Differential Helicobacter pylori Plasticity in the Gastric Niche of Subjects at Increased Gastric Cancer Risk
Abstract
:1. Introduction
2. Results
2.1. Patients Characteristics
2.2. H. pylori Putative Virulent Gene Load in the Gastric Niche
2.3. Association Between H. pylori Virulence Factors within H. pylori Subtypes
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Endoscopy and H. pylori Culture and Identification
4.3. Histological Study
4.4. Genomic DNA Extraction
4.5. PCR-Based Virulent Gene Profiling
4.6. Definitions and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Blaser, M.J.; Atherton, J.C. Helicobacter pylori persistence: Biology and disease. J. Clin. Investig. 2004, 113, 321–333. [Google Scholar] [CrossRef]
- Atherton, J.C.; Blaser, M.J. Coadaptation of Helicobacter pylori and humans: Ancient history, modern implications. J. Clin. Investig. 2009, 119, 2475–2487. [Google Scholar] [CrossRef] [PubMed]
- IARC. Infection with Helicobacter pylori. Monogr. Eval. Carcinog. Risks Hum. 1994, 61, 177–240. [Google Scholar]
- Parkin, D.M. The global health burden of infection-associated cancers in the year 2002. Int. J. Cancer 2006, 118, 3030–3044. [Google Scholar] [CrossRef]
- Correa, P.; Piazuelo, M.B. The gastric precancerous cascade. J. Dig. Dis. 2012, 13, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Cover, T.L.; Blaser, M.J. Helicobacter pylori in health and disease. Gastroenterology 2009, 136, 1863–1873. [Google Scholar] [CrossRef] [PubMed]
- Saberi, S.; Douraghi, M.; Azadmanesh, K.; Shokrgozar, M.A.; Zeraati, H.; Hosseini, M.E.; Mohagheghi, M.A.; Parsaeian, M.; Mohammadi, M. A potential association between Helicobacter pylori CagA EPIYA and multimerization motifs with cytokeratin 18 cleavage rate during early apoptosis. Helicobacter 2012, 17, 350–357. [Google Scholar] [CrossRef]
- Greenfield, L.K.; Jones, N.L. Modulation of autophagy by Helicobacter pylori and its role in gastric carcinogenesis. Trends Microbiol. 2013, 21, 602–612. [Google Scholar] [CrossRef]
- Suerbaum, S.; Josenhans, C. Helicobacter pylori evolution and phenotypic diversification in a changing host. Nat. Rev. Microbiol. 2007, 5, 441–452. [Google Scholar] [CrossRef]
- Plummer, M.; van Doorn, L.J.; Franceschi, S.; Kleter, B.; Canzian, F.; Vivas, J.; Lopez, G.; Colin, D.; Muñoz, N.; Kato, I. Helicobacter pylori cytotoxin-associated genotype and gastric precancerous lesions. J. Natl. Cancer Inst. 2007, 99, 1328–1334. [Google Scholar] [CrossRef] [PubMed]
- González, C.A.; Figueiredo, C.; Lic, C.B.; Ferreira, R.M.; Pardo, M.L.; Ruiz Liso, J.M.; Alonso, P.; Sala, N.; Capella, G.; Sanz-Anquela, J.M. Helicobacter pylori cagA and vacA genotypes as predictors of progression of gastric preneoplastic lesions: A long-term follow-up in a high-risk area in Spain. Am. J. Gastroenterol. 2011, 106, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Figura, N.; Marano, L.; Moretti, E.; Ponzetto, A. Helicobacter pylori infection and gastric carcinoma: Not all the strains and patients are alike. World J. Gastrointest. Oncol. 2016, 8, 40–54. [Google Scholar] [CrossRef]
- Figura, N.; Valassina, M.; Moretti, E.; Vindigni, C.; Collodel, G.; Iacoponi, F.; Giordano, N.; Roviello, F.; Marrelli, D. Histological variety of gastric carcinoma and Helicobacter pylori cagA and vacA polymorphism. Eur. J. Gastroenterol. Hepatol. 2015, 27, 1017–1021. [Google Scholar] [CrossRef] [PubMed]
- Repetto, O.; Zanussi, S.; Casarotto, M.; Canzonieri, V.; De Paoli, P.; Cannizzaro, R.; De Re, V. Differential proteomics of Helicobacter pylori associated with autoimmune atrophic gastritis. Mol. Med. 2014, 20, 57–71. [Google Scholar] [CrossRef]
- Bernardini, G.; Figura, N.; Ponzetto, A.; Marzocchi, B.; Santucci, A. Application of proteomics to the study of Helicobacter pylori and implications for the clinic. Expert Rev. Proteom. 2017, 14, 477–490. [Google Scholar] [CrossRef]
- Karita, M.; Blaser, M.J. Acid-tolerance response in Helicobacter pylori and differences between cagA+ and cagA- strains. J. Infect. Dis. 1998, 178, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Suerbaum, S.; Michetti, P. Helicobacter pylori infection. N. Engl. J. Med. 2002, 347, 1175–1186. [Google Scholar] [CrossRef] [PubMed]
