci. USA 1986, 83, 2310–2314. [Google Scholar] [CrossRef] [PubMed]
- Cohen, F.E.; Prusiner, S.B. Pathologic conformations of prion proteins. Annu. Rev. Biochem. 1998, 67, 793–819. [Google Scholar] [CrossRef] [PubMed]
- Safar, J.; Roller, P.P.; Gajdusek, D.C.; Gibbs, C.J., Jr. Thermal stability and conformational transitions of scrapie amyloid (prion) protein correlate with infectivity. Protein Sci. 1993, 2, 2206–2216. [Google Scholar] [CrossRef] [PubMed]
- Erana, H.; Castilla, J. The architecture of prions: How understanding would provide new therapeutic insights. Swiss Med. Wkly. 2016, 146, w14354. [Google Scholar] [PubMed]
- Bruce, M.E.; Fraser, H. Scrapie strain variation and its implications. Curr. Top. Microbiol. Immunol. 1991, 172, 125–138. [Google Scholar] [PubMed]
- Bruce, M.E. Tse strain variation. Br. Med. Bull. 2003, 66, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Prusiner, S.B.; Scott, M.; Foster, D.; Pan, K.M.; Groth, D.; Mirenda, C.; Torchia, M.; Yang, S.L.; Serban, D.; Carlson, G.A.; et al. Transgenetic studies implicate interactions between homologous prp isoforms in scrapie prion replication. Cell 1990, 63, 673–686. [Google Scholar] [CrossRef]
- Gajdusek, C.; Gibbs, C.; Alpers, M. Experimental transmission of kuru-like syndrome to chimpanzees. Nature 1966, 209, 794–796. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, C.J., Jr.; Gajdusek, D.C.; Asher, D.M.; Alpers, M.P.; Beck, E.; Daniel, P.M.; Matthews, W.B. Creutzfeldt-jakob disease (spongiform encephalopathy): Transmission to the chimpanzee. Science 1968, 161, 388–389. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.F.; Desbruslais, M.; Joiner, S.; Sidle, K.C.; Gowland, I.; Collinge, J.; Doey, L.J.; Lantos, P. The same prion strain causes vcjd and bse. Nature 1997, 389, 448–450. [Google Scholar] [CrossRef] [PubMed]
- Chandler, R.L. Encephalopathy in mice produced by inoculation with scrapie brain material. Lancet 1961, 1, 1378–1379. [Google Scholar] [CrossRef]
- Scott, M.; Foster, D.; Mirenda, C.; Serban, D.; Coufal, F.; Walchli, M.; Torchia, M.; Groth, D.; Carlson, G.; DeArmond, S.J.; et al. Transgenic mice expressing hamster prion protein produce species-specific scrapie infectivity and amyloid plaques. Cell 1989, 59, 847–857. [Google Scholar] [CrossRef]
- Asante, E.A.; Linehan, J.M.; Desbruslais, M.; Joiner, S.; Gowland, I.; Wood, A.L.; Welch, J.; Hill, A.F.; Lloyd, S.E.; Wadsworth, J.D.; et al. Bse prions propagate as either variant cjd-like or sporadic cjd-like prion strains in transgenic mice expressing human prion protein. EMBO J. 2002, 21, 6358–6366. [Google Scholar] [CrossRef] [PubMed]
- Groschup, M.H.; Buschmann, A. Rodent models for prion diseases. Vet. Res. 2008, 39, 32. [Google Scholar] [CrossRef] [PubMed]
- Priola, S.A. Prion protein and species barriers in the transmissible spongiform encephalopathies. Biomed. Pharmacother 1999, 53, 27–33. [Google Scholar] [CrossRef]
- Krauss, S.; Vorberg, I. Prions ex vivo: What cell culture models tell us about infectious proteins. Int. J. Cell Biol. 2013, 2013, 704546. [Google Scholar] [CrossRef] [PubMed]
- Race, R.E.; Fadness, L.H.; Chesebro, B. Characterization of scrapie infection in mouse neuroblastoma cells. J. Gen. Virol. 1987, 68 Pt 5, 1391–1399. [Google Scholar] [CrossRef] [PubMed]
- Mahal, S.P.; Baker, C.A.; Demczyk, C.A.; Smith, E.W.; Julius, C.; Weissmann, C. Prion strain discrimination in cell culture: The cell panel assay. Proc. Natl. Acad. Sci. USA 2007, 104, 20908–20913. [Google Scholar] [CrossRef] [PubMed]
- Vilette, D.; Andreoletti, O.; Archer, F.; Madelaine, M.F.; Vilotte, J.L.; Lehmann, S.; Laude, H. Ex vivo propagation of infectious sheep scrapie agent in heterologous epithelial cells expressing ovine prion protein. Proc. Natl. Acad. Sci. USA 2001, 98, 4055–4059. [Google Scholar] [CrossRef] [PubMed]
- Hornemann, S.; Korth, C.; Oesch, B.; Riek, R.; Wider, G.; Wuthrich, K.; Glockshuber, R. Recombinant full-length murine prion protein, mPrP(23231): Purification and spectroscopic characterization. FEBS Lett. 1997, 413, 277–281. [Google Scholar] [CrossRef]
- Legname, G.; Baskakov, I.V.; Nguyen, H.O.; Riesner, D.; Cohen, F.E.; DeArmond, S.J.; Prusiner, S.B. Synthetic mammalian prions. Science 2004, 305, 673–676. [Google Scholar] [CrossRef] [PubMed]
- Deleault, N.R.; Harris, B.T.; Rees, J.R.; Supattapone, S. Formation of native prions from minimal components in vitro. Proc. Natl. Acad. Sci. USA 2007, 104, 9741–9746. [Google Scholar] [CrossRef] [PubMed]
- Bocharova, O.V.; Breydo, L.; Salnikov, V.V.; Gill, A.C.; Baskakov, I.V. Synthetic prions generated in vitro are similar to a newly identified subpopulation of prpsc from sporadic creutzfeldt-jakob disease. Protein Sci. 2005, 14, 1222–1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legname, G.; Nguyen, H.O.; Baskakov, I.V.; Cohen, F.E.; Dearmond, S.J.; Prusiner, S.B. Strain-specified characteristics of mouse synthetic prions. Proc. Natl. Acad. Sci. USA 2005, 102, 2168–2173. [Google Scholar] [CrossRef] [PubMed]
