The Diverse Functions of the Ubiquitous Fcγ Receptors and Their Unique Constituent, FcRγ Subunit
Abstract
:1. Introduction
2. Structure of FcγRs
3. FcγR Signaling Pathways
4. Biological Functions of FcγRs
4.1. Roles of FcγRs in Innate Immunity
4.2. Roles of FcγRs in Adaptive Immunity
4.3. Roles of FcγRs in Non-Immune Cells
5. Therapeutic Approaches Using FcRs
6. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Nimmerjahn, F.; Ravetch, J.V. Fcgamma receptors as regulators of immune responses. Nat. Rev. Immunol. 2008, 8, 34–47. [Google Scholar] [CrossRef]
- Gessner, J.E.; Heiken, H.; Tamm, A.; Schmidt, R.E. The IgG Fc receptor family. Ann. Hematol. 1998, 76, 231–248. [Google Scholar] [CrossRef] [PubMed]
- Fridman, W.H. Fc receptors and immunoglobulin binding factors. FASEB J. 1991, 5, 2684–2690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pyzik, M.; Sand, K.M.K.; Hubbard, J.J.; Andersen, J.T.; Sandlie, I.; Blumberg, R.S. The Neonatal Fc Receptor (FcRn): A Misnomer? Front. Immunol. 2019, 10, 1540. [Google Scholar] [CrossRef] [PubMed]
- Guilliams, M.; Bruhns, P.; Saeys, Y.; Hammad, H.; Lambrecht, B.N. The function of Fcgamma receptors in dendritic cells and macrophages. Nat. Rev. Immunol. 2014, 14, 94–108. [Google Scholar] [CrossRef] [PubMed]
- Sun, P. Structural Recognition of Immunoglobulins by Fcγ Receptors. In Antibody Fc; Margaret, E., Ackerman, F.N., Eds.; Academic Press: Cambridge, MA, USA, 2014; pp. 131–144. [Google Scholar]
- Daeron, M. Fc receptor biology. Annu. Rev. Immunol. 1997, 15, 203–234. [Google Scholar] [CrossRef] [PubMed]
- Fridman, W.H.; Teillaud, J.L.; Bouchard, C.; Teillaud, C.; Astier, A.; Tartour, E.; Galon, J.; Mathiot, C.; Sautès, C. Soluble Fc gamma receptors. J. Leukoc. Biol. 1993, 54, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Hida, S.; Yamasaki, S.; Sakamoto, Y.; Takamoto, M.; Obata, K.; Takai, T.; Karasuyama, H.; Sugane, K.; Saito, T.; Taki, S. Fc receptor gamma-chain, a constitutive component of the IL-3 receptor, is required for IL-3-induced IL-4 production in basophils. Nat. Immunol. 2009, 10, 214–222. [Google Scholar] [CrossRef] [Green Version]
- Takai, T.; Li, M.; Sylvestre, D.; Clynes, R.; Ravetch, J.V. FcR gamma chain deletion results in pleiotrophic effector cell defects. Cell 1994, 76, 519–529. [Google Scholar] [CrossRef]
- Duhan, V.; Hamdan, T.A.; Xu, H.C.; Shinde, P.; Bhat, H.; Li, F.; Al-Matary, Y.; Häussinger, D.; Bezgovsek, J.; Friedrich, S.K.; et al. NK cell-intrinsic FcepsilonRIgamma limits CD8+ T-cell expansion and thereby turns an acute into a chronic viral infection. PLoS Pathog. 2019, 15, e1007797. [Google Scholar] [CrossRef] [Green Version]
- Brandsma, A.M.; Hogarth, P.M.; Nimmerjahn, F.; Leusen, J.H. Clarifying the Confusion between Cytokine and Fc Receptor Common Gamma Chain. Immunity 2016, 45, 225–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuster, H.; Thompson, H.; Kinet, J.P. Characterization and expression of the gene for the human Fc receptor gamma subunit. Definition of a new gene family. J. Biol. Chem. 1990, 265, 6448–6452. [Google Scholar] [PubMed]
- Suzuki, K.; Hirose, T.; Matsuda, H.; Hasegawa, S.; Okumura, K.; Ra, C. The Fc receptor (FcR) gamma subunit is essential for IgE-binding activity of cell-surface expressed chimeric receptor molecules constructed from human high-affinity IgE receptor (Fc epsilon RI) alpha and FcR gamma subunits. Mol. Immunol. 1998, 35, 259–270. [Google Scholar] [CrossRef]
