Phylogenetic Analysis of Belgian Small Ruminant Lentiviruses Supports Cross Species Virus Transmission and Identifies New Subtype B5 Strains
Abstract
:1. Introduction
2. Results
2.1. Analysis of the Current SRLV Phylogeny
2.2. Phylogeny of Belgian SRLV Strains in the Gag-Pol Region
2.3. Phylogeny of Belgian SRLV Strains in the Pol Region
3. Discussion
4. Materials and Methods
4.1. Sample Selection
4.2. DNA Extraction, PCR Amplification, and Sequencing
4.3. Multiple Alignments and Phylogenetic Analysis
4.4. Recombination Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Leroux, C.; Cruz, J.; Mornex, J. Srlvs: A Genetic Continuum of Lentiviral Species in Sheep and Goats with Cumulative Evidence of Cross Species Transmission. Curr. HIV Res. 2010, 8, 94–100. [Google Scholar] [PubMed]
- Blacklaws, B.A. Small Ruminant Lentiviruses: Immunopathogenesis of Visna-Maedi and Caprine Arthritis and Encephalitis Virus. Comp. Immunol. Microbiol. Infect. Dis. 2012, 35, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Glaria, I.; Reina, R.; Ramirez, H.; de Andres, X.; Crespo, H.; Jauregui, P.; Salazar, E.; Lujan, L.; Perez, M.M.; Benavides, J.; et al. Visna/Maedi Virus Genetic Characterization and Serological Diagnosis of Infection in Sheep from a Neurological Outbreak. Vet. Microbiol. 2012, 155, 137–146. [Google Scholar] [CrossRef]
- Minguijon, E.; Reina, R.; Perez, M.; Polledo, L.; Villoria, M.; Ramirez, H.; Leginagoikoa, I.; Badiola, J.J.; Garcia-Marin, J.F.; de Andres, D.; et al. Small Ruminant Lentivirus Infections and Diseases. Vet. Microbiol. 2015, 181, 75–89. [Google Scholar] [CrossRef]
- Blacklaws, B.A.; Berriatua, E.; Torsteinsdottir, S.; Watt, N.J.; de Andres, D.; Klein, D.; Harkiss, G.D. Transmission of Small Ruminant Lentiviruses. Vet. Microbiol. 2004, 101, 199–208. [Google Scholar] [CrossRef]
- Alvarez, V.; Arranz, J.; Daltabuit-Test, M.; Leginagoikoa, I.; Juste, R.A.; Amorena, B.; de Andres, D.; Lujan, L.L.; Badiola, J.J.; Berriatua, E. Relative Contribution of Colostrum from Maedi-Visna Virus (Mvv) Infected Ewes to Mvv-Seroprevalence in Lambs. Res. Vet. Sci. 2005, 78, 237–243. [Google Scholar] [CrossRef]
- Shah, C.; Böni, J.; Huder, J.B.; Vogt, H.R.; Mühlherr, J.; Zanoni, R.; Miserez, R.; Lutz, H.; Schüpbach, J. Phylogenetic Analysis and Reclassification of Caprine and Ovine Lentiviruses Based on 104 New Isolates: Evidence for Regular Sheep-to-Goat Transmission and Worldwide Propagation through Livestock Trade. Virology 2004, 319, 12–26. [Google Scholar] [CrossRef] [Green Version]
- Pisoni, G.; Quasso, A.; Moroni, P. Phylogenetic Analysis of Small-Ruminant Lentivirus Subtype B1 in Mixed Flocks: Evidence for Natural Transmission from Goats to Sheep. Virology 2005, 339, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Pepin, M.; Vitu, C.; Russo, P.; Mornex, J.F.; Peterhans, E. Maedi-Visna Virus Infection in Sheep: A Review. Vet. Res. 1998, 29, 341–367. [Google Scholar] [PubMed]