- Chu, N.K.; Becker, C.F. Semisynthesis of membrane-attached prion proteins. Methods Enzymol. 2009, 462, 177–193. [Google Scholar] [PubMed]
- Kim, J.I.; Cali, I.; Surewicz, K.; Kong, Q.; Raymond, G.J.; Atarashi, R.; Race, B.; Qing, L.; Gambetti, P.; Caughey, B.; et al. Mammalian prions generated from bacterially expressed prion protein in the absence of any mammalian cofactors. J. Biol. Chem. 2010, 285, 14083–14087. [Google Scholar] [CrossRef] [PubMed]
- Colby, D.W.; Wain, R.; Baskakov, I.V.; Legname, G.; Palmer, C.G.; Nguyen, H.O.; Lemus, A.; Cohen, F.E.; DeArmond, S.J.; Prusiner, S.B. Protease-sensitive synthetic prions. PLoS Pathog. 2010, 6, e1000736. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, X.; Yuan, C.G.; Ma, J. Generating a prion with bacterially expressed recombinant prion protein. Science 2010, 327, 1132–1135. [Google Scholar] [CrossRef] [PubMed]
- Elezgarai, S.R.; Fernández-Borges, N.; Erana, H.; Sevillano, A.; Moreno, J.; Harrathi, C.; Saá, P.; Gil, D.; Kong, Q.; Requena, J.R.; et al. Generation of a new infectious recombinant prion: A model to understand gerstmann–sträussler–scheinker syndrome. Sci Rep. 2017, 7, 9584. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Borges, N.; Di Bari, M.A.; Eraña, H.; Sánchez-Martín, M.A.; Pirisinu, L.; Parra, B.; Elezgarai, S.R.; Vanni, I.; López-Moreno, R.; Vaccari, G.; et al. De novo generation of a variety of different infectious recombinant prion strains. Acta Neuropathol. 2017. Submitted. [Google Scholar]
- Gibbs, C.J., Jr.; Gajdusek, D.C. Transmission of scrapie to the cynomolgus monkey (Macaca fascicularis). Nature 1972, 236, 73–74. [Google Scholar] [CrossRef] [PubMed]
- Bedecs, K. Cell culture models to unravel prion protein function and aberrancies in prion diseases. Methods Mol. Biol. 2008, 459, 1–20. [Google Scholar] [PubMed]
- Deleault, N.R.; Piro, J.R.; Walsh, D.J.; Wang, F.; Ma, J.; Geoghegan, J.C.; Supattapone, S. Isolation of phosphatidylethanolamine as a solitary cofactor for prion formation in the absence of nucleic acids. Proc. Natl. Acad. Sci. USA 2012, 109, 8546–8551. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.R.; Qin, K.; Herms, J.W.; Madlung, A.; Manson, J.; Strome, R.; Fraser, P.E.; Kruck, T.; von Bohlen, A.; Schulz-Schaeffer, W.; et al. The cellular prion protein binds copper in vivo. Nature 1997, 390, 684–687. [Google Scholar] [CrossRef] [PubMed]
- Hijazi, N.; Shaked, Y.; Rosenmann, H.; Ben-Hur, T.; Gabizon, R. Copper binding to prpc may inhibit prion disease propagation. Brain Res. 2003, 993, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Sigurdsson, E.M.; Brown, D.R.; Alim, M.A.; Scholtzova, H.; Carp, R.; Meeker, H.C.; Prelli, F.; Frangione, B.; Wisniewski, T. Copper chelation delays the onset of prion disease. J. Biol. Chem. 2003, 278, 46199–46202. [Google Scholar] [CrossRef] [PubMed]
- Hornshaw, M.P.; McDermott, J.R.; Candy, J.M.; Lakey, J.H. Copper binding to the N-terminal tandem repeat region of mammalian and avian prion protein: Structural studies using synthetic peptides. Biochem. Biophys. Res. Commun. 1995, 214, 993–999. [Google Scholar] [CrossRef] [PubMed]
- Burns, C.S.; Aronoff-Spencer, E.; Legname, G.; Prusiner, S.B.; Antholine, W.E.; Gerfen, G.J.; Peisach, J.; Millhauser, G.L. Copper coordination in the full-length, recombinant prion protein. Biochemistry 2003, 42, 6794–6803. [Google Scholar] [CrossRef] [PubMed]
- Wong, E.; Thackray, A.M.; Bujdoso, R. Copper induces increased beta-sheet content in the scrapie-susceptible ovine prion protein prpvrq compared with the resistant allelic variant prparr. Biochem. J. 2004, 380, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Bocharova, O.V.; Breydo, L.; Salnikov, V.V.; Baskakov, I.V. Copper(ii) inhibits in vitro conversion of prion protein into amyloid fibrils. Biochemistry 2005, 44, 6776–6787. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Yin, S.; Pham, N.; Wong, P.; Kang, S.C.; Petersen, R.B.; Li, C.; Sy, M.S. Ligand binding promotes prion protein aggregation—Role of the octapeptide repeats. FEBS J. 2008, 275, 5564–5575. [Google Scholar] [CrossRef] [PubMed]
- Martins, S.M.; Frosoni, D.J.; Martinez, A.M.; De Felice, F.G.; Ferreira, S.T. Formation of soluble oligomers and amyloid fibrils with physical properties of the scrapie isoform of the prion protein from the c-terminal domain of recombinant murine prion protein mPrP-(121-231). J. Biol. Chem. 2006, 281, 26121–26128. [Google Scholar] [CrossRef] [PubMed]
- Groveman, B.R.; Dolan, M.A.; Taubner, L.M.; Kraus, A.; Wickner, R.B.; Caughey, B. Parallel in-register intermolecular beta-sheet architectures for prion-seeded prion protein (PrP) amyloids. J. Biol. Chem. 2014, 289, 24129–24142. [Google Scholar] [CrossRef] [PubMed]
