Efficacy and Safety of Praziquantel for Treatment of Schistosoma mansoni Infection among School Children in Tanzania
Abstract
:1. Introduction
2. Results
2.1. Socio-Demographic and Baseline Characteristics of the Studied Population
2.2. Cure Rate and Egg Reduction Rate
2.3. Treatment-Associated Adverse Events
3. Discussion
4. Materials and Methods
4.1. Ethical Statement
4.2. Study Area
4.3. Study Design and Population
4.4. Data Collection Procedures
4.4.1. Stool Sample Examination: Field and Laboratory Procedures
4.4.2. Estimation of Hemoglobin Concentration and Anthropometric Measurements
4.4.3. Drug Administration and Safety Assessment
4.5. Study Outcomes
4.6. Data Management and Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Adenowo, A.F.; Oyinloye, B.E.; Ogunyinka, B.I.; Kappo, A.P. Impact of human schistosomiasis in sub-Saharan Africa. Braz. J. Infect. Dis. 2015, 19, 196–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hotez, P.J.; Alvarado, M.; Basanez, M.G.; Bolliger, I.; Bourne, R.; Boussinesq, M.; Brooker, S.J.; Brown, A.S.; Buckle, G.; Budke, C.M.; et al. The global burden of disease study 2010: Interpretation and implications for the neglected tropical diseases. PLoS Negl. Trop. Dis. 2014, 8, e2865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Investing to Overcome the Global Impact of Neglected Tropical Diseases; Third WHO Report on Neglected Tropical Diseases; World Health Organization: Geneva, Switzerland, 2015; Available online: https://apps.who.int/iris/bitstream/handle/10665/152781/9789241564861_eng.pdf?sequence=1. (accessed on 6 December 2019).
- Hotez, P.J.; Fenwick, A.; Savioli, L.; Molyneux, D.H. Rescuing the bottom billion through control of neglected tropical diseases. Lancet 2009, 373, 1570–1575. [Google Scholar] [CrossRef]
- Mazigo, H.D. Participatory integrated control strategies and elimination of schistosomiasis in sub-Saharan Africa. Lancet Glob. Health 2019, 7, e998–e999. [Google Scholar] [CrossRef] [Green Version]
- Steinmann, P.; Keiser, J.; Bos, R.; Tanner, M.; Utzinger, J. Schistosomiasis and water resources development: Systematic review, meta-analysis, and estimates of people at risk. Lancet Infect. Dis. 2006, 6, 411–425. [Google Scholar] [CrossRef]
- Kinung’hi, S.M.; Mazigo, H.D.; Dunne, D.W.; Kepha, S.; Kaatano, G.; Kishamawe, C.; Ndokeji, S.; Angelo, T.; Nuwaha, F. Coinfection of intestinal schistosomiasis and malaria and association with haemoglobin levels and nutritional status in school children in Mara region, Northwestern Tanzania: A cross-sectional exploratory study. BMC Res. Notes 2017, 10, 583. [Google Scholar] [CrossRef]
- Hotez, P.J.; Kamath, A. Neglected tropical diseases in sub-saharan Africa: Review of their prevalence, distribution, and disease burden. PLoS Negl. Trop. Dis. 2009, 3, e412. [Google Scholar] [CrossRef]
- Mazigo, H.D.; Nuwaha, F.; Kinung’hi, S.M.; Morona, D.; Pinot de Moira, A.; Wilson, S.; Heukelbach, J.; Dunne, D.W. Epidemiology and control of human schistosomiasis in Tanzania. Parasites Vectors 2012, 5, 274. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Prevention and Control of Schistosomiasis and Soil-Transmitted helminthiasis: Report of a WHO Expert Committee; Technical Report Series 912; World Health Organization: Geneva, Switzerland, 2002; Available online: https://apps.who.int/iris/handle/10665/42588 (accessed on 6 November 2019).