- Figura, N.; Trabalzini, L.; Mini, R.; Bernardini, G.; Scaloni, A.; Talamo, F.; Lusini, P.; Ferro, E.; Martelli, P.; Santucci, A. Inactivation of Helicobacter pylori cagA gene affects motility. Helicobacter 2004, 9, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Basaglia, G.; Sperandio, P.; Tomasini, M.L.; Calzavara, S.S.; Giordari, F.; De Paoli, P. Analysis of antimicrobial susceptibility and virulence factors in Helicobacter pylori clinical isolates. J. Chemother. 2004, 16, 504–506. [Google Scholar] [CrossRef]
- De Paoli, P.; Tomasini, M.L.; Basaglia, G. The predictive value of Helicobacter pylori in-vitro metronidazole resistance. Clin. Microbiol. Infect. 2004, 10, 1105–1106. [Google Scholar] [CrossRef]
- Tomasini, M.L.; Zanussi, S.; Sozzi, M.; Tedeschi, R.; Basaglia, G.; De Paoli, P. Heterogeneity of cag genotypes in Helicobacter pylori isolates from human biopsy specimens. J. Clin. Microbiol. 2003, 41, 976–980. [Google Scholar] [CrossRef] [PubMed]
- Sozzi, M.; Crosatti, M.; Kim, S.K.; Romero, J.; Blaser, M.J. Heterogeneity of Helicobacter pylori cag genotypes in experimentally infected mice. FEMS Microbiol. Lett. 2001, 203, 109–114. [Google Scholar] [CrossRef]
- Sozzi, M.; Valentini, M.; Figura, N.; De Paoli, P.; Tedeschi, R.M.; Gloghini, A.; Serraino, D.; Poletti, M.; Carbone, A. Atrophic gastritis and intestinal metaplasia in Helicobacter pylori infection: The role of CagA status. Am. J. Gastroenterol. 1998, 93, 375–379. [Google Scholar] [CrossRef] [PubMed]
- Sozzi, M.; Tomasini, M.L.; Vindigni, C.; Zanussi, S.; Tedeschi, R.; Basaglia, G.; Figura, N.; De Paoli, P. Heterogeneity of cag genotypes and clinical outcome of Helicobacter pylori infection. J. Lab. Clin. Med. 2005, 146, 26–70. [Google Scholar] [CrossRef] [PubMed]
- Wroblewski, L.E.; Peek, R.M., Jr.; Wilson, K.T. Helicobacter pylori and gastric cancer: Factors that modulate disease risk. Clin. Microbiol. Rev. 2010, 23, 713–739. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.; Jones, K.R.; Olsen, C.H.; Joo, Y.M.; Yoo, Y.J.; Chung, I.S.; Cha, J.H.; Merrell, D.S. Epidemiological link between gastric disease and polymorphisms in VacA and CagA. J. Clin. Microbiol. 2010, 48, 559–567. [Google Scholar] [CrossRef]
- Cover, T.L.; Tummuru, M.K.; Cao, P.; Thompson, S.A.; Blaser, M.J. Divergence of genetic sequences for the vacuolating cytotoxin among Helicobacter pylori strains. J. Biol. Chem. 1994, 269, 10566–10573. [Google Scholar]
- Rhead, J.L.; Letley, D.P.; Mohammadi, M.; Hussein, N.; Mohagheghi, M.A.; Eshagh Hosseini, M.; Atherton, J.C. A new Helicobacter pylori vacuolating cytotoxin determinant, the intermediate region, is associated with gastric cancer. Gastroenterology 2007, 133, 926–936. [Google Scholar] [CrossRef] [PubMed]
- Basso, D.; Zambon, C.F.; Letley, D.P.; Stranges, A.; Marchet, A.; Rhead, J.L.; Schiavon, S.; Guariso, G.; Ceroti, M.; Nitti, D.; et al. Clinical relevance of Helicobacter pylori cagA and vacA gene polymorphisms. Gastroenterology 2008, 135, 91–99. [Google Scholar] [CrossRef]
- Fahimi, F.; Tohidkia, M.R.; Fouladi, M.; Aghabeygi, R.; Samadi, N.; Omidi, Y. Pleiotropic cytotoxicity of VacA toxin in host cells and its impact on immunotherapy. Bioimpacts 2017, 7, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Oleastro, M.; Cordeiro, R.; Ferrand, J.; Nunes, B.; Lehours, P.; Carvalho-Oliveira, I.; Mendes, A.I.; Penque, D.; Monteiro, L.; Mégraud, F.; et al. Evaluation of the clinical significance of homB, a novel candidate marker of Helicobacter pylori strains associated with peptic ulcer disease. J. Infect. Dis. 2008, 198, 1379–1387. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.W.; Sugimoto, M.; Graham, D.Y.; Yamaoka, Y. homB status of Helicobacter pylori as a novel marker to distinguish gastric cancer from duodenal ulcer. J. Clin. Microbiol. 2009, 47, 3241–3245. [Google Scholar] [CrossRef]
- Talebi Bezmin Abadi, A.; Rafiei, A.; Ajami, A.; Hosseini, V.; Taghvaei, T.; Jones, K.R.; Merrell, D.S. Helicobacter pylori homB, but not cagA, is associated with gastric cancer in Iran. J. Clin. Microbiol. 2011, 49, 3191–3197. [Google Scholar] [CrossRef]
- Oleastro, M.; Monteiro, L.; Lehours, P.; Mégraud, F.; Ménard, A. Identification of markers for Helicobacter pylori strains isolated from children with peptic ulcer disease by suppressive subtractive hybridization. Infect. Immun. 2006, 74, 4064–4074. [Google Scholar] [CrossRef]
- Atherton, J.C. The pathogenesis of Helicobacter pylori-induced gastro-duodenal diseases. Annu. Rev. Pathol. 2006, 1, 63–96. [Google Scholar] [CrossRef] [PubMed]