- Corsaro, A.; Thellung, S.; Villa, V.; Nizzari, M.; Aceto, A.; Florio, T. Recombinant human prion protein fragment 90–231, a useful model to study prion neurotoxicity. OMICS 2012, 16, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Ironside, J.W.; Head, M.W. Biology and neuropathology of prion diseases. Handb. Clin. Neurol. 2008, 89, 779–797. [Google Scholar] [PubMed]
- Ghetti, B.; Tagliavini, F.; Takao, M.; Bugiani, O.; Piccardo, P. Hereditary prion protein amyloidoses. Clin. Lab. Med. 2003, 23, 65–85. [Google Scholar] [CrossRef]
- Kraus, A.; Anson, K.J.; Raymond, L.D.; Martens, C.; Groveman, B.R.; Dorward, D.W.; Caughey, B. Prion protein prolines 102 and 105 and the surrounding lysine cluster impede amyloid formation. J. Biol. Chem. 2015, 290, 21510–21522. [Google Scholar] [CrossRef] [PubMed]
- Wadsworth, J.D.; Asante, E.A.; Desbruslais, M.; Linehan, J.M.; Joiner, S.; Gowland, I.; Welch, J.; Stone, L.; Lloyd, S.E.; Hill, A.F.; et al. Human prion protein with valine 129 prevents expression of variant cjd phenotype. Science 2004, 306, 1793–1796. [Google Scholar] [CrossRef] [PubMed]
- Pham, N.; Yin, S.; Yu, S.; Wong, P.; Kang, S.C.; Li, C.; Sy, M.S. Normal cellular prion protein with a methionine at position 129 has a more exposed helix 1 and is more prone to aggregate. Biochem. Biophys. Res. Commun. 2008, 368, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.C.; Hope, J.; McBride, P.A.; McConnell, I.; Selfridge, J.; Melton, D.W.; Manson, J.C. Mice with gene targetted prion protein alterations show that prnp, sinc and prni are congruent. Nat. Genet. 1998, 18, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Cortez, L.M.; Kumar, J.; Renault, L.; Young, H.S.; Sim, V.L. Mouse prion protein polymorphism phe-108/val-189 affects the kinetics of fibril formation and the response to seeding: Evidence for a two-step nucleation polymerization mechanism. J. Biol. Chem. 2013, 288, 4772–4781. [Google Scholar] [CrossRef] [PubMed]
- Canello, T.; Engelstein, R.; Moshel, O.; Xanthopoulos, K.; Juanes, M.E.; Langeveld, J.; Sklaviadis, T.; Gasset, M.; Gabizon, R. Methionine sulfoxides on prpsc: A prion-specific covalent signature. Biochemistry 2008, 47, 8866–8873. [Google Scholar] [CrossRef] [PubMed]
- Canello, T.; Frid, K.; Gabizon, R.; Lisa, S.; Friedler, A.; Moskovitz, J.; Gasset, M.; Gabizon, R. Oxidation of helix-3 methionines precedes the formation of pk resistant prp. PLoS Pathog. 2010, 6, e1000977. [Google Scholar] [CrossRef] [PubMed]
- Requena, J.R.; Dimitrova, M.N.; Legname, G.; Teijeira, S.; Prusiner, S.B.; Levine, R.L. Oxidation of methionine residues in the prion protein by hydrogen peroxide. Arch. Biochem. Biophys. 2004, 432, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Breydo, L.; Bocharova, O.V.; Makarava, N.; Salnikov, V.V.; Anderson, M.; Baskakov, I.V. Methionine oxidation interferes with conversion of the prion protein into the fibrillar proteinase k-resistant conformation. Biochemistry 2005, 44, 15534–15543. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, X.; Orru, C.D.; Groveman, B.R.; Surewicz, K.; Abskharon, R.; Imamura, M.; Yokoyama, T.; Kim, Y.S.; Vander Stel, K.J.; et al. Self-propagating, protease-resistant, recombinant prion protein conformers with or without in vivo pathogenicity. PLoS Pathog. 2017, 13, e1006491. [Google Scholar] [CrossRef] [PubMed]
- Safar, J.; Wille, H.; Itri, V.; Groth, D.; Serban, H.; Torchia, M.; Cohen, F.E.; Prusiner, S.B. Eight prion strains have prp(sc) molecules with different conformations. Nat. Med. 1998, 4, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Timmes, A.G.; Moore, R.A.; Fischer, E.R.; Priola, S.A. Recombinant prion protein refolded with lipid and rna has the biochemical hallmarks of a prion but lacks in vivo infectivity. PLoS ONE 2013, 8, e71081. [Google Scholar] [CrossRef] [PubMed]
- Barron, R.M.; King, D.; Jeffrey, M.; McGovern, G.; Agarwal, S.; Gill, A.C.; Piccardo, P. Prp aggregation can be seeded by pre-formed recombinant prp amyloid fibrils without the replication of infectious prions. Acta Neuropathol. 2016, 132, 611–624. [Google Scholar] [CrossRef] [PubMed]
- Makarava, N.; Kovacs, G.G.; Savtchenko, R.; Alexeeva, I.; Budka, H.; Rohwer, R.G.; Baskakov, I.V. Genesis of mammalian prions: From non-infectious amyloid fibrils to a transmissible prion disease. PLoS Pathog. 2011, 7, e1002419. [Google Scholar] [CrossRef] [PubMed]
- Ghaemmaghami, S.; Colby, D.W.; Nguyen, H.O.; Hayashi, S.; Oehler, A.; DeArmond, S.J.; Prusiner, S.B. Convergent replication of mouse synthetic prion strains. Am. J. Pathol. 2013, 182, 866–874. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, F.; Wang, X.; Zhang, Z.; Xu, Y.; Yu, G.; Yuan, C.; Ma, J. Comparison of 2 synthetically generated recombinant prions. Prion 2014, 8, 215–220. [Google Scholar] [CrossRef]