- Hudspeth, K.; Silva-Santos, B.; Mavilio, D. Natural cytotoxicity receptors: Broader expression patterns and functions in innate and adaptive immune cells. Front. Immunol. 2013, 4, 69. [Google Scholar] [CrossRef] [Green Version]
- Hollyoake, M.; Campbell, R.D.; Aguado, B. NKp30 (NCR3) is a pseudogene in 12 inbred and wild mouse strains, but an expressed gene in Mus caroli. Mol. Biol. Evol. 2005, 22, 1661–1672. [Google Scholar] [CrossRef]
- Pincetic, A.; Bournazos, S.; DiLillo, D.J.; Maamary, J.; Wang, T.T.; Dahan, R.; Fiebiger, B.M.; Ravetch, J.V. Type I and type II Fc receptors regulate innate and adaptive immunity. Nat. Immunol. 2014, 15, 707–716. [Google Scholar] [CrossRef]
- Bournazos, S.; Wang, T.T.; Dahan, R.; Maamary, J.; Ravetch, J.V. Signaling by Antibodies: Recent Progress. Annu. Rev. Immunol. 2017, 35, 285–311. [Google Scholar] [CrossRef] [Green Version]
- Bournazos, S.; Wang, T.T.; Ravetch, J.V. The Role and Function of Fcgamma Receptors on Myeloid Cells. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Qiu, W.Q.; de Bruin, D.; Brownstein, B.H.; Pearse, R.; Ravetch, J.V. Organization of the human and mouse low-affinity Fc gamma R genes: Duplication and recombination. Science 1990, 248, 732–735. [Google Scholar] [CrossRef]
- Li, X.; Kimberly, R.P. Targeting the Fc receptor in autoimmune disease. Expert Opin. Ther. Targets 2014, 18, 335–350. [Google Scholar] [CrossRef] [Green Version]
- Nimmerjahn, F.; Ravetch, J.V. Fcgamma receptors: Old friends and new family members. Immunity 2006, 24, 19–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravetch, J.V.; Lanier, L.L. Immune inhibitory receptors. Science 2000, 290, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K.; Nishiyama, C.; Tokura, T.; Akizawa, Y.; Nishiyama, M.; Ogawa, H.; Okumura, K.; Ra, C. Regulation of cell type-specific mouse Fc epsilon RI beta-chain gene expression by GATA-1 via four GATA motifs in the promoter. J. Immunol. 2003, 170, 334–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghazizadeh, S.; Bolen, J.B.; Fleit, H.B. Physical and functional association of Src-related protein tyrosine kinases with Fc gamma RII in monocytic THP-1 cells. J. Biol. Chem. 1994, 269, 8878–8884. [Google Scholar] [PubMed]
- Wang, A.V.; Scholl, P.R.; Geha, R.S. Physical and functional association of the high affinity immunoglobulin G receptor (Fc gamma RI) with the kinases Hck and Lyn. J. Exp. Med. 1994, 180, 1165–1170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben Mkaddem, S.; Benhamou, M.; Monteiro, R.C. Understanding Fc Receptor Involvement in Inflammatory Diseases: From Mechanisms to New Therapeutic Tools. Front. Immunol. 2019, 10, 811. [Google Scholar] [CrossRef] [Green Version]
- Bolland, S.; Ravetch, J.V. Inhibitory pathways triggered by ITIM-containing receptors. Adv. Immunol. 1999, 72, 149–177. [Google Scholar]
- Rohrschneider, L.R.; Fuller, J.F.; Wolf, I.; Liu, Y.; Lucas, D.M. Structure, function, and biology of SHIP proteins. Genes Dev. 2000, 14, 505–520. [Google Scholar]
- Takai, T. Fc receptors and their role in immune regulation and autoimmunity. J. Clin. Immunol. 2005, 25, 1–18. [Google Scholar] [CrossRef]
- Rosales, C. Fcgamma Receptor Heterogeneity in Leukocyte Functional Responses. Front. Immunol. 2017, 8, 280. [Google Scholar] [CrossRef] [Green Version]
- Kaetzel, C.S. Coevolution of Mucosal Immunoglobulins and the Polymeric Immunoglobulin Receptor: Evidence That the Commensal Microbiota Provided the Driving Force. ISRN Immunol. 2014, 2014, 20. [Google Scholar] [CrossRef] [Green Version]