- Mommersteeg, M.C.; Yu, J.; Peppelenbosch, M.P.; Fuhler, G.M. Genetic host factors in Helicobacter pylori-induced carcinogenesis: Emerging new paradigms. Biochim. Biophys. Acta 2018, 1869, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Fero, J.B.; Mendez, M.; Carpenter, B.M.; Servetas, S.L.; Rahman, A.; Goldman, M.D.; Boren, T.; Salama, N.R.; Merrell, D.S.; et al. Analysis of a single Helicobacter pylori strain over a 10-year period in a primate model. Int. J. Med. Microbiol. 2015, 305, 392–403. [Google Scholar] [CrossRef] [PubMed]
- Thompson, L.J.; Danon, S.J.; Wilson, J.E.; O’Rourke, J.L.; Salama, N.R.; Falkow, S.; Mitchell, H.; Lee, A. Chronic Helicobacter pylori infection with Sydney strain 1 and a newly identified mouse-adapted strain (Sydney strain 2000) in C57BL/6 and BALB/c mice. Infect. Immun. 2004, 72, 4668–4679. [Google Scholar] [CrossRef]
- Brenner, H.; Arndt, V.; Stürmer, T.; Stegmaier, C.; Ziegler, H.; Dhom, G. Individual and joint contribution of family history and Helicobacter pylori infection to the risk of gastric carcinoma. Cancer 2000, 88, 274–279. [Google Scholar] [CrossRef]
- Toh, B.H. Diagnosis and classification of autoimmune gastritis. Autoimmun. Rev. 2014, 13, 459–462. [Google Scholar] [CrossRef]
- Yaghoobi, M.; Bijarchi, R.; Narod, S.A. Family history and the risk of gastric cancer. Br. J. Cancer 2010, 102, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Stec-Michalska, K.; Peczek, L.; Michalski, B.; Wisniewska-Jarosinska, M.; Krakowiak, A.; Nawrot, B. Helicobacter pylori infection and family history of gastric cancer decrease expression of FHIT tumor suppressor gene in gastric mucosa of dyspeptic patients. Helicobacter 2009, 14, 126–134. [Google Scholar] [CrossRef]
- Siavoshi, F.; Asgharzadeh, A.; Ghadiri, H.; Massarrat, S.; Latifi-Navid, S.; Zamani, M. Helicobacter pylori genotypes and types of gastritis in first-degree relatives of gastric cancer patients. Int. J. Med. Microbiol. 2011, 301, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, D.M.; Silva, C.I.; Goncalves, M.H.; Braga-Neto, M.B.; Fialho, A.B.; Fialho, A.M.; Rocha, G.A.; Rocha, A.M.; Batista, S.A.; Guerrant, R.L.; et al. Higher frequency of cagA EPIYA-C phosphorylation sites in H. pylori strains from first-degree relatives of gastric cancer patients. BMC Gastroenterol. 2012, 12, 107. [Google Scholar] [CrossRef] [PubMed]
- Marcos-Pinto, R.; Dinis-Ribeiro, M.; Carneiro, F.; Wen, X.; Lopes, C.; Figueiredo, C.; Machado, J.C.; Ferreira, R.M.; Reis, C.A.; Canedo, P.; et al. First-degree relatives of early-onset gastric cancer patients show a high risk for gastric cancer: Phenotype and genotype profile. Virchows Arch. 2013, 463, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Venerito, M.; Radünz, M.; Reschke, K.; Reinhold, D.; Frauenschläger, K.; Jechorek, D.; Di Mario, F.; Malfertheiner, P. Autoimmune gastritis in autoimmune thyroid disease. Aliment. Pharmacol. Ther. 2015, 41, 686–693. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Weck, M.N.; Schöttker, B.; Rothenbacher, D.; Brenner, H. Gastric parietal cell antibodies, Helicobacter pylori infection, and chronic atrophic gastritis: Evidence from a large population-based study in Germany. Cancer Epidemiol. Biomark. Prev. 2013, 22, 821–826. [Google Scholar] [CrossRef]
- Yadegar, A.; Alebouyeh, M.; Zali, M.R. Analysis of the intactness of Helicobacter pylori cag pathogenicity island in Iranian strains by a new PCR-based strategy and its relationship with virulence genotypes and EPIYA motifs. Infect. Genet. Evol. 2015, 35, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Khatoon, J.; Prasad, K.N.; Prakash Rai, R.; Ghoshal, U.C.; Krishnani, N. Association of heterogenicity of Helicobacter pylori cag pathogenicity island with peptic ulcer diseases and gastric cancer. Br. J. Biomed. Sci. 2017, 74, 121–126. [Google Scholar] [CrossRef]
- Achtman, M.; Azuma, T.; Berg, D.E.; Ito, Y.; Morelli, G.; Pan, Z.J.; Suerbaum, S.; Thompson, S.A.; van der Ende, A.; van Doorn, L.J. Recombination and clonal groupings within Helicobacter pylori from different geographical regions. Mol. Microbiol. 1999, 32, 459–470. [Google Scholar] [CrossRef]
- Parsonnet, J.; Friedman, G.D.; Orentreich, N.; Vogelman, H. Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection. Gut 1997, 40, 297–301. [Google Scholar] [CrossRef]
- Queiroz, D.M.; Mendes, E.N.; Rocha, G.A.; Oliveira, A.M.; Oliveira, C.A.; Magalhães, P.P.; Moura, S.B.; Cabral, M.M.; Nogueira, A.M. cagA-positive Helicobacter pylori and risk for developing gastric carcinoma in Brazil. Int. J. Cancer 1998, 78, 135–139. [Google Scholar] [CrossRef]