- Gryseels, B.; Mbaye, A.; De Vlas, S.J.; Stelma, F.F.; Guisse, F.; Van Lieshout, L.; Faye, D.; Diop, M.; Ly, A.; Tchuem-Tchuente, L.A.; et al. Are poor responses to praziquantel for the treatment of Schistosoma mansoni infections in Senegal due to resistance? An overview of the evidence. Trop. Med. Int. Health 2001, 6, 864–873. [Google Scholar] [CrossRef] [Green Version]
- Coles, G.C. Drug resistance and drug tolerance in parasites. Trends Parasitol. 2006, 22, 348. [Google Scholar] [CrossRef]
- Crellen, T.; Walker, M.; Lamberton, P.H.; Kabatereine, N.B.; Tukahebwa, E.M.; Cotton, J.A.; Webster, J.P. Reduced Efficacy of Praziquantel Against Schistosoma mansoni Is Associated With Multiple Rounds of Mass Drug Administration. Clin. Infect. Dis. 2016, 63, 1151–1159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inobaya, M.T.; Olveda, R.M.; Chau, T.N.; Olveda, D.U.; Ross, A.G. Prevention and control of schistosomiasis: A current perspective. Res. Rep. Trop. Med. 2014, 2014, 65–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merrifield, M.; Hotez, P.J.; Beaumier, C.M.; Gillespie, P.; Strych, U.; Hayward, T.; Bottazzi, M.E. Advancing a vaccine to prevent human schistosomiasis. Vaccine 2016, 34, 2988–2991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabuyaya, M.; Chimbari, M.J.; Mukaratirwa, S. Efficacy of praziquantel treatment regimens in pre-school and school aged children infected with schistosomiasis in sub-Saharan Africa: A systematic review. Infect. Dis. Poverty 2018, 7, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haile, S.; Golassa, L.; Mekonnen, Z. Prevalence of Schistosoma mansoni and effectiveness of Praziquantel in school children in Finchaa valley, Ethiopia. J. Parasitol. Vect. Biol. 2012, 4, 25–30. [Google Scholar] [CrossRef]
- Midzi, N.; Sangweme, D.; Zinyowera, S.; Mapingure, M.P.; Brouwer, K.C.; Kumar, N.; Mutapi, F.; Woelk, G.; Mduluza, T. Efficacy and side effects of praziquantel treatment against Schistosoma haematobium infection among primary school children in Zimbabwe. Trans. R. Soc. Trop. Med. Hyg. 2008, 102, 759–766. [Google Scholar] [CrossRef]
- Olliaro, P.L.; Vaillant, M.T.; Belizario, V.J.; Lwambo, N.J.; Ouldabdallahi, M.; Pieri, O.S.; Amarillo, M.L.; Kaatano, G.M.; Diaw, M.; Domingues, A.C.; et al. A multicentre randomized controlled trial of the efficacy and safety of single-dose praziquantel at 40 mg/kg vs. 60 mg/kg for treating intestinal schistosomiasis in the Philippines, Mauritania, Tanzania and Brazil. PLoS Negl. Trop. Dis. 2011, 5, e1165. [Google Scholar] [CrossRef]
- Coulibaly, J.T.; Panic, G.; Silue, K.D.; Kovac, J.; Hattendorf, J.; Keiser, J. Efficacy and safety of praziquantel in preschool-aged and school-aged children infected with Schistosoma mansoni: A randomised controlled, parallel-group, dose-ranging, phase 2 trial. Lancet Glob. Health 2017, 5, e688–e698. [Google Scholar] [CrossRef] [Green Version]
- Erko, B.; Degarege, A.; Tadesse, K.; Mathiwos, A.; Legesse, M. Efficacy and side effects of praziquantel in the treatment of Schistosomiasis mansoni in schoolchildren in Shesha Kekele Elementary School, Wondo Genet, Southern Ethiopia. Asian Pac. J. Trop. Biomed. 2012, 2, 235–239. [Google Scholar] [CrossRef] [Green Version]