- Deleault, N.R.; Walsh, D.J.; Piro, J.R.; Wang, F.; Wang, X.; Ma, J.; Rees, J.R.; Supattapone, S. Cofactor molecules maintain infectious conformation and restrict strain properties in purified prions. Proc. Natl. Acad. Sci. USA 2012, 109, E1938–E1946. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.B.; Wang, D.W.; Wang, F.; Noble, G.P.; Ma, J.; Woods, V.L., Jr.; Li, S.; Supattapone, S. Cofactor molecules induce structural transformation during infectious prion formation. Structure 2013, 21, 2061–2068. [Google Scholar] [CrossRef] [PubMed]
- Supattapone, S. Elucidating the role of cofactors in mammalian prion propagation. Prion 2014, 8, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Supattapone, S. Synthesis of high titer infectious prions with cofactor molecules. J. Biol. Chem. 2014, 289, 19850–19854. [Google Scholar] [CrossRef] [PubMed]
- Noble, G.P.; Wang, D.W.; Walsh, D.J.; Barone, J.R.; Miller, M.B.; Nishina, K.A.; Li, S.; Supattapone, S. A structural and functional comparison between infectious and non-infectious autocatalytic recombinant prp conformers. PLoS Pathog. 2015, 11, e1005017. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.K.; Cali, I.; Surewicz, K.; Kong, Q.; Gambetti, P.; Surewicz, W.K. Amyloid fibrils from the n-terminal prion protein fragment are infectious. Proc. Natl. Acad. Sci. USA 2016, 113, 13851–13856. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Fernandez, E.; Vos, M.R.; Afanasyev, P.; Cebey, L.; Sevillano, A.M.; Vidal, E.; Rosa, I.; Renault, L.; Ramos, A.; Peters, P.J.; et al. The structural architecture of an infectious mammalian prion using electron cryomicroscopy. PLoS Pathog. 2016, 12, e1005835. [Google Scholar] [CrossRef] [PubMed]
- Julien, O.; Chatterjee, S.; Thiessen, A.; Graether, S.P.; Sykes, B.D. Differential stability of the bovine prion protein upon urea unfolding. Protein Sci. 2009, 18, 2172–2182. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Udgaonkar, J.B. Dissection of conformational conversion events during prion amyloid fibril formation using hydrogen exchange and mass spectrometry. J. Mol. Biol. 2013, 425, 3510–3521. [Google Scholar] [CrossRef] [PubMed]
- Muller, H.; Brener, O.; Andreoletti, O.; Piechatzek, T.; Willbold, D.; Legname, G.; Heise, H. Progress towards structural understanding of infectious sheep prp-amyloid. Prion 2014, 8, 344–358. [Google Scholar] [CrossRef] [PubMed]
- Collins, S.; Boyd, A.; Fletcher, A.; Gonzales, M.F.; McLean, C.A.; Masters, C.L. Recent advances in the pre-mortem diagnosis of creutzfeldt-jakob disease. J. Clin. Neurosci. 2000, 7, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Farquhar, C.F.; Dornan, J.; Somerville, R.A.; Tunstall, A.M.; Hope, J. Effect of sinc genotype, agent isolate and route of infection on the accumulation of protease-resistant prp in non-central nervous system tissues during the development of murine scrapie. J. Gen. Virol. 1994, 75 Pt 3, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Farquhar, C.F.; Dornan, J.; Moore, R.C.; Somerville, R.A.; Tunstall, A.M.; Hope, J. Protease-resistant prp deposition in brain and non-central nervous system tissues of a murine model of bovine spongiform encephalopathy. J. Gen. Virol. 1996, 77 Pt 8, 1941–1946. [Google Scholar] [CrossRef] [PubMed]
- Fraser, H.; Dickinson, A.G. Pathogenesis of scrapie in the mouse: The role of the spleen. Nature 1970, 226, 462–463. [Google Scholar] [CrossRef] [PubMed]
- Fraser, H.; Dickinson, A.G. Studies of the lymphoreticular system in the pathogenesis of scrapie: The role of spleen and thymus. J. Comp. Pathol. 1978, 88, 563–573. [Google Scholar] [CrossRef]
- Zanusso, G.; Monaco, S.; Pocchiari, M.; Caughey, B. Advanced tests for early and accurate diagnosis of creutzfeldt-jakob disease. Nat. Rev. Neurol. 2016, 12, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.; Rohwer, R.G.; Dunstan, B.C.; MacAuley, C.; Gajdusek, D.C.; Drohan, W.N. The distribution of infectivity in blood components and plasma derivatives in experimental models of transmissible spongiform encephalopathy. Transfusion 1998, 38, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Reichl, H.; Balen, A.; Jansen, C.A. Prion transmission in blood and urine: What are the implications for recombinant and urinary-derived gonadotrophins? Hum. Reprod. 2002, 17, 2501–2508. [Google Scholar] [CrossRef] [PubMed]
- Ward, H.J.; MacKenzie, J.M.; Llewelyn, C.A.; Knight, R.S.; Hewitt, P.E.; Connor, N.; Molesworth, A.; Will, R.G. Variant creutzfeldt-jakob disease and exposure to fractionated plasma products. Vox Sang. 2009, 97, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Bonda, D.J.; Manjila, S.; Mehndiratta, P.; Khan, F.; Miller, B.R.; Onwuzulike, K.; Puoti, G.; Cohen, M.L.; Schonberger, L.B.; Cali, I. Human prion diseases: Surgical lessons learned from iatrogenic prion transmission. Neurosurg. Focus 2016, 41, E10. [Google Scholar] [CrossRef] [PubMed]
- Moda, F.; Gambetti, P.; Notari, S.; Concha-Marambio, L.; Catania, M.; Park, K.W.; Maderna, E.; Suardi, S.; Haik, S.; Brandel, J.P.; et al. Prions in the urine of patients with variant creutzfeldt-jakob disease. N. Engl. J. Med. 2014, 371, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Foutz, A.; Appleby, B.S.; Hamlin, C.; Liu, X.; Yang, S.; Cohen, Y.; Chen, W.; Blevins, J.; Fausett, C.; Wang, H.; et al. Diagnostic and prognostic value of human prion detection in cerebrospinal fluid. Ann. Neurol. 2017, 81, 79–92. [Google Scholar] [CrossRef] [PubMed]