- Torres, J.; Pérez-Pérez, G.I.; Leal-Herrera, Y.; Muñoz, O. Infection with CagA+ Helicobacter pylori strains as a possible predictor of risk in the development of gastric adenocarcinoma in Mexico. Int. J. Cancer 1998, 78, 298–300. [Google Scholar] [CrossRef]
- Miehlke, S.; Kirsch, C.; Agha-Amiri, K.; Günther, T.; Lehn, N.; Malfertheiner, P.; Stolte, M.; Ehninger, G.; Bayerdörffer, E. The Helicobacter pylori vacA s1, m1 genotype and cagA is associated with gastric carcinoma in Germany. Int. J. Cancer 2000, 87, 322–327. [Google Scholar] [CrossRef]
- Sheikh, A.F.; Yadyad, M.J.; Goodarzi, H.; Hashemi, S.J.; Aslani, S.; Assarzadegan, M.A.; Ranjbar, R. CagA and vacA allelic combination of Helicobacter pylori in gastroduodenal disorders. Microb. Pathog. 2018, 122, 144–150. [Google Scholar] [CrossRef]
- Kang, J.; Jones, K.R.; Jang, S.; Olsen, C.H.; Yoo, Y.J.; Merrell, D.S.; Cha, J.H. The geographic origin of Helicobacter pylori influences the association of the homB gene with gastric cancer. J. Clin. Microbiol. 2012, 50, 1082–1085. [Google Scholar] [CrossRef]
- Kauser, F.; Khan, A.A.; Hussain, M.A.; Carroll, I.M.; Ahmad, N.; Tiwari, S.; Shouche, Y.; Das, B.; Alam, M.; Ali, S.M.; et al. The cag pathogenicity island of Helicobacter pylori is disrupted in the majority of patient isolates from different human populations. J. Clin. Microbiol. 2004, 42, 5302–5308. [Google Scholar] [CrossRef] [PubMed]
- Kennemann, L.; Didelot, X.; Aebischer, T.; Kuhn, S.; Drescher, B.; Droege, M.; Reinhardt, R.; Correa, P.; Meyer, T.F.; Josenhans, C.; et al. Helicobacter pylori genome evolution during human infection. Proc. Natl. Acad. Sci. USA 2011, 108, 5033–5038. [Google Scholar] [CrossRef] [PubMed]
- Motta, C.R.; Cunha, M.P.; Queiroz, D.M.; Cruz, F.W.; Guerra, E.J.; Mota, R.M.; Braga, L.L. Gastric precancerous lesions and Helicobacter pylori infection in relatives of gastric cancer patients from Northeastern Brazil. Digestion 2008, 78, 3–8. [Google Scholar] [CrossRef]
- Rokkas, T.; Sechopoulos, P.; Pistiolas, D.; Margantinis, G.; Koukoulis, G. Helicobacter pylori infection and gastric histology in first-degree relatives of gastric cancer patients: A meta-analysis. Eur. J. Gastroenterol. Hepatol. 2010, 22, 1128–1133. [Google Scholar] [CrossRef]
- Liao, J.; Wen, S.; Cao, L.; Zhou, Y.; Feng, Z. Effect of eradication of Helicobacter pylori on expression levels of FHIT, IL-8 and P73 in gastric mucosa of first-degree relatives of gastric cancer patients. PLoS ONE 2015, 10, e0124576. [Google Scholar] [CrossRef]
- Vilkin, A.; Levi, Z.; Morgenstern, S.; Shmuely, H.; Gal, E.; Hadad, B.; Hardi, B.; Niv, Y. Higher gastric mucin secretion and lower gastric acid output in first-degree relatives of gastric cancer patients. J. Clin. Gastroenterol. 2008, 42, 36–41. [Google Scholar] [CrossRef]
- Murphy, G.; Dawsey, S.M.; Engels, E.A.; Ricker, W.; Parsons, R.; Etemadi, A.; Lin, S.W.; Abnet, C.C.; Freedman, N.D. Cancer risk after pernicious anemia in the US elderly population. Clin. Gastroenterol. Hepatol. 2015, 13, 2282–2289.e4. [Google Scholar] [CrossRef]
- Mahmud, N.; Stashek, K.; Katona, B.W.; Tondon, R.; Shroff, S.G.; Roses, R.; Furth, E.E.; Metz, D.C. The incidence of neoplasia in patients with autoimmune metaplastic atrophic gastritis: A renewed call for surveillance. Ann. Gastroenterol. 2019, 32, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Annibale, B.; Lahner, E.; Negrini, R.; Baccini, F.; Bordi, C.; Monarca, B.; Delle Fave, G. Lack of specific association between gastric autoimmunity hallmarks and clinical presentations of atrophic body gastritis. World J. Gastroenterol. 2005, 11, 5351–5357. [Google Scholar] [CrossRef] [PubMed]
- Rugge, M.; Fassan, M.; Pizzi, M.; Zorzetto, V.; Maddalo, G.; Realdon, S.; De Bernard, M.; Betterle, C.; Cappellesso, R.; Pennelli, G.; et al. Autoimmune gastritis: Histology phenotype and OLGA staging. Aliment. Pharmacol. Ther. 2012, 35, 1460–1466. [Google Scholar] [CrossRef] [PubMed]
- Presotto, F.; Sabini, B.; Cecchetto, A.; Plebani, M.; De Lazzari, F.; Pedini, B.; Betterle, C. Helicobacter pylori infection and gastric autoimmune diseases: Is there a link? Helicobacter 2003, 8, 578–584. [Google Scholar] [CrossRef]
- Minalyan, A.; Benhammou, J.N.; Artashesyan, A.; Lewis, M.S.; Pisegna, J.R. Autoimmune atrophic gastritis: Current perspectives. Clin. Exp. Gastroenterol. 2017, 10, 19–27. [Google Scholar] [CrossRef]