- Garba, A.; Lamine, M.S.; Barkire, N.; Djibo, A.; Sofo, B.; Gouvras, A.N.; Labbo, R.; Sebangou, H.; Webster, J.P.; Fenwick, A.; et al. Efficacy and safety of two closely spaced doses of praziquantel against Schistosoma haematobium and S. mansoni and re-infection patterns in school-aged children in Niger. Acta Trop. 2013, 128, 334–344. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Abbas, H.; Mansour, F.A.; Gasim, G.I.; Adam, I. Schistosoma haematobium infections among schoolchildren in central Sudan one year after treatment with praziquantel. Parasites Vectors 2012, 5, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coulibaly, J.T.; N’gbesso, Y.K.; Knopp, S.; Keiser, J.; N’Goran, E.K.; Utzinger, J. Efficacy and safety of praziquantel in preschool-aged children in an area co-endemic for Schistosoma mansoni and S. haematobium. PLoS Negl. Trop. Dis. 2012, 6, e1917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raso, G.; N’Goran, E.K.; Toty, A.; Luginbuhl, A.; Adjoua, C.A.; Tian-Bi, N.T.; Bogoch, I.I.; Vounatsou, P.; Tanner, M.; Utzinger, J. Efficacy and side effects of praziquantel against Schistosoma mansoni in a community of western Cote d’Ivoire. Trans. R. Soc. Trop. Med. Hyg. 2004, 98, 18–27. [Google Scholar] [CrossRef]
- Nalugwa, A.; Nuwaha, F.; Tukahebwa, E.M.; Olsen, A. Single Versus Double Dose Praziquantel Comparison on Efficacy and Schistosoma mansoni Re-Infection in Preschool-Age Children in Uganda: A Randomized Controlled Trial. PLoS Negl. Trop. Dis. 2015, 9, e0003796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinung’hi, S.M.; Magnussen, P.; Kaatano, G.M.; Kishamawe, C.; Vennervald, B.J. Malaria and helminth co-infections in school and preschool children: A cross-sectional study in Magu district, north-western Tanzania. PLoS ONE 2014, 9, e86510. [Google Scholar] [CrossRef] [PubMed]
- Munisi, D.Z.; Buza, J.; Mpolya, E.A.; Kinung’hi, S.M. Schistosoma mansoni Infections, Undernutrition and Anaemia among Primary Schoolchildren in Two Onshore Villages in Rorya District, North-Western Tanzania. PLoS ONE 2016, 11, e0167122. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Assuring Safety of Preventive Chemotherapy Interventions for the Control of Neglected Tropical Diseases; World Health Organization: Geneva, Switzerland, 2011; Available online: https://apps.who.int/iris/bitstream/handle/10665/44683/9789241502191_eng.pdf;jsessionid=7589607F7E92864E8A41E720D66472D3?sequence=1 (accessed on 7 November 2019).
- World Health Organization. Assessing the Efficacy of Anthelminthic Drugs against Schistosomiasis and Soil-Transmitted Helminthiases; World Health Organization: Geneva, Switzerland, 2013; Available online: https://apps.who.int/iris/handle/10665/79019 (accessed on 6 November 2019).
- Munisi, D.Z.; Buza, J.; Mpolya, E.A.; Angelo, T.; Kinung’hi, S.M. The Efficacy of Single-Dose versus Double-Dose Praziquantel Treatments on Schistosoma mansoni Infections: Its Implication on Undernutrition and Anaemia among Primary Schoolchildren in Two On-Shore Communities, Northwestern Tanzania. Biomed. Res. Int. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Bergquist, R.; Elmorshedy, H. Artemether and Praziquantel: Origin, Mode of Action, Impact, and Suggested Application for Effective Control of Human Schistosomiasis. Trop. Med. Infect. Dis. 2018, 3. [Google Scholar] [CrossRef] [Green Version]