- DiLillo, D.J.; Ravetch, J.V. Fc-Receptor Interactions Regulate Both Cytotoxic and Immunomodulatory Therapeutic Antibody Effector Functions. Cancer Immunol. Res. 2015, 3, 704–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianchini, R.; Roth-Walter, F.; Ohradanova-Repic, A.; Flicker, S.; Hufnagl, K.; Fischer, M.B.; Stockinger, H.; Jensen-Jarolim, E. IgG4 drives M2a macrophages to a regulatory M2b-like phenotype: Potential implication in immune tolerance. Allergy 2019, 74, 483–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sironi, M.; Martinez, F.O.; D’Ambrosio, D.; Gattorno, M.; Polentarutti, N.; Locati, M.; Gregorio, A.; Iellem, A.; Cassatella, M.A.; Van Damme, J.; et al. Differential regulation of chemokine production by Fcgamma receptor engagement in human monocytes: Association of CCL1 with a distinct form of M2 monocyte activation (M2b, Type 2). J. Leukoc. Biol. 2006, 80, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Swisher, J.F.; Haddad, D.A.; McGrath, A.G.; Boekhoudt, G.H.; Feldman, G.M. IgG4 Can Induce an M2-like Phenotype in Human Monocyte-Derived Macrophages through FcgammaRI. In MAbs; Taylor & Francis Group: Melbourne, Australia, 2014; Volume 6, pp. 1377–1384. [Google Scholar] [CrossRef] [Green Version]
- Amigorena, S.; Bonnerot, C. Fc receptor signaling and trafficking: A connection for antigen processing. Immunol. Rev. 1999, 172, 279–284. [Google Scholar] [CrossRef]
- Takai, T. Roles of Fc receptors in autoimmunity. Nat. Rev. Immunol. 2002, 2, 580–592. [Google Scholar] [CrossRef]
- Bergtold, A.; Desai, D.D.; Gavhane, A.; Clynes, R. Cell surface recycling of internalized antigen permits dendritic cell priming of B cells. Immunity 2005, 23, 503–514. [Google Scholar] [CrossRef] [Green Version]
- Dhodapkar, K.M.; Banerjee, D.; Connolly, J.; Kukreja, A.; Matayeva, E.; Veri, M.C.; Ravetch, J.V.; Steinman, R.M.; Dhodapkar, M.V. Selective blockade of the inhibitory Fcgamma receptor (FcgammaRIIB) in human dendritic cells and monocytes induces a type I interferon response program. J. Exp. Med. 2007, 204, 1359–1369. [Google Scholar] [CrossRef]
- Mosser, D.M.; Edwards, J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 2008, 8, 958–969. [Google Scholar] [CrossRef]
- Pinheiro da Silva, F.; Aloulou, M.; Skurnik, D.; Benhamou, M.; Andremont, A.; Velasco, I.T.; Chiamolera, M.; Verbeek, J.S.; Launay, P.; Monteiro, R.C. CD16 promotes Escherichia coli sepsis through an FcR gamma inhibitory pathway that prevents phagocytosis and facilitates inflammation. Nat. Med. 2007, 13, 1368–1374. [Google Scholar] [CrossRef]
- Nathan, C. Points of control in inflammation. Nature 2002, 420, 846–852. [Google Scholar] [CrossRef]
- Nishida, K.; Yamasaki, S.; Ito, Y.; Kabu, K.; Hattori, K.; Tezuka, T.; Nishizumi, H.; Kitamura, D.; Goitsuka, R.; Geha, R.S.; et al. Fc{epsilon}RI-mediated mast cell degranulation requires calcium-independent microtubule-dependent translocation of granules to the plasma membrane. J. Cell. Biol. 2005, 170, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Turner, H.; Kinet, J.P. Signalling through the high-affinity IgE receptor Fc epsilonRI. Nature 1999, 402, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Van der Poel, C.E.; Spaapen, R.M.; van de Winkel, J.G.; Leusen, J.H. Functional characteristics of the high affinity IgG receptor, FcgammaRI. J. Immunol. 