- Parsons, B.N.; Ijaz, U.Z.; D’Amore, R.; Burkitt, M.D.; Eccles, R.; Lenzi, L.; Duckworth, C.A.; Moore, A.R.; Tiszlavicz, L.; Varro, A.; et al. Comparison of the human gastric microbiota in hypochlorhydric states arising as a result of Helicobacter pylori-induced atrophic gastritis, autoimmune atrophic gastritis and proton pump inhibitor use. PLoS Pathog. 2017, 13, e1006653. [Google Scholar] [CrossRef] [PubMed]
- Klymiuk, I.; Bilgilier, C.; Stadlmann, A.; Thannesberger, J.; Kastner, M.T.; Högenauer, C.; Püspök, A.; Biowski-Frotz, S.; Schrutka-Kölbl, C.; Thallinger, G.G.; et al. The human gastric microbiome is predicated upon infection with Helicobacter pylori. Front. Microbiol. 2017, 8, 2508. [Google Scholar] [CrossRef]
- Adamsson, I.; Edlund, C.; Nord, C.E. Impact of treatment of Helicobacter pylori on the normal gastrointestinal microflora. Clin. Microbiol. Infect. 2000, 6, 175–177. [Google Scholar] [CrossRef] [PubMed]
- Jakobsson, H.; Wreiber, K.; Fall, K.; Fjelstad, B.; Nyrén, O.; Engstrand, L. Macrolide resistance in the normal microbiota after Helicobacter pylori treatment. Scand. J. Infect. Dis. 2007, 39, 757–763. [Google Scholar] [CrossRef] [PubMed]
- Zanussi, S.; Casarotto, M.; Basaglia, G.; Tedeschi, R.; Giacomini, S.; Canzonieri, V.; De Re, V.; Maiero, S.; Cannizzaro, R.; De Paoli, P. Prevalence of Helicobacter pylori infection and its genetic heterogeneity in autoimmune atrophic chronic gastritis patients. Helicobacter 2013, 18 (Suppl. 1), 112–113. [Google Scholar]
- Kraft, C.; Stack, A.; Josenhans, C.; Niehus, E.; Dietrich, G.; Correa, P.; Fox, J.G.; Falush, D.; Suerbaum, S. Genomic changes during chronic Helicobacter pylori infection. J. Bacteriol. 2006, 188, 249–254. [Google Scholar] [CrossRef]
- Lan, R.; Reeves, P.R. Intraspecies variation in bacterial genomes: The need for a species genome concept. Trends Microbiol. 2000, 8, 396–401. [Google Scholar] [CrossRef]
- D’Elios, M.M.; Appelmelk, B.J.; Amedei, A.; Bergman, M.P.; Del Prete, G. Gastric autoimmunity: The role of Helicobacter pylori and molecular mimicry. Trends Mol. Med. 2004, 10, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Amedei, A.; Bergman, M.P.; Appelmelk, B.J.; Azzurri, A.; Benagiano, M.; Tamburini, C.; van der Zee, R.; Telford, J.L.; Vandenbroucke-Grauls, C.M.; D’Elios, M.M.; et al. Molecular mimicry between Helicobacter pylori antigens and H+, K+ --adenosine triphosphatase in human gastric autoimmunity. J. Exp. Med. 2003, 198, 1147–1156. [Google Scholar] [CrossRef]
- Roujeinikova, A. Phospholipid binding residues of eukaryotic membrane-remodelling F-BAR domain proteins are conserved in Helicobacter pylori CagA. BMC Res. Notes 2014, 7, 525. [Google Scholar] [CrossRef] [PubMed]
- Kalim, K.W.; Yang, J.Q.; Li, Y.; Meng, Y.; Zheng, Y.; Guo, F. Reciprocal regulation of glycolysis-driven Th17 pathogenicity and regulatory T cell stability by Cdc42. J. Immunol. 2018, 200, 2313–2326. [Google Scholar] [CrossRef]
- Chmiela, M.; Gonciarz, W. Molecular mimicry in Helicobacter pylori infections. World J. Gastroenterol. 2017, 23, 3964–3977. [Google Scholar] [CrossRef]
- Roy, A.; Ganesh, G.; Sippola, H.; Bolin, S.; Sawesi, O.; Dagälv, A.; Schlenner, S.M.; Feyerabend, T.; Rodewald, H.R.; Kjellén, L.; et al. Mast cell chymase degrades the alarmins heat shock protein 70, biglycan, HMGB1, and interleukin-33 (IL-33) and limits danger-induced inflammation. J. Biol. Chem. 2014, 289, 237–250. [Google Scholar] [CrossRef] [PubMed]
- Lennon, E.M.; Borst, L.B.; Edwards, L.L.; Moeser, A.J. Mast cells exert anti-inflammatory effects in an IL10-/- model of spontaneous colitis. Mediators Inflamm. 2018, 2018, 7817360. [Google Scholar] [CrossRef] [PubMed]
- Zárate-Bladés, C.R.; Horai, R.; Caspi, R.R. Regulation of autoimmunity by the Microbiome. DNA Cell Biol. 2016, 35, 455–458. [Google Scholar] [CrossRef] [PubMed]
- Augustyniak, D.; Majkowska-Skrobek, G.; Roszkowiak, J.; Dorotkiewicz-Jach, A. Defensive and offensive cross-reactive antibodies elicited by pathogens: The good, the bad and the ugly. Curr. Med. Chem. 2017, 24, 4002–4037. [Google Scholar] [CrossRef] [PubMed]
- Gressmann, H.; Linz, B.; Ghai, R.; Pleissner, K.P.; Schlapbach, R.; Yamaoka, Y.; Kraft, C.; Suerbaum, S.; Meyer, T.F.; Achtman, M. Gain and loss of multiple genes during the evolution of Helicobacter pylori. PLoS Genet. 2005, 1, e43. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.D.; Kling-Bäckhed, H.; Giannakis, M.; Xu, J.; Fulton, R.S.; Fulton, L.A.; Cordum, H.S.; Wang, C.; Elliott, G.; Edwards, J.; et al. The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: Evolution during disease progression. Proc. Natl. Acad. Sci. USA 2006, 103, 9999–10004. [Google Scholar] [CrossRef]