- Zwang, J.; Olliaro, P. Efficacy and safety of praziquantel 40 mg/kg in preschool-aged and school-aged children: A meta-analysis. Parasites Vectors 2017, 10, 47. [Google Scholar] [CrossRef] [Green Version]
- Mugusi, S.; Ngaimisi, E.; Janabi, M.; Minzi, O.; Bakari, M.; Riedel, K.D.; Burhenne, J.; Lindquist, L.; Mugusi, F.; Sandstrom, E.; et al. Liver enzyme abnormalities and associated risk factors in HIV patients on efavirenz-based HAART with or without tuberculosis co-infection in Tanzania. PLoS ONE 2012, 7, e40180. [Google Scholar] [CrossRef] [Green Version]
- Ngaimisi, E.; Habtewold, A.; Minzi, O.; Makonnen, E.; Mugusi, S.; Amogne, W.; Yimer, G.; Riedel, K.D.; Janabi, M.; Aderaye, G.; et al. Importance of ethnicity, CYP2B6 and ABCB1 genotype for efavirenz pharmacokinetics and treatment outcomes: A parallel-group prospective cohort study in two sub-Saharan Africa populations. PLoS ONE 2013, 8, e67946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yimer, G.; Gry, M.; Amogne, W.; Makonnen, E.; Habtewold, A.; Petros, Z.; Aderaye, G.; Schuppe-Koistinen, I.; Lindquist, L.; Aklillu, E. Evaluation of patterns of liver toxicity in patients on antiretroviral and anti-tuberculosis drugs: A prospective four arm observational study in ethiopian patients. PLoS ONE 2014, 9, e94271. [Google Scholar] [CrossRef] [PubMed]
- Katz, N.; Chaves, A.; Pellegrino, J. A simple device for quantitative stool thick-smear technique in Schistosomiasis mansoni. Rev. Inst. Med. Trop. Sao Paulo 1972, 14, 397–400. [Google Scholar] [PubMed]
- World Health Organization. Basic Laboratory Methods in Medical Parasitology; World Health Organization: Geneva, Switzerland, 1991; Available online: https://www.who.int/malaria/publications/atoz/9241544104_part1/en/ (accessed on 6 November 2019).
- World Health Organization. Schistosomiasis: Progress Report 2001–2011, Strategic Plan 2012–2020; World Health Organization: Geneva, Switzerland, 2013; Available online: https://www.who.int/schistosomiasis/resources/9789241503174/en/ (accessed on 6 November 2019).
- Nkrumah, B.; Nguah, S.B.; Sarpong, N.; Dekker, D.; Idriss, A.; May, J.; Adu-Sarkodie, Y. Hemoglobin estimation by the HemoCue(R) portable hemoglobin photometer in a resource poor setting. BMC Clin. Pathol. 2011, 11, 5. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity; World Health Organization: Geneva, Switzerland, 2011; Available online: https://www.who.int/vmnis/indicators/haemoglobin/en (accessed on 6 November 2019).
- World Health Organization. WHO Anthroplus Software; Software for Assessing Growth and Development of the World’s Children and Adolescents; World Health Organization: Geneva, Switzerland, 2009; Available online: https://www.who.int/growthref/tools/who_anthroplus_manual.pdf (accessed on 6 November 2019).
Characteristic | N | % (95% CI) | |
---|---|---|---|