- Zobeley, E.; Flechsig, E.; Cozzio, A.; Enari, M.; Weissmann, C. Infectivity of scrapie prions bound to a stainless steel surface. Mol. Med. 1999, 5, 240–243. [Google Scholar] [PubMed]
- Flechsig, E.; Hegyi, I.; Enari, M.; Schwarz, P.; Collinge, J.; Weissmann, C. Transmission of scrapie by steel-surface-bound prions. Mol. Med. 2001, 7, 679–684. [Google Scholar] [PubMed]
- Edgeworth, J.A.; Farmer, M.; Sicilia, A.; Tavares, P.; Beck, J.; Campbell, T.; Lowe, J.; Mead, S.; Rudge, P.; Collinge, J.; et al. Detection of prion infection in variant creutzfeldt-jakob disease: A blood-based assay. Lancet 2011, 377, 487–493. [Google Scholar] [CrossRef]
- Edgeworth, J.A.; Jackson, G.S.; Clarke, A.R.; Weissmann, C.; Collinge, J. Highly sensitive, quantitative cell-based assay for prions adsorbed to solid surfaces. Proc. Natl. Acad. Sci. USA 2009, 106, 3479–3483. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, E.B.; Edgeworth, J.A.; Thomas, C.; Collinge, J.; Jackson, G.S. Preclinical detection of infectivity and disease-specific prp in blood throughout the incubation period of prion disease. Sci. Rep. 2015, 5, 17742. [Google Scholar] [CrossRef] [PubMed]
- Saa, P.; Castilla, J.; Soto, C. Ultra-efficient replication of infectious prions by automated protein misfolding cyclic amplification. J. Biol. Chem. 2006, 281, 35245–35252. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Borges, N.; Erana, H.; Elezgarai, S.R.; Harrathi, C.; Venegas, V.; Castilla, J. A quick method to evaluate the effect of the amino acid sequence in the misfolding proneness of the prion protein. In Prions: Methods and Protocols; Lawson, V.A., Ed.; Springer: New York, NY, USA, 2017. [Google Scholar]
- Atarashi, R.; Moore, R.A.; Sim, V.L.; Hughson, A.G.; Dorward, D.W.; Onwubiko, H.A.; Priola, S.A.; Caughey, B. Ultrasensitive detection of scrapie prion protein using seeded conversion of recombinant prion protein. Nat. Methods 2007, 4, 645–650. [Google Scholar] [CrossRef] [PubMed]
- Zaman, M.H. Misfolding dynamics of human prion protein. Mol. Cell. Biomech. 2005, 2, 179–190. [Google Scholar] [PubMed]
- Colby, D.W.; Zhang, Q.; Wang, S.; Groth, D.; Legname, G.; Riesner, D.; Prusiner, S.B. Prion detection by an amyloid seeding assay. Proc. Natl. Acad. Sci. USA 2007, 104, 20914–20919. [Google Scholar] [CrossRef] [PubMed]
- Atarashi, R.; Wilham, J.M.; Christensen, L.; Hughson, A.G.; Moore, R.A.; Johnson, L.M.; Onwubiko, H.A.; Priola, S.A.; Caughey, B. Simplified ultrasensitive prion detection by recombinant prp conversion with shaking. Nat. Methods 2008, 5, 211–212. [Google Scholar] [CrossRef] [PubMed]
- Wilham, J.M.; Orru, C.D.; Bessen, R.A.; Atarashi, R.; Sano, K.; Race, B.; Meade-White, K.D.; Taubner, L.M.; Timmes, A.; Caughey, B. Rapid end-point quantitation of prion seeding activity with sensitivity comparable to bioassays. PLoS Pathog. 2010, 6, e1001217. [Google Scholar] [CrossRef] [PubMed]
- McGuire, L.I.; Peden, A.H.; Orru, C.D.; Wilham, J.M.; Appleford, N.E.; Mallinson, G.; Andrews, M.; Head, M.W.; Caughey, B.; Will, R.G.; et al. Real time quaking-induced conversion analysis of cerebrospinal fluid in sporadic creutzfeldt-jakob disease. Ann. Neurol. 2012, 72, 278–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peden, A.H.; McGuire, L.I.; Appleford, N.E.; Mallinson, G.; Wilham, J.M.; Orru, C.D.; Caughey, B.; Ironside, J.W.; Knight, R.S.; Will, R.G.; et al. Sensitive and specific detection of sporadic creutzfeldt-jakob disease brain prion protein using real-time quaking-induced conversion. J. Gen. Virol. 2012, 93, 438–449. [Google Scholar] [CrossRef] [PubMed]
- Sano, K.; Satoh, K.; Atarashi, R.; Takashima, H.; Iwasaki, Y.; Yoshida, M.; Sanjo, N.; Murai, H.; Mizusawa, H.; Schmitz, M.; et al. Early detection of abnormal prion protein in genetic human prion diseases now possible using real-time quic assay. PLoS ONE 2013, 8, e54915. [Google Scholar] [CrossRef] [PubMed]
- Orru, C.D.; Hughson, A.G.; Race, B.; Raymond, G.J.; Caughey, B. Time course of prion seeding activity in cerebrospinal fluid of scrapie-infected hamsters after intratongue and intracerebral inoculations. J. Clin. Microbiol. 2012, 50, 1464–1466. [Google Scholar] [CrossRef] [PubMed]
- Orru, C.D.; Groveman, B.R.; Raymond, L.D.; Hughson, A.G.; Nonno, R.; Zou, W.; Ghetti, B.; Gambetti, P.; Caughey, B. Bank vole prion protein as an apparently universal substrate for rt-quic-based detection and discrimination of prion strains. PLoS Pathog. 2015, 11, e1004983. [Google Scholar]