- Gjerset, B.; Rimstad, E.; Teige, J.; Soetaert, K.; Jonassen, C.M. Impact of Natural Sheep-Goat Transmission on Detection and Control of Small Ruminant Lentivirus Group C Infections. Vet. Microbiol. 2009, 135, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Olech, M.; Valas, S.; Kuzmak, J. Epidemiological Survey in Single-Species Flocks from Poland Reveals Expanded Genetic and Antigenic Diversity of Small Ruminant Lentiviruses. PLoS ONE 2018, 13, e0193892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olech, M.; Rachid, A.; Croise, B.; Kuzmak, J.; Valas, S. Genetic and Antigenic Characterization of Small Ruminant Lentiviruses Circulating in Poland. Virus Res. 2012, 163, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, H.; Reina, R.; Amorena, B.; de Andres, D.; Martinez, H.A. Small Ruminant Lentiviruses: Genetic Variability, Tropism and Diagnosis. Viruses 2013, 5, 1175–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michiels, R.; Mael, E.V.; Quinet, C.; Welby, S.; Cay, B.; Regge, N.D. Seroprevalence and Risk Factors Related to Small Ruminant Lentivirus Infections in Belgian Sheep and Goats. Prev. Vet. Med. 2018, 151, 13–20. [Google Scholar] [CrossRef]
- Grego, E.; Bertolotti, L.; Quasso, A.; Profiti, M.; Lacerenza, D.; Muz, D.; Rosati, S. Genetic Characterization of Small Ruminant Lentivirus in Italian Mixed Flocks: Evidence for a Novel Genotype Circulating in a Local Goat Population. J. Gen. Virol. 2007, 88, 3423–3427. [Google Scholar] [CrossRef]
- Pisoni, G.; Bertoni, G.; Manarolla, G.; Vogt, H.R.; Scaccabarozzi, L.; Locatelli, C.; Moroni, P. Genetic Analysis of Small Ruminant Lentiviruses Following Lactogenic Transmission. Virology 2010, 407, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Giammarioli, M.; Bazzucchi, M.; Puggioni, G.; Brajon, G.; Giudici, S.D.; Taccori, F.; Feliziani, F.; de Mia, G.M. Phylogenetic Analysis of Small Ruminant Lentivirus (Srlv) in Italian Flocks Reveals the Existence of Novel Genetic Subtypes. Virus Genes 2011, 43, 380–384. [Google Scholar] [CrossRef]
- Kuhar, U.; Barlic-Maganja, D.; Grom, J. Phylogenetic Analysis of Small Ruminant Lentiviruses Detected in Slovenia. Vet. Microbiol. 2013, 162, 201–206. [Google Scholar] [CrossRef]
- Olech, M.; Murawski, M.; Kuzmak, J. Molecular Analysis of Small-Ruminant Lentiviruses in Polish Flocks Reveals the Existence of a Novel Subtype in Sheep. Arch. Virol. 2019, 164, 1193–1198. [Google Scholar] [CrossRef] [Green Version]
- Colitti, B.; Coradduzza, E.; Puggioni, G.; Capucchio, M.T.; Reina, R.; Bertolotti, L.; Rosati, S. A New Approach for Small Ruminant Lentivirus Full Genome Characterization Revealed the Circulation of Divergent Strains. PLos ONE 2019, 14, e0212585. [Google Scholar] [CrossRef]
- Bertolotti, L.; Mazzei, M.; Puggioni, G.; Carrozza, M.L.; Giudici, S.D.; Muz, D.; Juganaru, M.; Patta, C.; Tolari, F.; Rosati, S. Characterization of New Small Ruminant Lentivirus Subtype B3 Suggests Animal Trade within the Mediterranean Basin. J. Gen. Virol. 2011, 92, 1923–1929. [Google Scholar] [CrossRef] [PubMed]
- Santry, L.A.; de Jong, J.; Gold, A.C.; Walsh, S.R.; Menzies, P.I.; Wootton, S.K. Genetic Characterization of Small Ruminant Lentiviruses Circulating in Naturally Infected Sheep and Goats in Ontario, Canada. Virus Res. 2013, 175, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Reina, R.; Bertolotti, L.; Giudici, S.D.; Puggioni, G.; Ponti, N.; Profiti, M.; Patta, C.; Rosati, S. Small Ruminant Lentivirus Genotype E Is Widespread in Sarda Goat. Vet. Microbiol. 2010, 144, 24–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michiels, R.; van Mael, E.; Quinet, C.; Adjadj, N.R.; Cay, A.B.; de Regge, N. Comparative Analysis of Different Serological and Molecular Tests for the Detection of Small Ruminant Lentiviruses (Srlvs) in Belgian Sheep and Goats. Viruses 2018, 10, 696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanoni, R.; Pauli, U.; Peterhans, E. Caprine Arthritis-Encephalitis (Cae) and Maedi-Visna Viruses Detected by Polymerase Chain Reaction (Pcr). Vet. Microbiol. 1990, 23, 329–335. [Google Scholar] [CrossRef]