Age (years) | Mean ±SD | 11.8 ± 1.7 | |
≤12 | 235 | 68.9 (64.1–73.6) | |
>12 | 106 | 31.1 (26.4–35.9) | |
Sex | Male | 160 | 46.9 (41.8–52.5) |
Female | 181 | 53.1 (47.5–58.2) | |
Infection intensity | Light | 87 | 25.5 (20.9–30.0) |
Moderate | 152 | 44.6 (39.0–50.0) | |
Heavy | 102 | 29.9 (24.9–34.9) | |
Pre-treatment abdominal pain | Yes | 71 | 20.8 (16.7–25.3) |
No | 270 | 79.2 (74.7–83.2) | |
Stool consistency | Loose | 51 | 15.0 (11.0–19.0) |
Soft | 154 | 45.2 (39.8–50.1) | |
Formed | 136 | 39.9 (34.5–45.2) | |
Stunting (HAZ) | Stunted | 117 | 34.3 (29.2–39.5) |
Not stunted | 224 | 65.7 (60.2–70.6) | |
Wasting (BAZ) | Wasted | 34 | 10.0 (6.8–13.2) |
Not wasted | 307 | 90.0 (86.5–93.2) | |
Hemoglobin concentration | Median (IQR) | 12.7 (11.6–13.5) | |
Egg count/gram of stool | Mean ±SD | 365.1 ± 437.4 | |
Median (IQR) | 222 (96–471) |
Variable | Cured N (%) | Not Cured N (%) | χ2 Value | p-Value | |
---|---|---|---|---|---|
Age group | ≤12 | 190 (80.9) | 45 (19.1) | 0.072 | 0.79 |
>12 | 87 (82.1) | 19 (17.9) | |||
Sex | Male | 128 (80.0) | 32 (20.0) | 0.300 | 0.58 |
Female | 149 (82.3) | 32 (17.7) | |||
Infection intensity | Light | 72 (82.8) | 15 (17.2) | 1.365 | 0.51 |
Moderate | 126 (82.9) | 26 (17.1) | |||
Heavy | 79 (77.5) | 23 (22.5) | |||
Stunting (HAZ) | Stunted | 98 (83.8) | 19 (16.2) | 0.747 | 0.39 |
Not stunted | 179 (79.9) | 45 (20.1) | |||
Wasting (BAZ) | Wasted | 30 (88.2) | 4 (11.8) | 1.215 | 0.27 |
Not wasted | 247 (80.5) | 60 (19.5) | |||
Anemia status | Anemic | 68 (88.3) | 9 (11.7) | 3.270 | 0.07 |
Not anemic | 209 (79.2) | 55 (20.2) | |||
Stool consistency | Loose | 40 (78.4) | 11 (21.6) | 0.726 | 0.70 |
Soft | 128 (83.1) | 26 (16.9) | |||
Formed | 109 (80.1) | 27 (19.9) |
Overall Infection Intensity | Before Treatment N (%) | After Treatment N (%) | |
---|---|---|---|
Light | 87 (25.5) | 42 (12.3) | |
Moderate | 152 (44.6) | 19 (5.6) | |
Heavy | 102 (29.9) | 3 (0.9) | |
Cured | - | 277 (81.2) | |
Proportion of cured and uncured children within each infection intensity group before and after treatment | |||
Before treatment | After treatment | ||
Status | N (%) | Status | N (%) |
Light infection | 87 (25.5) | Cured | 72 (82.8) |
Light | 13 (14.9) | ||
Moderate | 2 (2.3) | ||
Heavy | 0 (0.0) | ||
Moderate infection | 152 (44.6) | Cured | 126 (82.9) |
Light | 16 (10.5) | ||
Moderate | 9 (5.9) | ||
Heavy | 1 (0.7) | ||
Heavy infection | 102 (29.9) | Cured | 79 (77.5) |
Light | 13 (12.5) | ||
Moderate | 8 (7.8) | ||
Heavy | 2 (2.0) |
Variable | Categories | Cured N (%) | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|---|---|
cOR | 95% CI | p-Value | aOR | 95% CI | p-Value | |||
Age | 0.91 | 0.78–1.07 | 0.26 | 0.96 | 0.76–1.22 | 0.76 | ||
Sex | Male | 128 (80.0) | 0.86 | 0.49–1.48 | 0.58 | |||
Female | 149 (82.3) | 1a | ||||||
Log Baseline egg count | 1.28 | 0.77–2.15 | 0.34 | |||||
Anemia | Anemic | 68 (88.3) | 1.99 | 0.93–4.24 | 0.07 | 0.48 | 0.22–1.04 | 0.06 |
Not anemic | 209 (79.2) | 1a | ||||||
Log Hb conc | 3.45 | 0.07–179.99 | 0.54 | |||||
Log weight | 0.26 | 0.01–6.00 | 0.40 | |||||
Log height | 0.01 | 0.001–4.77 | 0.24 | 0.004 | 0.004–1796.26 | 0.41 | ||