2011, 186, 2699–2704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merck, E.; Gaillard, C.; Gorman, D.M.; Montero-Julian, F.; Durand, I.; Zurawski, S.M.; Menetrier-Caux, C.; Carra, G.; Lebecque, S.; Trinchieri, G.; et al. OSCAR is an FcRgamma-associated receptor that is expressed by myeloid cells and is involved in antigen presentation and activation of human dendritic cells. Blood 2004, 104, 1386–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legentil, L.; Paris, F.; Ballet, C.; Trouvelot, S.; Daire, X.; Vetvicka, V.; Ferrières, V. Molecular Interactions of beta-(1-->3)-Glucans with Their Receptors. Molecules 2015, 20, 9745–9766. [Google Scholar] [CrossRef]
- Pan, Y.G.; Yu, Y.L.; Lin, C.C.; Lanier, L.L.; Chu, C.L. FcepsilonRI gamma-Chain Negatively Modulates Dectin-1 Responses in Dendritic Cells. Front. Immunol. 2017, 8, 1424. [Google Scholar] [CrossRef] [Green Version]
- Maglinao, M.; Klopfleisch, R.; Seeberger, P.H.; Lepenies, B. The C-type lectin receptor DCIR is crucial for the development of experimental cerebral malaria. J. Immunol. 2013, 191, 2551–2559. [Google Scholar] [CrossRef] [Green Version]
- Chu, C.L.; Yu, Y.L.; Shen, K.Y.; Lowell, C.A.; Lanier, L.L.; Hamerman, J.A. Increased TLR responses in dendritic cells lacking the ITAM-containing adapters DAP12 and FcRgamma. Eur. J. Immunol. 2008, 38, 166–173. [Google Scholar] [CrossRef] [Green Version]
- Chiba, S.; Ikushima, H.; Ueki, H.; Yanai, H.; Kimura, Y.; Hangai, S.; Nishio, J.; Negishi, H.; Tamura, T.; Saijo, S.; et al. Recognition of tumor cells by Dectin-1 orchestrates innate immune cells for anti-tumor responses. eLife 2014, 3, e04177. [Google Scholar] [CrossRef]
- Langlet, C.; Tamoutounour, S.; Henri, S.; Luche, H.; Ardouin, L.; Gregoire, C.; Malissen, B.; Guilliams, M. CD64 expression distinguishes monocyte-derived and conventional dendritic cells and reveals their distinct role during intramuscular immunization. J. Immunol. 2012, 188, 1751–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plantinga, M.; Guilliams, M.; Vanheerswynghels, M.; Deswarte, K.; Branco-Madeira, F.; Toussaint, W.; Vanhoutte, L.; Neyt, K.; Killeen, N.; Malissen, B.; et al. Conventional and monocyte-derived CD11b (+) dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity 2013, 38, 322–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segura, E.; Touzot, M.; Bohineust, A.; Cappuccio, A.; Chiocchia, G.; Hosmalin, A.; Dalod, M.; Soumelis, V.; Amigorena, S. Human inflammatory dendritic cells induce Th17 cell differentiation. Immunity 2013, 38, 336–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walzer, T.; Blery, M.; Chaix, J.; Fuseri, N.; Chasson, L.; Robbins, S.H.; Jaeger, S.; André, P.; Gauthier, L.; Daniel, L.; et al. Identification, activation, and selective in vivo ablation of mouse NK cells via NKp46. Proc. Natl. Acad. Sci. USA 2007, 104, 3384–3389. [Google Scholar] [CrossRef] [Green Version]
- Arase, N.; Arase, H.; Hirano, S.; Yokosuka, T.; Sakurai, D.; Saito, T. IgE-mediated activation of NK cells through Fc gamma RIII. J. Immunol. 2003, 170, 3054–3058. [Google Scholar] [CrossRef] [Green Version]
- Romee, R.; Foley, B.; Lenvik, T.; Wang, Y.; Zhang, B.; Ankarlo, D.; Luo, X.; Cooley, S.; Verneris, M.; Walcheck, B.; et al. NK cell CD16 surface expression and function is regulated by a disintegrin and metalloprotease-17 (ADAM17). Blood 2013, 121, 3599–3608. [Google Scholar] [CrossRef]