- Minardi da Cruz, J.C.; Singh, D.K.; Lamara, A.; Chebloune, Y. Small Ruminant Lentiviruses (Srlvs) Break the Species Barrier to Acquire New Host Range. Viruses 2013, 5, 1867–1884. [Google Scholar] [CrossRef] [Green Version]
- Pisoni, G.; Bertoni, G.; Puricelli, M.; Maccalli, M.; Moroni, P. Demonstration of Coinfection with and Recombination by Caprine Arthritis-Encephalitis Virus and Maedi-Visna Virus in Naturally Infected Goats. J. Virol. 2007, 81, 4948–4955. [Google Scholar] [CrossRef] [Green Version]
- Shah, C.; Huder, J.B.; Boni, J.; Schonmann, M.; Muhlherr, J.; Lutz, H.; Schupbach, J. Direct Evidence for Natural Transmission of Small-Ruminant Lentiviruses of Subtype A4 from Goats to Sheep and Vice Versa. J. Virol. 2004, 78, 7518–7522. [Google Scholar] [CrossRef] [Green Version]
- Souza, T.S.; Pinheiro, R.R.; Costa, J.N.; Lima, C.C.; Andrioli, A.; Azevedo, D.A.; Santos, V.W.; Araujo, J.F.; Sousa, A.L.; Pinheiro, D.N.; et al. Interspecific Transmission of Small Ruminant Lentiviruses from Goats to Sheep. Braz. J. Microbiol. 2015, 46, 867–874. [Google Scholar] [CrossRef] [Green Version]
- Courgnaud, V.; Saurin, W.; Villinger, F.; Sonigo, P. Different Evolution of Simian Immunodeficiency Virus in a Natural Host and a New Host. Virology 1998, 247, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Erhouma, E.; Guiguen, F.; Chebloune, Y.; Gauthier, D.; Lakhal, L.M.; Greenland, T.; Mornex, J.F.; Leroux, C.; Alogninouwa, T. Small Ruminant Lentivirus Proviral Sequences from Wild Ibexes in Contact with Domestic Goats. J. Gen. Virol. 2008, 89, 1478–1484. [Google Scholar] [CrossRef] [PubMed]
- de Andres, X.; Ramirez, H.; Bertolotti, L.; Roman, B.S.; Glaria, I.; Crespo, H.; Jauregui, P.; Minguijon, E.; Juste, R.; Leginagoikoa, I.; et al. An Insight into a Combination of Elisa Strategies to Diagnose Small Ruminant Lentivirus Infections. Vet. Immunol. Immunopathol. 2013, 152, 277–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanjose, L.; Pinczowski, P.; Crespo, H.; Perez, M.; Glaria, I.; Gimeno, M.; de Andres, D.; Amorena, B.; Lujan, L.; Reina, R. Diagnosing Infection with Small Ruminant Lentiviruses of Genotypes a and B by Combining Synthetic Peptides in Elisa. Vet. J. 2015, 204, 88–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Regge, N.; Cay, B. Development, Validation and Evaluation of Added Diagnostic Value of a Q(Rt)-Pcr for the Detection of Genotype a Strains of Small Ruminant Lentiviruses. J. Virol. Methods 2013, 194, 250–257. [Google Scholar] [CrossRef]
- Mignon, B.; Waxweiler, S.; Thiry, E.; Boulanger, D.; Dubuisson, J.; Pastoret, P.P. Epidemiological Evaluation of a Monoclonal Elisa Detecting Bovine Viral Diarrhoea Pestivirus Antigens in Field Blood Samples of Persistently Infected Cattle. J. Virol. Methods 1992, 40, 85–93. [Google Scholar] [CrossRef]
- Hall, T.A. Bioedit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/Nt. Nucleic. Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. Clustal W: Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Position-Specific Gap Penalties and Weight Matrix Choice. Nucleic. Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Nei, M.; Kumar, S. Prospects for Inferring Very Large Phylogenies by Using the Neighbor-Joining Method. Proc. Natl. Acad. Sci. USA 2004, 101, 11030–11035. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the Cipres Science Gateway for Inference of Large Phylogenetic Trees. In Proceedings of the Gateway Computing Environments Workshop (GCE) (2010), New Orleans, LA, USA, 14 November 2010; pp. 1–8. [Google Scholar]