- Suzuki, R.; Shiota, S.; Yamaoka, Y. Molecular epidemiology, population genetics, and pathogenic role of Helicobacter pylori. Infect. Genet. Evol. 2012, 12, 203–213. [Google Scholar] [CrossRef]
- Vilaichone, R.K.; Mahacahai, V.; Tumwasorn, S.; Kachintorn, U. CagA genotype and metronidazole resistant strain of Helicobacter pylori in functional dyspepsia in Thailand. J. Gastroenterol. Hepatol. 2011, 26 (Suppl. 3), 46–48. [Google Scholar] [CrossRef]
- Bachir, M.; Allem, R.; Tifrit, A.; Medjekane, M.; Drici, A.E.; Diaf, M.; Douidi, K.T. Primary antibiotic resistance and its relationship with cagA and vacA genes in Helicobacter pylori isolates from Algerian patients. Braz. J. Microbiol. 2018, 49, 544–551. [Google Scholar] [CrossRef]
- Fasciana, T.; Calà, C.; Bonura, C.; Di Carlo, E.; Matranga, D.; Scarpulla, G.; Manganaro, M.; Camilleri, S.; Giammanco, A. Resistance to clarithromycin and genotypes in Helicobacter pylori strains isolated in Sicily. J. Med. Microbiol. 2015, 64, 1408–1414. [Google Scholar] [CrossRef]
- Brennan, D.E.; Dowd, C.; O’Morain, C.; McNamara, D.; Smith, S.M. Can bacterial virulence factors predict antibiotic resistant Helicobacter pylori infection? World J. Gastroenterol. 2018, 24, 971–981. [Google Scholar] [CrossRef]
- Sugimoto, M.; Yamaoka, Y. Virulence factor genotypes of Helicobacter pylori affect cure rates of eradication therapy. Arch. Immunol. Ther. Exp. (Warsz.) 2009, 57, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Wong, B.C.; Wang, W.H.; Berg, D.E.; Fung, F.M.; Wong, K.W.; Wong, W.M.; Lai, K.C.; Cho, C.H.; Hui, W.M.; Lam, S.K. High prevalence of mixed infections by Helicobacter pylori in Hong Kong: Metronidazole sensitivity and overall genotype. Aliment. Pharmacol Ther. 2001, 15, 493–503. [Google Scholar] [CrossRef] [PubMed]
- Ben Mansour, K.; Fendri, C.; Battikh, H.; Garnier, M.; Zribi, M.; Jlizi, A.; Burucoa, C. Multiple and mixed Helicobacter pylori infections: Comparison of two epidemiological situations in Tunisia and France. Infect. Genet. Evol. 2016, 37, 43–48. [Google Scholar] [CrossRef]
- Matteo, M.J.; Armitano, R.I.; Granados, G.; Wonaga, A.D.; Sánches, C.; Olmos, M.; Catalano, M. Helicobacter pylori oipA, vacA and dupA genetic diversity in individual hosts. J. Med. Microbiol. 2010, 59, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, S.; Hu, B.; Zhao, F.; Xiang, P.; Ji, D.; Chen, F.; Liu, X.; Yang, F.; Wu, Y.; et al. Direct detection of Helicobacter pylori in biopsy specimens using a high-throughput multiple genetic detection system. Future Microbiol. 2016, 11, 1521–1534. [Google Scholar] [CrossRef]
- Isenberg, H.D. Clinical Microbiology Procedure Handbook, 2nd ed.; ASM Press, American Society Press for Microbiology: Washington, DC, USA, 2004. [Google Scholar]
- Genta, R.M. Recognizing atrophy: Another step toward a classification of gastritis. Am. J. Surg. Pathol. 1996, 20, S23–S30. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.M.; Andres, S.; Nilsson, C.; Kovach, Z.; Kaakoush, N.O.; Engstrand, L.; Goh, K.L.; Fock, K.M.; Forman, D.; Mitchell, H. The cag PAI is intact and functional but HP0521 varies significantly in Helicobacter pylori isolates from Malaysia and Singapore. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, S.; Patra, R.; Ramamurthy, T.; Chowdhury, A.; Santra, A.; Dhali, G.K.; Bhattacharya, S.K.; Berg, D.E.; Nair, G.B.; Mukhopadhyay, A.K. Multiplex PCR assay for rapid detection and genotyping of Helicobacter pylori directly from biopsy specimens. J. Clin. Microbiol. 2004, 42, 2821–2824. [Google Scholar] [CrossRef]
- Lash, J.G.; Genta, R.M. Adherence to the Sydney System guidelines increases the detection of Helicobacter gastritis and intestinal metaplasia in 400738 sets of gastric biopsies. Aliment. Pharmacol. Ther. 2013, 38, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Malfertheiner, P.; Megraud, F.; O’Morain, C.A.; Gisbert, J.P.; Kuipers, E.J.; Axon, A.T.; Bazzoli, F.; Gasbarrini, A.; Atherton, J.; Graham, D.Y.; et al. European helicobacter and microbiota study group and consensus panel. Management of Helicobacter pylori infection-the Maastricht V/Florence Consensus Report. Gut 2017, 66, 6–30. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, J.L.; Matsumoto, A.; Tanaka, H.; Matsumura, I. Gastric microbiota: An emerging player in Helicobacter pylori-induced gastric malignancies. Cancer Lett. 2018, 414, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.; Bai, C.; Brown, T.D.; Hood, L.E.; Tian, Q. Human gut microbiota and gastrointestinal cancer. Genom. Proteom. Bioinform. 2018, 16, 33–49. [Google Scholar] [CrossRef] [PubMed]