- Bhatnagar, N.; Ahmad, F.; Hong, H.S.; Eberhard, J.; Lu, I.N.; Ballmaier, M.; Schmidt, R.E.; Jacobs, R.; Meyer-Olson, D. FcgammaRIII (CD16)-mediated ADCC by NK cells is regulated by monocytes and FcgammaRII (CD32). Eur. J. Immunol. 2014, 44, 3368–3379. [Google Scholar] [CrossRef]
- Juvet, S.C.; Thomson, C.W.; Kim, E.Y.; Joe, B.; Adeyi, O.; Zhang, L. FcRgamma promotes T cell apoptosis in Fas-deficient mice. J. Autoimmun. 2013, 42, 80–93. [Google Scholar] [CrossRef] [Green Version]
- De Andres, B.; Mueller, A.L.; Blum, A.; Weinstock, J.; Verbeek, S.; Sandor, M.; Lynch, R.G. FcgammaRII (CD32) is linked to apoptotic pathways in murine granulocyte precursors and mature eosinophils. Blood 1997, 90, 1267–1274. [Google Scholar] [CrossRef] [Green Version]
- Azzoni, L.; Anegon, I.; Calabretta, B.; Perussia, B. Ligand binding to Fc gamma R induces c-myc-dependent apoptosis in IL-2-stimulated NK cells. J. Immunol. 1995, 154, 491–499. [Google Scholar]
- Rodewald, H.R.; Moingeon, P.; Lucich, J.L.; Dosiou, C.; Lopez, P.; Reinherz, E.L. A population of early fetal thymocytes expressing Fc gamma RII/III contains precursors of T lymphocytes and natural killer cells. Cell 1992, 69, 139–150. [Google Scholar] [CrossRef]
- Bori-Sanz, T.; Inoue, K.S.; Berndt, M.C.; Watson, S.P.; Tulasne, D. Delineation of the region in the glycoprotein VI tail required for association with the Fc receptor gamma-chain. J. Biol. Chem. 2003, 278, 35914–35922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, H.A.; Mosier, D.R.; Zou, L.L.; Siklos, L.; Alexianu, M.E.; Engelhardt, J.I.; Beers, D.R.; Le, W.D.; Appel, S.H. Immunoglobulin Fc gamma receptor promotes immunoglobulin uptake, immunoglobulin-mediated calcium increase, and neurotransmitter release in motor neurons. J. Neurosci. Res. 2002, 69, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Stamou, M.; Grodzki, A.C.; van Oostrum, M.; Wollscheid, B.; Lein, P.J. Fc gamma receptors are expressed in the developing rat brain and activate downstream signaling molecules upon cross-linking with immune complex. J. Neuroinflammation 2018, 15, 7. [Google Scholar] [CrossRef]
- Wong, R.J.; Liu, B.; Bhuket, T. Significant burden of nonalcoholic fatty liver disease with advanced fibrosis in the US: A cross-sectional analysis of 2011–2014 National Health and Nutrition Examination Survey. Aliment. Pharmacol. Ther. 2017, 46, 974–980. [Google Scholar] [CrossRef] [Green Version]
- Shechter, I.; Fogelman, A.M.; Haberland, M.E.; Seager, J.; Hokom, M.; Edwards, P.A. The metabolism of native and malondialdehyde-altered low density lipoproteins by human monocyte-macrophages. J. Lipid. Res. 1981, 22, 63–71. [Google Scholar]
- Ishikawa, T.; Yokoyama, H.; Matsuura, T.; Fujiwara, Y. Fc gamma RIIb expression levels in human liver sinusoidal endothelial cells during progression of non-alcoholic fatty liver disease. PLoS ONE 2019, 14, e0211543. [Google Scholar] [CrossRef]
- Geraud, C.; Mogler, C.; Runge, A.; Evdokimov, K.; Lu, S.; Schledzewski, K.; Arnold, B.; Hämmerling, G.; Koch, P.S.; Breuhahn, K.; et al. Endothelial transdifferentiation in hepatocellular carcinoma: Loss of Stabilin-2 expression in peri-tumourous liver correlates with increased survival. Liver. Int. 2013, 33, 1428–1440. [Google Scholar] [CrossRef]
- Liu, H.; Shalev, I.; Manuel, J.; He, W.; Leung, E.; Crookshank, J.; Liu, M.F.; Diao, J.; Cattral, M.; Clark, D.A.; et al. The FGL2-FcgammaRIIB pathway: A novel mechanism leading to immunosuppression. Eur. J. Immunol. 2008, 38, 3114–3126. [Google Scholar] [CrossRef]