- Kumar, S.; Stecher, G.; Tamura, K. Mega7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2015, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Martin, D.P.; Murrell, B.; Golden, M.; Khoosal, A.; Muhire, B. Rdp4: Detection and Analysis of Recombination Patterns in Virus Genomes. Virus Evol. 2015, 1, vev003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fei, D.; Guo, Y.; Fan, Q.; Wang, H.; Wu, J.; Li, M.; Ma, M. Phylogenetic and Recombination Analyses of Two Deformed Wing Virus Strains from Different Honeybee Species in China. PeerJ 2019, 7, e7214. [Google Scholar] [CrossRef] [PubMed]
Subtypes | Genomic Regions Used for the Classification | Year | Species in Which the Subtype Was Detected | Country of Origin | References |
---|---|---|---|---|---|
A1 | gag-pol (1.8 kb) pol (1.2 kb) RT (279 bp) | 2004 | Sheep | Iceland | [7] |
A2 | 2004 | Sheep | North America | [7] | |
A3 | 2004 | Sheep and goats | Switzerland | [7] | |
A4 | 2004 | Sheep and goats | Switzerland | [7] | |
A5 | 2004 | Goats | Switzerland | [7] | |
A6 | RT (279 bp) | 2004 | Sheep and goats | Southern France | [7] |
A7 | pol (1.2 kb) | 2004 | Goats | Switzerland | [7] |
A8 | gag (684 bp) | 2007 | Goats | Italy | [15] |
A9 | gag (684 bp) | 2007 | Sheep and goats | Italy | [15] |
A10 | pol (353 bp) | 2010 | Goats | Italy | [16] |
A11 | gag-pol (640 bp) | 2011 | Sheep and goats | Italy | [17] |
A12 | CA (467 bp) MA(327 bp) SU (394 bp) | 2012 | Sheep and goats | Poland | [12] |
A13 | Sheep and goats | Poland | [12] | ||
A14 | gag-pol (1471 bp) pol (1025 bp) | 2013 | Goats | Slovenia | [18] |
A15 | 2013 | Sheep | Slovenia | [18] | |
A16 | CA (467 bp) env (344 bp) | 2018 | Goats | Poland | [11] |
A17 | 2018 | Goats | Poland | [11] | |
A18 * | gag (576 bp) | 2019 | Sheep | Poland | [19] |
A18 * | Full genome partial gag gene | 2019 | Goat | Italy | [20] |
A19 | 2019 | Sheep | Italy | [20] | |
B1 | gag-pol (1.8 kb) pol (1.2 kb) RT (279 bp) | 2004 | Sheep and goats | U.S | [7] |
B2 | 2004 | Sheep | Switzerland | [7] | |
B3 | gag-pol (1320 bp) pol (3201 bp) env (2814 bp) | 2011 | Sheep and goats | Italy | [21] |
B4 | gag (1187 bp) | 2013 | goats | Canada | [22] |
C | gag-pol (1.8 kb) pol (1.2 kb) RT (279 bp) | 2004 | Sheep and goats | Norway | [7] |
D | pol (1.2 kb) | 2004 | Sheep and goats | Switzerland | [7] |
E1 | gag (525 bp) | 2010 | Goats | Italy | [23] |
E2 | gag (525 bp) | 2010 | Goats | Italy | [23] |
Animal Identification | Species | Type of Farm Activity | Mixed Herds with Sheep and Goats | Farms Size (Number of Animals) | Province (Belgium) | Ct Values Obtained in qPCR | Gag-Pol Subtype | Genetic Distances to the Closest Reference Strains (MVV1514/CAEV Cork) for the Gag-Pol Fragment * | Pol Subtype | Genetic Distances to the Closest Reference Strains (MVV1514/CAEV Cork) for the Pol Fragment * |
---|---|---|---|---|---|---|---|---|---|---|
A.3.4 | Sheep | Hobby | Yes | 7 | Antwerp | Neg | A1 (MN784764) | 17.02% | A1 (MN784784) | 17.63% |
H.4.2 | Sheep | Hobby | No | 17 | Hainaut | Neg | B1 (MN784761) | 10.47% | N.O | |