GC | AG | FDR | D † | |
---|---|---|---|---|
N = 39 | N = 14 | N = 25 | N = 13 | |
Females, n (%) | 19 (48.72) | 11 (78.57) | 15 (60.00) | 9 (69.23) |
OR (95% CI) | 0.42 (0.11−1.60) | 1.63 (0.29−9.26) | 0.67 (0.16−2.77) | 1 |
Z-statistic | 1.27 | 0.55 | 0.56 | |
p-value | 0.21 | 0.58 | 0.58 | |
Age ≥ 56 years, n (%) | 29 (74.36) | 5 (35.71) | 8 (32.00) | 7 (53.85) |
OR (95% CI) | 2.49 (0.67−9.18) | 0.48 (0.10−2.23) | 0.40 (0.10−1.60) | 1 |
Z-statistic | 1.37 | 0.94 | 1.29 | |
p-value | 0.17 | 0.35 | 0.20 | |
Activity ≥ 1, n (%) | 32 (82.05) | 11 (78.57) | 23 (92.00) | 8 (61.54) |
OR (95% CI) | 2.86 (0.72−11.41) | 2.29 (0.42−12.50) | 7.19 (1.16−44.65) | 1 |
Z-statistic | 1.49 | 0.98 | 2.12 | |
p-value | 0.14 | 0.34 | 0.03 | |
Inflammation 2-3, n (%) | 20 (51.28) | 6 (42.86) | 19 (76.00) | 10 (76.92) |
OR (95% CI) | 0.32 (0.08−1.33) | 0.23 (0.04−1.19) | 0.95 (0.20−4.63) | 1 |
Z-statistic | 1.57 | 1.75 | 0.06 | |
p-value | 0.12 | 0.08 | 0.95 | |
Atrophy ≥ 1, n (%) | 35 (89.74) | 12 (85.71) | 22 (88.00) | 7 (53.85) |
OR (95% CI) | 7.50 (1.67−33.72) | 5.14 (0.81−32.77) | 6.29 (1.23−31.96) | 1 |
Z-statistic | 2.63 | 1.73 | 2.22 | |
p-value | 0.009 | 0.08 | 0.03 | |
Intestinal metaplasia ≥ 1, n (%) | 19 (48.72) | 3 (21.43) | 5 (20.00) | 4 (30.77) |
OR (95% CI) | 2.14 (0.56−8.12) | 0.61 (0.11−3.49) | 0.56 (0.12−2.60) | 1 |
Z-statistic | 1.12 | 0.55 | 0.74 | |
p-value | 0.26 | 0.58 | 0.46 | |
HP density 2-3, n (%) | 5 (12.82) | 1 (7.14) | 10 (40.00) | 4 (30.77) |
OR (95% CI) | 0.33 (0.07−1.49) | 0.17 (0.02−1.82) | 1.50 (0.36−6.23) | 1 |
Z-statistic | 1.44 | 1.46 | 0.56 | |
p-value | 0.15 | 0.14 | 0.58 |
GC | AG | FDR | D † | |
---|---|---|---|---|
N = 39 | N = 14 | N = 25 | N = 13 | |
CFU with stable CagPAI ≥ 9, n (%) | 36 (92.31) | 4 (28.57) | 12 (48.00) | 5 (38.46) |
OR (95% CI) | 19.20 (3.79−97.36) | 0.64 (0.13−3.20) | 1.48 (0.38−5.79) | 1 |
Z-statistic | 3.57 | 0.54 | 0.56 | |
p-value | 0.0004 | 0.59 | 0.58 | |
CFU with positive cagA ≥ 9, n (%) | 36 (92.31) | 5 (35.71) | 16 (64.00) | 10 (76.92) |
OR (95% CI) | 3.60 (0.63−20.65) | 0.17 (0.03−0.90) | 0.53 (0.12−2.46) | 1 |
Z-statistic | 1.44 | 2.08 | 0.81 | |
p-value | 0.15 | 0.04 | 0.42 | |
CFU with positive cagE ≥ 9, n (%) | 36 (92.31) | 4 (28.57) | 13 (52.00) | 5 (38.46) |
OR (95% CI) | 19.20 (3.79−97.36) | 0.64 (0.13−3.20) | 1.73 (0.44−6.79) | 1 |
Z-statistic | 3.57 | 0.54 | 0.79 | |
p-value | 0.0004 | 0.59 | 0.43 | |
CFU with positive virB11 ≥ 9, n (%) | 37 (94.87) | 6 (42.86) | 17 (68.00) | 8 (61.54) |
OR (95% CI) | 11.56 (1.89−70.59) | 0.38 (0.08−1.86) | 1.06 (0.25−4.60) | 1 |
Z-statistic | 2.65 | 0.97 | 0.40 | |
p-value | 0.008 | 0.33 | 0.69 | |
CFU with vacA s1i1mx ≥ 9, n (%) | 33 (84.62) | 4 (28.57) | 16 (64.00) | 8 (61.54) |
OR (95% CI) | 3.44 (0.83−14.17) | 0.25 (0.05−1.25) | 1.11 (0.28−4.43) | 1 |
Z-statistic | 1.71 | 1.69 | 0.15 | |
p-value | 0.09 | 0.09 | 0.88 | |
CFU with homB ≥ 9, n (%) | 22 (56.41) | 7 (50.00) | 16 (64.00) | 7 (53.85) |
OR (95% CI) | 1.11 (0.31−3.91) | 0.86 (0.19−3.89) | 1.52 (0.39−5.95) | 1 |
Z-statistic | 0.16 | 0.20 | 0.61 | |
p-value | 0.87 | 0.84 | 0.54 | |
Mixed infection, n (%) | 3 (7.69) | 5 (35.71) | 3 (12.00) | 6 (46.15) |
OR (95% CI) | 0.10 (0.02−0.48) | 0.65 (0.14−3.03) | 0.16 (0.03−0.81) | 1 |
Z-statistic | 2.85 | 0.55 | 2.22 | |
p-value | 0.004 | 0.58 | 0.03 |
CFU with CagPAI N (%) | OR (95% CI) | Z * | p-Value | CFU with hom haplotype N (%) | OR (95% CI) | Z * | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Group (CFU N.) | Haplotypes | Unstable | Stable | A | B | ||||||
GC (390) | vacAsxi2m2 | 21 (65.63) | 40 (11.17) | 1 † | 41 (23.98) | 20 (9.13) | 1 † | ||||
vacAs1i1mx | 11 (34.37) | 318 (88.83) | 15.18 (6.82–33.78) | 6.66 | <0.0001 | 130 (76.02) | 199 (90.87) | 3.14 (1.76−5.60) | 3.88 | 0.0001 | |
homA | 12 (37.50) | 159 (44.41) | 1 † | n.a. | n.a. | n.a. | |||||
homB | 20 (62.50) | 199 (55.59) | 0.75 (0.36-1.58) | 0.753 | 0.45 | n.a. | n.a. | n.a. | |||
D (130) | vacAsxi2m2 | 47 (65.28) | 3 (5.17) | 1 † | 10 (19.23) | 40 (51.28) | 1 † | ||||
vacAs1i1mx | 25 (34.72) | 55 (94.83) | 34.47 (9.78–121.42) | 5.51 | <0.001 | 42 (80.77) | 38 (48.72) | 0.23 (0.10−0.51) | 3.55 | 0.0004 | |