- Colak, Y.; Senates, E.; Ozturk, O.; Yilmaz, Y.; Coskunpinar, E.; Kahraman, O.T.; Sahin, O.; Zemheri, E.; Enc, F.Y.; Ulasoglu, C.; et al. Plasma fibrinogen-like protein 2 levels in patients with non-alcoholic fatty liver disease. Hepatogastroenterology 2011, 58, 2087–2090. [Google Scholar] [CrossRef]
- Sun, Y.; Xi, D.; Ding, W.; Wang, F.; Zhou, H.; Ning, Q. Soluble FGL2, a novel effector molecule of activated hepatic stellate cells, regulates T-cell function in cirrhotic patients with hepatocellular carcinoma. Hepatol. Int. 2014, 8, 567–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganesan, L.P.; Kim, J.; Wu, Y.; Mohanty, S.; Phillips, G.S.; Birmingham, D.J.; Robinson, J.M.; Anderson, C.L. FcgammaRIIb on liver sinusoidal endothelium clears small immune complexes. J. Immunol. 2012, 189, 4981–4988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smedsrod, B.; Le Couteur, D.; Ikejima, K.; Jaeschke, H.; Kawada, N.; Naito, M.; Knolle, P.; Nagy, L.; Senoo, H.; Vidal-Vanaclocha, F.; et al. Hepatic sinusoidal cells in health and disease: Update from the 14th International Symposium. Liver. Int. 2009, 29, 490–501. [Google Scholar] [CrossRef] [PubMed]
- Tanigaki, K.; Sundgren, N.; Khera, A.; Vongpatanasin, W.; Mineo, C.; Shaul, P.W. Fcgamma receptors and ligands and cardiovascular disease. Circ. Res. 2015, 116, 368–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonsson, A.; Johansson, P.J. Binding of human and animal immunoglobulins to the IgG Fc receptor induced by human cytomegalovirus. J. Gen. Virol. 2001, 82, 1137–1145. [Google Scholar] [CrossRef]
- Corrales-Aguilar, E.; Hoffmann, K.; Hengel, H. CMV-encoded Fcgamma receptors: Modulators at the interface of innate and adaptive immunity. Semin. Immunopathol. 2014, 36, 627–640. [Google Scholar] [CrossRef]
- Yamada, D.H.; Elsaesser, H.; Lux, A.; Timmerman, J.M.; Morrison, S.L.; de la Torre, J.C.; Nummerjahn, F.; Brooks, D.G. Suppression of Fcgamma-receptor-mediated antibody effector function during persistent viral infection. Immunity 2015, 42, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Wieland, A.; Shashidharamurthy, R.; Kamphorst, A.O.; Han, J.H.; Aubert, R.D.; Choudhury, B.P.; Stowell, S.R.; Lee, J.; Punkosdy, G.A.; Shlomchik, M.J.; et al. Antibody effector functions mediated by Fcgamma-receptors are compromised during persistent viral infection. Immunity 2015, 42, 367–378. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Smith, P.; Ravetch, J.V. Inhibitory Fcgamma receptor is required for the maintenance of tolerance through distinct mechanisms. J. Immunol. 2014, 192, 3021–3028. [Google Scholar] [CrossRef] [Green Version]
- Baerenwaldt, A.; Lux, A.; Danzer, H.; Spriewald, B.M.; Ullrich, E.; Heidkamp, G.; Dudziak, D.; Nimmerjahn, F. Fcgamma receptor IIB (FcgammaRIIB) maintains humoral tolerance in the human immune system in vivo. Proc. Natl. Acad. Sci. USA 2011, 108, 18772–18777. [Google Scholar] [CrossRef] [Green Version]
- McGaha, T.L.; Sorrentino, B.; Ravetch, J.V. Restoration of tolerance in lupus by targeted inhibitory receptor expression. Science 2005, 307, 590–593. [Google Scholar] [CrossRef] [PubMed]
- Clynes, R.; Maizes, J.S.; Guinamard, R.; Ono, M.; Takai, T.; Ravetch, J.V. Modulation of immune complex-induced inflammation in vivo by the coordinate expression of activation and inhibitory Fc receptors. J. Exp. Med. 1999, 189, 179–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Name | Alternative Name (CD Marker) | Structure | Gene | Cellular Avenues | Affinity | Classification | Function |