- Dassanayake, R.P.; Orru, C.D.; Hughson, A.G.; Caughey, B.; Graca, T.; Zhuang, D.; Madsen-Bouterse, S.A.; Knowles, D.P.; Schneider, D.A. Sensitive and specific detection of classical scrapie prions in the brains of goats by real-time quaking-induced conversion. J. Gen. Virol. 2016, 97, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Haley, N.J.; Siepker, C.; Walter, W.D.; Thomsen, B.V.; Greenlee, J.J.; Lehmkuhl, A.D.; Richt, J.A. Antemortem detection of chronic wasting disease prions in nasal brush collections and rectal biopsy specimens from white-tailed deer by real-time quaking-induced conversion. J. Clin. Microbiol. 2016, 54, 1108–1116. [Google Scholar] [CrossRef] [PubMed]
- Bessen, R.A.; Shearin, H.; Martinka, S.; Boharski, R.; Lowe, D.; Wilham, J.M.; Caughey, B.; Wiley, J.A. Prion shedding from olfactory neurons into nasal secretions. PLoS Pathog. 2010, 6, e1000837. [Google Scholar] [CrossRef] [PubMed]
- Orru, C.D.; Bongianni, M.; Tonoli, G.; Ferrari, S.; Hughson, A.G.; Groveman, B.R.; Fiorini, M.; Pocchiari, M.; Monaco, S.; Caughey, B.; et al. A test for creutzfeldt-jakob disease using nasal brushings. N. Engl. J. Med. 2014, 371, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Giles, K.; Olson, S.H.; Prusiner, S.B. Developing therapeutics for prp prion diseases. Cold Spring Harb. Perspect. Med. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Caughey, B.; Race, R.E. Potent inhibition of scrapie-associated prp accumulation by congo red. J. Neurochem. 1992, 59, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Margalith, I.; Suter, C.; Ballmer, B.; Schwarz, P.; Tiberi, C.; Sonati, T.; Falsig, J.; Nystrom, S.; Hammarstrom, P.; Aslund, A.; et al. Polythiophenes inhibit prion propagation by stabilizing prion protein (prp) aggregates. J. Biol. Chem. 2012, 287, 18872–18887. [Google Scholar] [CrossRef] [PubMed]
- Korth, C.; May, B.C.; Cohen, F.E.; Prusiner, S.B. Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc. Natl. Acad. Sci. USA 2001, 98, 9836–9841. [Google Scholar] [CrossRef] [PubMed]
- Cortez, L.M.; Campeau, J.; Norman, G.; Kalayil, M.; Van der Merwe, J.; McKenzie, D.; Sim, V.L. Bile acids reduce prion conversion, reduce neuronal loss, and prolong male survival in models of prion disease. J. Virol. 2015, 89, 7660–7672. [Google Scholar] [CrossRef] [PubMed]
- Dinkel, K.D.; Stanton, J.B.; Boykin, D.W.; Stephens, C.E.; Madsen-Bouterse, S.A.; Schneider, D.A. Antiprion activity of db772 and related monothiophene- and furan-based analogs in a persistently infected ovine microglia culture system. Antimicrob. Agents Chemother. 2016, 60, 5467–5482. [Google Scholar] [CrossRef] [PubMed]
- Barret, A.; Tagliavini, F.; Forloni, G.; Bate, C.; Salmona, M.; Colombo, L.; De Luigi, A.; Limido, L.; Suardi, S.; Rossi, G.; et al. Evaluation of quinacrine treatment for prion diseases. J. Virol. 2003, 77, 8462–8469. [Google Scholar] [CrossRef] [PubMed]
- Haik, S.; Brandel, J.P.; Salomon, D.; Sazdovitch, V.; Delasnerie-Laupretre, N.; Laplanche, J.L.; Faucheux, B.A.; Soubrie, C.; Boher, E.; Belorgey, C.; et al. Compassionate use of quinacrine in creutzfeldt-jakob disease fails to show significant effects. Neurology 2004, 63, 2413–2415. [Google Scholar] [CrossRef] [PubMed]
- Collinge, J.; Gorham, M.; Hudson, F.; Kennedy, A.; Keogh, G.; Pal, S.; Rossor, M.; Rudge, P.; Siddique, D.; Spyer, M.; et al. Safety and efficacy of quinacrine in human prion disease (prion-1 study): A patient-preference trial. Lancet Neurol. 2009, 8, 334–344. [Google Scholar] [CrossRef]
- Pollera, C.; Carcassola, G.; Ponti, W.; Poli, G. Development of in vitro cell cultures for the evaluation of molecules with antiprionic activity. Vet. Res. Commun 2003, 27 (Suppl. S1), 719–721. [Google Scholar] [CrossRef] [PubMed]
- Priola, S.A.; Raines, A.; Caughey, W.S. Porphyrin and phthalocyanine antiscrapie compounds. Science 2000, 287, 1503–1506. [Google Scholar] [CrossRef] [PubMed]
- Nicoll, A.J.; Trevitt, C.R.; Tattum, M.H.; Risse, E.; Quarterman, E.; Ibarra, A.A.; Wright, C.; Jackson, G.S.; Sessions, R.B.; Farrow, M.; et al. Pharmacological chaperone for the structured domain of human prion protein. Proc. Natl. Acad. Sci. USA 2010, 107, 17610–17615. [Google Scholar] [CrossRef] [PubMed]
- Massignan, T.; Cimini, S.; Stincardini, C.; Cerovic, M.; Vanni, I.; Elezgarai, S.R.; Moreno, J.; Stravalaci, M.; Negro, A.; Sangiovanni, V.; et al. A cationic tetrapyrrole inhibits toxic activities of the cellular prion protein. Sci. Rep. 2016, 6, 23180. [Google Scholar] [CrossRef] [PubMed]
- Vieira, T.C.; Cordeiro, Y.; Caughey, B.; Silva, J.L. Heparin binding confers prion stability and impairs its aggregation. FASEB J. 2014, 28, 2667–2676. [Google Scholar] [CrossRef] [PubMed]
- Kocisko, D.A.; Bertholet, N.; Moore, R.A.; Caughey, B.; Vaillant, A. Identification of prion inhibitors by a fluorescence-polarization-based competitive binding assay. Anal. Biochem. 2007, 363, 154–156. [Google Scholar] [CrossRef] [PubMed]
- Risse, E.; Nicoll, A.J.; Taylor, W.A.; Wright, D.; Badoni, M.; Yang, X.; Farrow, M.A.; Collinge, J. Identification of a compound that disrupts binding of amyloid-beta to the prion protein using a novel fluorescence-based assay. J. Biol. Chem. 2015, 290, 17020–17028. [Google Scholar] [CrossRef] [PubMed]