homA | 25 (34.72) | 27 (46.55) | 1 † | n.a. | n.a. | n.a. | |||||
homB | 47 (65.28) | 31 (53.45) | 0.61 (0.30–1.24) | 1.37 | 0.17 | n.a. | n.a. | n.a. | |||
FDR (251) | vacAsxi2m2 | 84 (64.62) | 2 (1.65) | 1 † | 62 (74.70) | 24 (14.29) | 1 † | ||||
vacAs1i1mx | 46 (35.38) | 119 (98.35) | 108.65 (25.66–459.99) | 6.37 | <0.0001 | 21 (25.30) | 144 (85.71) | 17.71 (9.18−34.17) | 8.58 | <0.0001 | |
homA | 70 (53.85) | 13 (10.74) | 1 † | n.a. | n.a. | n.a. | |||||
homB | 60 (46.15) | 108 (89.26) | 9.70 (5.00–18.96) | 6.64 | <0.0001 | n.a. | n.a. | n.a. | |||
AG (144) | vacAsxi2m2 | 65 (63.73) | 15 (35.71) | 1 † | 43 (58.90) | 37 (52.11) | 1 † | ||||
vacAs1i1mx | 37 (36.27) | 27 (64.29) | 3.16 (1.50–6.69) | 3.01 | 0.003 | 30 (41.10) | 34 (47.89) | 1.32 (0.68−2.55) | 0.82 | 0.41 | |
homA | 63 (61.76) | 10 (23.81) | 1 † | n.a. | n.a. | n.a. | |||||
homB | 39 (38.24) | 32 (76.19) | 5.17 (2.29–11.67) | 3.95 | 0.0001 | n.a. | n.a. | n.a. |
Group | Highly Virulent Profile N CFU (%) | OR (95% CI) | Z * | p-Value | |
---|---|---|---|---|---|
yes | no | ||||
D | 28 (21.54) | 102 (78.46) | 1 † | ||
AG | 27 (18.75) | 117 (81.25) | 0.84 (0.47−1.52) | 0.58 | 0.57 |
FDR | 107 (42.63) | 144 (57.37) | 2.71 (1.66−4.41) | 4.01 | 0.0001 |
GC | 189 (48.46) | 201 (51.54) | 3.43 (2.16−5.44) | 5.21 | <0.0001 |
Gene | Coordinates † | Primer | Primer sequences (5′ → 3′) | Amplicons Length (bp) | Thermal Conditions | Ref. |
---|---|---|---|---|---|---|
virB11 | 516343–517335 | virB11 (F) virB11 (R) | TTAAATCCTCTAAGGCATGCTAC GATATAAGTCGTTTTACCGCTTC | 491 | 95°C, 3′; 50 x (94°C, 1′; 49°C, 45″; 72°C, 45″); 72°C, 7′ | [21] |
cagE | 538897–541848 | cagE (F) cagE (R) | TTGAAAACTTCAAGGATAGGATAGAGC GCCTAGCGTAATATCACCATTACCC | 508 | 95°C, 3′; 50 x (94°C, 1′; 53°C, 45″; 72°C, 45″); 72°C, 7′ | [21] |
cagA | 543605–547108 | cagA (F) cagA (R) | ATAATGCTAAATTAGACAACTTGAGCGA AGAAACAAAAGCAATACGATCATTC | 128 | 95°C, 3′; 50 x (94°C, 1′; 48°C, 45″; 72°C, 45″); 72°C, 7′ | [21] |
vacA s1/s2 | 900011–903877 | s1/s2 (F) s1/s2 (R) | ATGGAAATACAACAAACACAC CTGCTTGAATGCGCCAAAC | 259/286 | 95°C, 5′; 35 x (95°C, 20″; 52°C, 20″; 72°C, 40″); 72°C, 7′ | [99] ‡ |
vacA m1/m2 | m1/m2 (F) m1/m2 (R) | CAATCTGTCCAATCAAGCGAG GCGTCTAAATAATTCCAAGG | 570/645 | |||
vacA i1 | i1-i2 (F) i1 (R) | GYTGGGAYTGGGGGAAYGCCG TTAATTTAACGCTGTTTGAAG | 426 | 95°C, 5′; 35 x (95°C, 20″; 55°C, 20″; 72°C, 40″); 72°C, 7′ | ||
vacA i2 | i1-i2 (F) i2 (R) | GYTGGGAYTGGGGGAAYGCCG GATCAACGCTCTGATTTGA | 432 | |||
Multiplex for cagA, vacA s/m | 543605–547108 900011–903877 | cagA (F) cagA (R) | ATAATGCTAAATTAGACAACTTGAGCGA AGAAACAAAAGCAATACGATCATTC | 128 | 94°C, 3′; 35 x (94°C, 1′; 55°C, 1′; 72°C, 1′); 72°C, 10′ | [100] |
s1/s2 (F) s1/s2 (R) | ATGGAAATACAACAAACACAC CTGCTTGAATGCGCCAAAC | 259/286 | ||||
m1/m2 (F) m1/m2 (R) | CAATCTGTCCAATCAAGCGAG GCGTCTAAATAATTCCAAGG | 570/645 | ||||
homA/homB | 726428–728401/ 962682–964688 | hom (F) hom (R) | AGAGGGTGTTTGAAACGCTCAATA GGTGAATTCTTCTGCGGTTTG | 128/161 | 95°C, 5′; 35 x (95°C, 30″, 60°C, 30″, 72°C, 17″); 72°C, 7′ | [34] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casarotto, M.; Pratesi, C.; Bidoli, E.; Maiero, S.; Magris, R.; Steffan, A.; Basaglia, G.; Canzonieri, V.; De Re, V.; Cannizzaro, R.; et al. Differential Helicobacter pylori Plasticity in the Gastric Niche of Subjects at Increased Gastric Cancer Risk. Pathogens 2019, 8, 65. https://doi.org/10.3390/pathogens8020065
Casarotto M, Pratesi C, Bidoli E, Maiero S, Magris R, Steffan A, Basaglia G, Canzonieri V, De Re V, Cannizzaro R, et al. Differential Helicobacter pylori Plasticity in the Gastric Niche of Subjects at Increased Gastric Cancer Risk. Pathogens. 2019; 8(2):65. https://doi.org/10.3390/pathogens8020065
Chicago/Turabian StyleCasarotto, Mariateresa, Chiara Pratesi, Ettore Bidoli, Stefania Maiero, Raffaella Magris, Agostino Steffan, Giancarlo Basaglia, Vincenzo Canzonieri, Valli De Re, Renato Cannizzaro, and et al. 2019. "Differential Helicobacter pylori Plasticity in the Gastric Niche of Subjects at Increased Gastric Cancer Risk" Pathogens 8, no. 2: 65. https://doi.org/10.3390/pathogens8020065
APA StyleCasarotto, M., Pratesi, C., Bidoli, E., Maiero, S., Magris, R., Steffan, A., Basaglia, G., Canzonieri, V., De Re, V., Cannizzaro, R., & Zanussi, S. (2019). Differential Helicobacter pylori Plasticity in the Gastric Niche of Subjects at Increased Gastric Cancer Risk. Pathogens, 8(2), 65. https://doi.org/10.3390/pathogens8020065