LB.1.6 | Sheep | Professional | No | 65 | Limburg | 32.91 | A1 (MN784760) | 16.10% | A1 (MN784782) | 16.75% |
LK.3.3 | Sheep | Hobby | No | 7 | Liege | 33.25 | A1 (MN784758) | 15.95% | A1 (MN784779) | 17.83% |
LK.5.4 | Sheep | Hobby | No | 23 | Liege | 32.29 | A1 (MN784757) | 15.74% | A1 (MN784778) | 18.12% |
LK.6.3 | Sheep | Professional | No | 150 | Liege | 34.14 | A1 (MN784756) | 14.81% | A1 (MN784777) | 17.43% |
LX.2.1 | Sheep | Professional | No | 226 | Luxembourg | 29.1 | A1 (MN784755) | 15.17% | A1 (MN784776) | 18.41% |
OV.1.7 | Sheep | Hobby | No | 15 | East Flanders | 35.13 | A1 (MN784754) | 15.10% | A1 (MN784775) | 17.43% |
OV.13.1 | Sheep | Hobby | No | 10 | East Flanders | 33.08 | A1 (MN784752) | 14.60% | A1 (MN784774) | 18.51% |
OV.20.1 | Sheep | Hobby | No | 15 | East Flanders | 34.1 | A1 (MN784751) | 15.67% | A1 (MN784773) | 16.85% |
VB.1.2 | Sheep | Hobby | No | 12 | Flemish Brabant | 36.82 | A1 (MN784750) | 15.53% | A1 (MN784771) | 18.41% |
VB.3.1 | Sheep | Hobby | Yes | 7 | Flemish Brabant | Neg | N.O a | N.O | ||
VB.7.7 | Sheep | Hobby | No info | 7 | Flemish Brabant | 32.35 | A1 (MN784748) | 16.24% | A1 (MN784772) | 17.43% |
WV.4.3 | Sheep | Hobby | No | 10 | West Flanders | 35.28 | A1 (MN784746) | 16.38% | A1 (MN784767) | 16.94% |
WV.14.5 | Sheep | Professional | No info | 200 | West Flanders | 35.06 | A1 (MN784744) | 14.46% | A1 (MN784769) | 17.43% |
H.1.6 | Goat | Hobby | Yes | 10 | Hainaut | 40 | B1 (MN784763) | 11.25% | N.O | |
H.2.6 | Goat | Professional | No | 100 | Hainaut | 36.78 | B1 (MN784762) | 12.39% | B1 (MN784783) | 13.22% |
LB.2.3 | Goat | Hobby | No | 3 | Limburg | 32.55 | B1 (MN784759) | 12.25% | B5 (MN784781) | 13.12% |
LK.3.1 | Goat | Hobby | No | 4 | Liege | 40 | N.O | A1 (MN784780) | 18.90% | |
OV.4.5 | Goat | Hobby | Yes | 15 | East Flanders | 38.97 | N.O | N.O | ||
OV.7.7 | Goat | Professional | No | 70 | East Flanders | 37.42 | B1 (MN784753) | 12.11% | N.O | |
VB.5.6 | Goat | Professional | Yes | 100 | Flemish Brabant | 36.65 | B1 (MN784749) | 12.89% | B5 (MN784770) | 13.22% |
WV.3.2 | Goat | Hobby | No | 3 | West Flanders | 36.7 | B1 (MN784747) | 12.54% | B1 (MN784768) | 13.12% |
WV.7.1 | Goat | Professional | Yes | 347 | West Flanders | 40 | N.O | A1 (MN784766) | 18.22% | |
WV.12.3 | Goat | Hobby | No | 10 | West Flanders | 34.12 | B1 (MN784745) | 11.32% | B1 (MN784765) | 12.63% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michiels, R.; Adjadj, N.R.; De Regge, N. Phylogenetic Analysis of Belgian Small Ruminant Lentiviruses Supports Cross Species Virus Transmission and Identifies New Subtype B5 Strains. Pathogens 2020, 9, 183. https://doi.org/10.3390/pathogens9030183
Michiels R, Adjadj NR, De Regge N. Phylogenetic Analysis of Belgian Small Ruminant Lentiviruses Supports Cross Species Virus Transmission and Identifies New Subtype B5 Strains. Pathogens. 2020; 9(3):183. https://doi.org/10.3390/pathogens9030183
Chicago/Turabian StyleMichiels, Rodolphe, Nadjah Radia Adjadj, and Nick De Regge. 2020. "Phylogenetic Analysis of Belgian Small Ruminant Lentiviruses Supports Cross Species Virus Transmission and Identifies New Subtype B5 Strains" Pathogens 9, no. 3: 183. https://doi.org/10.3390/pathogens9030183
APA StyleMichiels, R., Adjadj, N. R., & De Regge, N. (2020). Phylogenetic Analysis of Belgian Small Ruminant Lentiviruses Supports Cross Species Virus Transmission and Identifies New Subtype B5 Strains. Pathogens, 9(3), 183. https://doi.org/10.3390/pathogens9030183