- Frostell-Karlsson, A.; Reameus, A.; Roos, H.; Andersson, K.; Borg, P.; Hämäläinen, M.; Karlsson, R. Biosensor analysis of the interaction between immobilized human serum albumin and drug compounds for prediction of human serum albumin binding levels. J. Med. Chem. 2000, 43, 1986–1992. [Google Scholar] [CrossRef] [PubMed]
- Kawatake, S.; Nishimura, Y.; Sakaguchi, S.; Iwaki, T.; Doh-ura, K. Surface plasmon resonance analysis for the screening of anti-prion compounds. Biol. Pharm. Bull. 2006, 29, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Breydo, L.; Bocharova, O.V.; Baskakov, I.V. Semiautomated cell-free conversion of prion protein: Applications for high-throughput screening of potential antiprion drugs. Anal. Biochem. 2005, 339, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Hyeon, J.W.; Kim, S.Y.; Lee, S.M.; Lee, J.; An, S.S.; Lee, M.K.; Lee, Y.S. Anti-prion screening for acridine, dextran, and tannic acid using real time-quaking induced conversion: A comparison with prpsc-infected cell screening. PLoS ONE 2017, 12, e0170266. [Google Scholar] [CrossRef] [PubMed]
- Bertsch, U.; Winklhofer, K.F.; Hirschberger, T.; Bieschke, J.; Weber, P.; Hartl, F.U.; Tavan, P.; Tatzelt, J.; Kretzschmar, H.A.; Giese, A. Systematic identification of antiprion drugs by high-throughput screening based on scanning for intensely fluorescent targets. J. Virol. 2005, 79, 7785–7791. [Google Scholar] [CrossRef] [PubMed]
- White, M.D.; Farmer, M.; Mirabile, I.; Brandner, S.; Collinge, J.; Mallucci, G.R. Single treatment with rnai against prion protein rescues early neuronal dysfunction and prolongs survival in mice with prion disease. Proc. Natl. Acad. Sci. USA 2008, 105, 10238–10243. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Zhan, Y.A.; Abskharon, R.; Xiao, X.; Martinez, M.C.; Zhou, X.; Kneale, G.; Mikol, J.; Lehmann, S.; Surewicz, W.K.; et al. Recombinant human prion protein inhibits prion propagation in vitro. Sci. Rep. 2013, 3, 2911. [Google Scholar] [CrossRef] [PubMed]
- Skinner, P.J.; Kim, H.O.; Bryant, D.; Kinzel, N.J.; Reilly, C.; Priola, S.A.; Ward, A.E.; Goodman, P.A.; Olson, K.; Seelig, D.M. Treatment of prion disease with heterologous prion proteins. PLoS ONE 2015, 10, e0131993. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.L.; Jiang, H.Y.; Zhang, J.; Han, J.; Nie, K.; Zhou, X.B.; Huang, Y.X.; Chen, L.; Zhou, W.; Zhang, B.Y.; et al. Preparation of monoclonal antibodies against prion proteins with full-length hamster prp. Biomed. Environ. Sci. 2005, 18, 273–280. [Google Scholar] [PubMed]
- Ishibashi, D.; Yamanaka, H.; Yamaguchi, N.; Yoshikawa, D.; Nakamura, R.; Okimura, N.; Yamaguchi, Y.; Shigematsu, K.; Katamine, S.; Sakaguchi, S. Immunization with recombinant bovine but not mouse prion protein delays the onset of disease in mice inoculated with a mouse-adapted prion. Vaccine 2007, 25, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Bruce, M.; Chree, A.; McConnell, I.; Foster, J.; Pearson, G.; Fraser, H. Transmission of bovine spongiform encephalopathy and scrapie to mice: Strain variation and the species barrier. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1994, 343, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Bartz, J.C.; McKenzie, D.I.; Bessen, R.A.; Marsh, R.F.; Aiken, J.M. Transmissible mink encephalopathy species barrier effect between ferret and mink: Prp gene and protein analysis. J. Gen. Virol. 1994, 75 Pt 11, 2947–2953. [Google Scholar] [CrossRef] [PubMed]
- Caughey, B.; Raymond, G.J.; Bessen, R.A. Strain-dependent differences in beta-sheet conformations of abnormal prion protein. J. Biol. Chem. 1998, 273, 32230–32235. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Borges, N.; de Castro, J.; Castilla, J. In vitro studies of the transmission barrier. Prion 2009, 3, 220–223. [Google Scholar] [CrossRef] [PubMed]
- Castilla, J.; Morales, R.; Saa, P.; Barria, M.; Gambetti, P.; Soto, C. Cell-free propagation of prion strains. EMBO J. 2008, 27, 2557–2566. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.I.; Surewicz, K.; Gambetti, P.; Surewicz, W.K. The role of glycophosphatidylinositol anchor in the amplification of the scrapie isoform of prion protein in vitro. FEBS Lett. 2009, 583, 3671–3675. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.I.; Yang, Q.; Perrier, V.; Baskakov, I.V. The dominant-negative effect of the q218k variant of the prion protein does not require protein X. Protein Sci. 2007, 16, 2166–2173. [Google Scholar] [CrossRef] [PubMed]
- Seelig, D.M.; Goodman, P.A.; Skinner, P.J. Potential approaches for heterologous prion protein treatment of prion diseases. Prion 2016, 10, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Espinoza, R.; Morales, R.; Concha-Marambio, L.; Moreno-Gonzalez, I.; Moda, F.; Soto, C. Treatment with a non-toxic, self-replicating anti-prion delays or prevents prion disease in vivo. Mol. Psychiatry 2017. [Google Scholar] [CrossRef] [PubMed]