Wasting (BAZ) | Wasted | 30 (88.2) | 1.13 | 0.85–1.51 | 0.39 | |||
Not wasted | 247 (80.5) | 1a | ||||||
Stunting (HAZ) | Stunted | 98 (83.8) | 0.98 | 0.75–1.26 | 0.85 | |||
Not stunted | 179 (79.9) | 1a | ||||||
Baseline infection intensity | Light | 72 (82.8) | 1.41 | 0.75–2.64 | 0.28 | 1.44 | 0.76–2.73 | 0.26 |
Moderate | 126 (82.9) | 1.01 | 0.50–2.03 | 0.97 | 0.99 | 0.49–2.02 | 0.99 | |
Heavy | 79 (77.5) | 1a |
Variable | Baseline Egg Count (Mean ± SD) | p-Value ¥ | Follow up Egg Count (Mean ± SD) | p-Value ¥ | ERR * (%) | |
---|---|---|---|---|---|---|
Age group | ≤12 years | 341.9 ± 433.0 | 0.07 | 21.7±74.8 | 0.64 | 93.6 |
>12years | 416.3 ± 444.8 | 10.2±36.8 | 97.6 | |||
Sex | Male | 379.6 ± 405.3 | 0.19 | 15.5±53.5 | 0.65 | 96.0 |
Female | 352.2 ± 464.7 | 20.6±74.7 | 94.2 |
Variable | Abdominal Pain | Vomiting | ||||||
---|---|---|---|---|---|---|---|---|
Yes N (%) | No N (%) | χ2 Value | p-Value | Yes N (%) | No N (%) | χ2 Value | p-Value | |
Age (years) | ||||||||
≤12 | 68 (28.9) | 167 (71.1) | 1.956 | 0.16 | 6 (2.6) | 229 (97.4) | 0.18 β | |
>12 | 23 (21.7) | 83 (78.3) | 0 (0.0) | 106 (100) | ||||
Sex | ||||||||
Male | 38 (23.8) | 122 (76.2) | 1.328 | 0.25 | 2 (1.2) | 158 (98.8) | 0.69 β | |
Female | 53 (29.3) | 128 (70.7) | 4 (2.2) | 171 (97.8) | ||||
Stunting (HAZ) | ||||||||
Stunted | 29 (24.8) | 88 (75.2) | 0.329 | 0.57 | 3 (2.6) | 114 (97.4) | 0.42 β | |
Not stunted | 62 (27.7) | 162 (72.3) | 3 (1.3) | 221 (98.7) | ||||
Wasting (BAZ) | ||||||||
Wasted | 8 (23.5) | 26 (76.5) | 0.192 | 0.66 | 1 (2.9) | 33 (97.1) | 0.47 β | |
Not wasted | 83 (27.0) | 224 (73.0) | 5 (1.6) | 302 (98.4) | ||||
Anemia status | ||||||||
Anemic | 26 (33.8) | 51 (66.2) | 2.548 | 0.11 | 4 (5.2) | 73 (94.8) | 0.03 β | |
Not anemic | 65 (24.6) | 199 (75.4) | 2 (0.8) | 262 (99.2) | ||||
Infection intensity | ||||||||
Light | 11 (12.6) | 76 (87.4) | 18.366 | <0.001 | 1 (1.1) | 86 (98.9) | 1.184 | 0.55 |
Moderate | 39 (25.7) | 113 (74.3) | 2 (1.3) | 150 (98.7) | ||||
Heavy | 41 (40.2) | 61 (59.8) | 3 (2.9) | 99 (97.1) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mnkugwe, R.H.; Minzi, O.S.; Kinung’hi, S.M.; Kamuhabwa, A.A.; Aklillu, E. Efficacy and Safety of Praziquantel for Treatment of Schistosoma mansoni Infection among School Children in Tanzania. Pathogens 2020, 9, 28. https://doi.org/10.3390/pathogens9010028
Mnkugwe RH, Minzi OS, Kinung’hi SM, Kamuhabwa AA, Aklillu E. Efficacy and Safety of Praziquantel for Treatment of Schistosoma mansoni Infection among School Children in Tanzania. Pathogens. 2020; 9(1):28. https://doi.org/10.3390/pathogens9010028
Chicago/Turabian StyleMnkugwe, Rajabu Hussein, Omary S. Minzi, Safari M. Kinung’hi, Appolinary A. Kamuhabwa, and Eleni Aklillu. 2020. "Efficacy and Safety of Praziquantel for Treatment of Schistosoma mansoni Infection among School Children in Tanzania" Pathogens 9, no. 1: 28. https://doi.org/10.3390/pathogens9010028
APA StyleMnkugwe, R. H., Minzi, O. S., Kinung’hi, S. M., Kamuhabwa, A. A., & Aklillu, E. (2020). Efficacy and Safety of Praziquantel for Treatment of Schistosoma mansoni Infection among School Children in Tanzania. Pathogens, 9(1), 28. https://doi.org/10.3390/pathogens9010028