---|---|---|---|---|---|---|---|
FcγRI/FcγRIA | CD64/CD64a | αγγ | fcgr1/FCGR1A | Macrophages, Neutrophils, Eosinophils and dendritic cells | High/IgG/mouse and human | Canonical (type I) | activating |
FcγRIIb | CD32b | α | fcgr2b/FCGR2B | Macrophages, Neutrophils, basophiles, dendritic cells and B cells | Low to medium/IgG/mouse and human | Canonical (type I) | inhibitory |
FcγRIIa | CD32a | α | FCGR2A | Monocytes, Neutrophils and NK cells | Low to medium/IgG/human | Canonical (type I) | activating |
FcγRIIc | CD32c | α | FCGR2C | Macrophages, Neutrophils, dendritic cells, mast cells, eosinophils and platelets | Low to medium/IgG/human | Canonical (type I) | activating |
FcγRIII | CD16 | αγγ | fcgr3 | Macrophages, Neutrophils, dendritic cells and NK cells | Low to medium/IgG/mouse | Canonical (type I) | activating |
FcγRIIIa | CD16a | αγγ | FCGR3A | Macrophages and NK cells | Low to medium/IgG/human | Canonical (type I) | activating |
FcγRIIIb | CD16b | α-GPI | FCGR3B | Neutrophils and basophils | Low to medium/IgG/human | Canonical (type I) | activating |
FcγRIV | ------- | αγγ | fcgr4 | Macrophages, Neutrophils and dendritic cells | Low to medium/IgG/mouse | Canonical (type I) | activating |
FcαRI | CD89 | αγγ | fcar/FCAR | Macrophages, neutrophils and Eosinophils | Low/IgA/mouse and human | Canonical (type I) | activating |
Fcα/µR | CD351 | Ig-like domain | fcamr/FCAMR | B cells, macrophages, and activated T cells | High/IgA and IgM/mouse and human | Canonical (type I) | No canonical ITAM/ITIM domains |
FcεRI | ------- | αβγγ | fcer1g/FCER1G | Mast cells, Basophiles, monocytes and Langerhans | High/IgE/mouse and human | Canonical (type I) | activating |
FcεRII | CD23 | C-type lectin-like domain | fcer2/FCER2 | B cells, T cells, Monocytes, Macrophages and Eosinophils | Low/IgE/mouse and human | Non-canonical (C-type lectin) | activating |
CD22 | -------- | SIGLEC family of lectins | CD22 | B cells | sialiated IgG/mouse | Non-canonical (C-type lectin) | inhibitory |
FcRn | --------- | Similar to MHC-I and associates with β2m | fcgrt/FCGRT | Endothelial and Epithelial cells | High/mouse and human | Non-canonical (MHC-I) | No canonical ITAM/ITIM domains |
SIGNR1 | CD209b | β2m | CD209 | Macrophages and dendritic cells | sialiated IgG/mouse | Non-canonical (C-type lectin) | No canonical ITAM/ITIM domains |
DC-SIGN | CD209 | β2m | CD209 | dendritic cells | sialiated IgG/human | Non-canonical (C-type lectin) | No canonical ITAM/ITIM domains |
DCIR | CD367 | C-Type Lectin-Like Receptor | clec4a | DCs, but also by macrophages, monocytes, and B cells | sialiated IgG/mouse | Non-canonical (C-type lectin) | inhibitory |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamdan, T.A.; Lang, P.A.; Lang, K.S. The Diverse Functions of the Ubiquitous Fcγ Receptors and Their Unique Constituent, FcRγ Subunit. Pathogens 2020, 9, 140. https://doi.org/10.3390/pathogens9020140
Hamdan TA, Lang PA, Lang KS. The Diverse Functions of the Ubiquitous Fcγ Receptors and Their Unique Constituent, FcRγ Subunit. Pathogens. 2020; 9(2):140. https://doi.org/10.3390/pathogens9020140
Chicago/Turabian StyleHamdan, Thamer A., Philipp A. Lang, and Karl S. Lang. 2020. "The Diverse Functions of the Ubiquitous Fcγ Receptors and Their Unique Constituent, FcRγ Subunit" Pathogens 9, no. 2: 140. https://doi.org/10.3390/pathogens9020140