- Williamson, R.A.; Peretz, D.; Smorodinsky, N.; Bastidas, R.; Serban, H.; Mehlhorn, I.; DeArmond, S.J.; Prusiner, S.B.; Burton, D.R. Circumventing tolerance to generate autologous monoclonal antibodies to the prion protein. Proc. Natl. Acad. Sci. USA 1996, 93, 7279–7282. [Google Scholar] [CrossRef] [PubMed]
- Prusiner, S.B.; Groth, D.; Serban, A.; Koehler, R.; Foster, D.; Torchia, M.; Burton, D.; Yang, S.L.; DeArmond, S.J. Ablation of the prion protein (prp) gene in mice prevents scrapie and facilitates production of anti-prp antibodies. Proc. Natl. Acad. Sci. USA 1993, 90, 10608–10612. [Google Scholar] [CrossRef] [PubMed]
- Gilch, S.; Wopfner, F.; Renner-Muller, I.; Kremmer, E.; Bauer, C.; Wolf, E.; Brem, G.; Groschup, M.H.; Schatzl, H.M. Polyclonal anti-prp auto-antibodies induced with dimeric prp interfere efficiently with prpsc propagation in prion-infected cells. J. Biol. Chem. 2003, 278, 18524–18531. [Google Scholar] [CrossRef] [PubMed]
- Sigurdsson, E.M.; Brown, D.R.; Daniels, M.; Kascsak, R.J.; Kascsak, R.; Carp, R.; Meeker, H.C.; Frangione, B.; Wisniewski, T. Immunization delays the onset of prion disease in mice. Am. J. Pathol. 2002, 161, 13–17. [Google Scholar] [CrossRef]
- White, A.R.; Enever, P.; Tayebi, M.; Mushens, R.; Linehan, J.; Brandner, S.; Anstee, D.; Collinge, J.; Hawke, S. Monoclonal antibodies inhibit prion replication and delay the development of prion disease. Nature 2003, 422, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Xanthopoulos, K.; Lagoudaki, R.; Kontana, A.; Kyratsous, C.; Panagiotidis, C.; Grigoriadis, N.; Yiangou, M.; Sklaviadis, T. Immunization with recombinant prion protein leads to partial protection in a murine model of tses through a novel mechanism. PLoS ONE 2013, 8, e59143. [Google Scholar] [CrossRef] [PubMed]
- Zahn, R.; von Schroetter, C.; Wuthrich, K. Human prion proteins expressed in escherichia coli and purified by high-affinity column refolding. FEBS Lett. 1997, 417, 400–404. [Google Scholar] [CrossRef]
TSE Research Area | Breakthrough | Reference |
---|---|---|
Molecular mechanisms | Production of highly pure bacterially-expressed recombinant PrP | [168] |
Determination of the 3D structure of cellular PrP | [21] | |
Generation of the first infectious recombinant prions | [42] | |
Generation of the first recombinant prions infectious in wild type animals | [49] | |
Generation of the first highly infectious recombinant prions | [54] | |
Interaction of PrP with copper confirmed | [59] | |
N-terminal of PrP not necessary for misfolding | [63,64,65] | |
Confirmation of increased misfolding proneness due to disease-associated mutations | [50,68] | |
Generation of the first human infectious recombinant prions | [50] | |
Confirmation of different misfolding proneness in polymorphic PrPs | [69,70,71] | |
Description of possible mechanisms of strain generation and adaptation | [51,82] | |
Description of the role of cofactors in the determination of biological properties | [47,49,51,55,78] | |
Generation of models for 3D structure of recombinant misfolded PrP | [64,89,90] | |
Diagnosis | Development of PMCA based on rec-PrP for diagnosis from CSF | [113] |
Development of RT-QUIC for diagnosis from different body fluids and tissue samples | [99,122,126,135] | |
Screening | Development high-throughput screening methods | [144,145,147] |
Therapy | Demonstration of dominant-negative effect of exogenous rec-PrP on the propagation of prions | [149,150] |
Immunotherapy based on injection of rec-PrP | [151,152] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charco, J.M.; Eraña, H.; Venegas, V.; García-Martínez, S.; López-Moreno, R.; González-Miranda, E.; Pérez-Castro, M.Á.; Castilla, J. Recombinant PrP and Its Contribution to Research on Transmissible Spongiform Encephalopathies. Pathogens 2017, 6, 67. https://doi.org/10.3390/pathogens6040067
Charco JM, Eraña H, Venegas V, García-Martínez S, López-Moreno R, González-Miranda E, Pérez-Castro MÁ, Castilla J. Recombinant PrP and Its Contribution to Research on Transmissible Spongiform Encephalopathies. Pathogens. 2017; 6(4):67. https://doi.org/10.3390/pathogens6040067
Chicago/Turabian StyleCharco, Jorge M., Hasier Eraña, Vanessa Venegas, Sandra García-Martínez, Rafael López-Moreno, Ezequiel González-Miranda, Miguel Ángel Pérez-Castro, and Joaquín Castilla. 2017. "Recombinant PrP and Its Contribution to Research on Transmissible Spongiform Encephalopathies" Pathogens 6, no. 4: 67. https://doi.org/10.3390/pathogens6040067
APA StyleCharco, J. M., Eraña, H., Venegas, V., García-Martínez, S., López-Moreno, R., González-Miranda, E., Pérez-Castro, M. Á., & Castilla, J. (2017). Recombinant PrP and Its Contribution to Research on Transmissible Spongiform Encephalopathies. Pathogens, 6(4), 67. https://doi.org/10.3390/pathogens6040067