MmpS5-MmpL5 Transporters Provide Mycobacterium smegmatis Resistance to imidazo[1,2-b][1,2,4,5]tetrazines
Abstract
:1. Introduction
2. Results
2.1. Mutations in MSMEG_1380 Gene Lead to Imidazo[1,2-b][1,2,4,5]tetrazines Resistance in M. smegmatis
2.2. W.t. MSMEG_1380 Overexpression Increases M. smegmatis Susceptibility to imidazo[1,2-b][1,2,4,5]tetrazines
2.3. MSMEG_1380 Represses the Expression of the mmpS5-mmpL5 Operon in M. smegmatis
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Growth Conditions
4.2. Targeted M. smegmatis mutants’ Construction
4.3. MIC Determination
4.4. MSMEG_1380 Cloning, Expression and Drug-Susceptibility Testing
4.5. Mycobacterial RNA Isolation and Real-Time qPCR
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization Global Tuberculosis Report 2019; WHO: Geneva, Switzerland, 2019; pp. 1–297.
- Gandhi, N.R.; Nunn, P.; Dheda, K.; Schaaf, H.S.; Zignol, M.; Van Soolingen, D.; Jensen, P.; Bayona, J. Multidrug-resistant and extensively drug-resistant tuberculosis: A threat to global control of tuberculosis. Lancet 2010, 375, 1830–1843. [Google Scholar] [CrossRef]
- Caminero, J.A.; Sotgiu, G.; Zumla, A.; Migliori, G.B. Best drug treatment for multidrug-resistant and extensively drug-resistant tuberculosis. Lancet Infect Dis. 2010, 10, 621–629. [Google Scholar] [CrossRef]
- Klopper, M.; Warren, R.M.; Hayes, C.; Gey van Pittius, N.C.; Streicher, E.M.; Müller, B.; Sirgel, F.A.; Chabula-Nxiweni, M.; Hoosain, E.; Coetzee, G.; et al. Emergence and Spread of Extensively and Totally Drug-Resistant Tuberculosis, South Africa. Emerg. Infect. Dis. 2013, 19, 449–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velayati, A.A.; Farnia, P.; Farahbod, A.M. Overview of drug-resistant tuberculosis worldwide. Int. J. Mycobacteriol. 2016, 5, S161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz-Torrico, M.; Duarte, R.; Dalcolmo, M.; D’Ambrosio, L.; Migliori, G.B. New drugs and perspectives for new anti-tuberculosis regimens. Rev. Port. De Pneumol. 2018, 24, 86–98. [Google Scholar]
- Danilenko, V.N.; Osolodkin, D.I.; Lakatosh, S.A.; Preobrazhenskaya, M.N.; Shtil, A.A. Bacterial eukaryotic type serine-threonine protein kinases: From structural biology to targeted anti-infective drug design. Curr. Top. Med. Chem 2011, 11, 1352–1369. [Google Scholar] [CrossRef] [PubMed]
- Prisic, S.; Husson, R.N. Mycobacterium tuberculosis Serine/Threonine Protein Kinases. Microbiol. Spectr. 2014, 2, 1–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maslov, D.A.; Korotina, A.V.; Shur, K.V.; Vatlin, A.A.; Bekker, O.B.; Tolshchina, S.G.; Ishmetova, R.I.; Ignatenko, N.K.; Rusinov, G.L.; Charushin, V.N.; et al. Synthesis and antimycobacterial activity of imidazo[1,2-b][1,2,4,5]tetrazines. Eur. J. Med. Chem. 2019, 178, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Bekker, O.B.; Danilenko, V.N.; Ishmetova, R.I.; Maslov, D.A.; Rusinov, G.L.; Tolshchina, S.G.; Charushin, V.N. Substituted azolo[1,2,4,5]tetrazines-inhibitors of antibacterial serine-threonine protein kinases. NPO SRC “BIOAN”, Moscow, Russia. Patent RU 2462466, 27 September 2012. [Google Scholar]
- Bekker, O.B.; Danilenko, V.N.; Maslov, D.A. Test system of Mycobacterium smegmatis aphVIII+ for screening of inhibitors of serine-threonine protein kinases of eukaryotic type. NPO SRC “BIOAN”, Moscow, Russia. Patent RU 2566998, 27 October 2015. [Google Scholar]
- Maslov, D.A.; Bekker, O.B.; Shur, K.V.; Vatlin, A.A.; Korotina, A.V.; Danilenko, V.N. Whole-genome sequencing and comparative genomic analysis of Mycobacterium smegmatis mutants resistant to imidazo[1,2-b][1,2,4,5]tetrazines, antituberculosis drug candidates. BRSMU 2018, 19–22. [Google Scholar] [CrossRef]
- Vatlin, A.A.; Shur, K.V.; Danilenko, V.N.; Maslov, D.A. Draft Genome Sequences of 12 Mycolicibacterium smegmatis Strains Resistant to Imidazo[1,2-b][1,2,4,5]Tetrazines. Microbiol. Resour. Announc. 2019, 8, e00263-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parish, T.; Stoker, N.G. Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. Microbiology 2000, 146, 1969–1975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maslov, D.A.; Bekker, O.B.; Alekseeva, A.G.; Kniazeva, L.M.; Mavletova, D.A.; Afanasyev, I.I.; Vasilevich, N.I.; Danilenko, V.N. Aminopyridine- and aminopyrimidine-based serine/threonine protein kinase inhibitors are drug candidates for treating drug-resistant tuberculosis. BRSMU 2017, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Richard, M.; Gutiérrez, A.V.; Viljoen, A.J.; Ghigo, E.; Blaise, M.; Kremer, L. Mechanistic and Structural Insights Into the Unique TetR-Dependent Regulation of a Drug Efflux Pump in Mycobacterium abscessus. Front. Microbio. 2018, 9, 649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andries, K.; Villellas, C.; Coeck, N.; Thys, K.; Gevers, T.; Vranckx, L.; Lounis, N.; de Jong, B.C.; Koul, A. Acquired resistance of Mycobacterium tuberculosis to bedaquiline. PLoS ONE 2014, 9, e102135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, C.B. Development of Mycobacterium tuberculosis Whole Cell Screening Hits as Potential Antituberculosis Agents. J. Med. Chem. 2013, 56, 7755–7760. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, P.; Akhter, Y. Siderophore transport by MmpL5-MmpS5 protein complex in Mycobacterium tuberculosis. J. Inorg. Biochem. 2017, 170, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Milano, A.; Pasca, M.R.; Provvedi, R.; Lucarelli, A.P.; Manina, G.; de Jesus Lopes Ribeiro, A.L.; Manganelli, R.; Riccardi, G. Azole resistance in Mycobacterium tuberculosis is mediated by the MmpS5-MmpL5 efflux system. Tuberculosis 2009, 89, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Belisle, J.T.; Mahaffey, S.B.; Hill, P.J. Isolation of Mycobacterium Species Genomic DNA. In Mycobacteria Protocols; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2010; Volume 465, pp. 1–12. [Google Scholar]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goude, R.; Parish, T. Electroporation of Mycobacteria. In Mycobacteria Protocols, 2nd ed.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2010; Volume 465, pp. 203–215. [Google Scholar]
- Blokpoel, M.C.J. Tetracycline-inducible gene regulation in mycobacteria. Nucleic Acids Res. 2005, 33, e22. [Google Scholar] [CrossRef] [PubMed]
- Rustad, T.R.; Roberts, D.M.; Liao, R.P.; Sherman, D.R. Isolation of Mycobacterial RNA. In Mycobacteria Protocols; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2010; Volume 465, pp. 13–22. [Google Scholar]
Bacterial Strains | ||
---|---|---|
Name | Comment | Origin |
M. smegmatis mc2 155 | Wild-type (w.t.) strain | |
M. smegmatis atR1 | Spontaneous mutant of mc2 155. Mutations: Y52H (TAC>CAC) in MSMEG_1601; del LLA41-43 (del GCTGCTCGC480-488) in MSMEG_1380. | [9] |
M. smegmatis atR2 | Spontaneous mutant of mc2 155. Mutations: Y52H (TAC>CAC) in MSMEG_1601; ins GC425-426 (frameshift) in MSMEG_1380. | [9] |
M. smegmatis atR9 | Spontaneous mutant of mc2 155. Mutations: Y188C (TAC>TGC) in MSMEG_2087; ins C8 (frameshift) in MSMEG_1380. | [9] |
M. smegmatis atR10 | Spontaneous mutant of mc2 155. Mutations: R233S (CGT>AGT) in MSMEG_0641; ins C8 (frameshift) in MSMEG_1380. | [9] |
M. smegmatis atR14 | Spontaneous mutant of mc2 155. Mutations: Y52H (TAC>CAC) in MSMEG_1601; ins G448 (frameshift) in MSMEG_1380. | [9] |
M. smegmatis atR19 | Spontaneous mutant of mc2 155. Mutations: Y52H (TAC>CAC) in MSMEG_1601; T52V (ACG>GTG) in MSMEG_1380. | [9] |
M. smegmatis atR33 | Spontaneous mutant of mc2 155. Mutations: ins VG52-53 (ins GTGGGC154-159) in MSMEG_1380. | [9] |
M. smegmatis atR37 | Spontaneous mutant of mc2 155. Mutation: del C 662 (frameshift) in MSMEG_1380. | [9] |
M. smegmatis atR1c | Recombinant strain, mutation: del LLA41-43 (del GCTGCTCGC480-488) in MSMEG_1380. | This study |
M. smegmatis atR2c | Recombinant strain, mutation: ins GC425-426 (frameshift) in MSMEG_1380. | This study |
M. smegmatis atR9c | Recombinant strain, mutation: ins C8 (frameshift) in MSMEG_1380. | This study |
M. smegmatis atR14c | Recombinant strain, mutation: ins G448 (frameshift) in MSMEG_1380. | This study |
M. smegmatis atR33c | Recombinant strain, mutation: ins VG52-53 (ins GTGGGC154-159) in MSMEG_1380 | This study |
M. smegmatis 0641c | Recombinant strain, mutation: R233S (CGT>AGT) in MSMEG_0641. | This study |
M. smegmatis 1601c | Recombinant strain, mutation: Y52H (TAC>CAC) in MSMEG_1601 | This study |
M. smegmatis 2087c | Recombinant strain, mutation: Y188C (TAC>TGC) in MSMEG_2087 | This study |
Compound | M. smegmatis Strains MICs, μg/mL | ||||||||
---|---|---|---|---|---|---|---|---|---|
mc2 155 | atR1c | atR2c | atR9c | atR14c | atR33c | 0641c | 1601c | 2087c | |
3a | 128 | 512 | 512 | 512 | 512 | 512 | 128 | 128 | 128 |
3c | 64 | >128 * | >128 * | >128 * | >128 * | >128 * | 64 | 64 | 64 |
3h | 128 | >256 * | >256 * | >256 * | >256 * | >256 * | 128 | 128 | 128 |
3n | 64 | 256 | 256 | 256 | 256 | 256 | 64 | 64 | 64 |
Compound | Concentration, nmole/disc | Growth Inhibition Halo, mm | |||
---|---|---|---|---|---|
M. smegmatis Transformants | |||||
pMINDKm- | pMINDKm-:msmeg_1380 | pMINDKm-:msmeg_1380-19 | pMINDKm-:msmeg_1380-33 | ||
3a | 300 | 9.8 ± 1.5 | 17.0 ± 3.6 | 8.8 ± 0.8 | 8.2 ± 0.6 |
3c | 300 | 7.0 ± 0.8 | 15.0 ± 2.9 | 6.3 ± 0.5 | 6.3 ± 0.5 |
3h | 40 | 6.7 ± 0.5 | 11.5 ± 0.4 | 6.3 ± 0.5 | 6.5 ± 0.4 |
3n | 100 | 9.7 ± 2.4 | 16.0 ± 0.8 | 9.2 ± 1.3 | 9.3 ± 1.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maslov, D.A.; Shur, K.V.; Vatlin, A.A.; Danilenko, V.N. MmpS5-MmpL5 Transporters Provide Mycobacterium smegmatis Resistance to imidazo[1,2-b][1,2,4,5]tetrazines. Pathogens 2020, 9, 166. https://doi.org/10.3390/pathogens9030166
Maslov DA, Shur KV, Vatlin AA, Danilenko VN. MmpS5-MmpL5 Transporters Provide Mycobacterium smegmatis Resistance to imidazo[1,2-b][1,2,4,5]tetrazines. Pathogens. 2020; 9(3):166. https://doi.org/10.3390/pathogens9030166
Chicago/Turabian StyleMaslov, Dmitry A., Kirill V. Shur, Aleksey A. Vatlin, and Valery N. Danilenko. 2020. "MmpS5-MmpL5 Transporters Provide Mycobacterium smegmatis Resistance to imidazo[1,2-b][1,2,4,5]tetrazines" Pathogens 9, no. 3: 166. https://doi.org/10.3390/pathogens9030166
APA StyleMaslov, D. A., Shur, K. V., Vatlin, A. A., & Danilenko, V. N. (2020). MmpS5-MmpL5 Transporters Provide Mycobacterium smegmatis Resistance to imidazo[1,2-b][1,2,4,5]tetrazines. Pathogens, 9(3), 166. https://doi.org/10.3390/pathogens9030166