Intelligent Mechanisms of Macrophage Apoptosis Subversion by Mycobacterium
Abstract
:1. Introduction
2. Anti-Apoptotic Determinants of Mycobacterium
3. Mycobacterium Thwarts Macrophage Apoptosis by Inducing Anti-Apoptotic Cytokines
4. Mtb can Suppress Apoptosis by Regulating microRNAs Expression
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report 2019; World Health Organization: Geneva, Switzerland, 2019; Available online: https://www.who.int/tb/publications/global_report/en/ (accessed on 17 October 2019).
- Marakalala, M.J.; Martinez, F.O.; Plüddemann, A.; Gordon, S. Macrophage heterogeneity in the immunopathogenesis of tuberculosis. Front. Microbiol. 2018, 9, 1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferraris, D.; Miggiano, R.; Rossi, F.; Rizzi, M. Mycobacterium tuberculosis molecular determinants of infection, survival strategies, and vulnerable targets. Pathogens 2018, 7, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hmama, Z.; Peña-Díaz, S.; Joseph, S.; Av-Gay, Y. Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis. Immunol. Rev. 2015, 264, 220–232. [Google Scholar] [CrossRef] [PubMed]
- Divangahi, M.; Behar, S.M.; Remold, H. Dying to live: How the death modality of the infected macrophage affects immunity to tuberculosis. Adv. Exp. Med. Biol. 2013, 783, 103–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, G.; Schaible, U.E. Macrophage defense mechanisms against intracellular bacteria. Immunol. Rev. 2015, 264, 182–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, D.M.; ten Bokum, A.M.; O’Leary, S.M.; O’Sullivan, M.P.; Keane, J. Bystander macrophage apoptosis after Mycobacterium tuberculosis H37Ra infection. Infect. Immun. 2008, 76, 351–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojas, M.; García, L.F.; Nigou, J.; Puzo, G.; Olivier, M. Mannosylated lipoarabinomannan antagonizes Mycobacterium tuberculosis-induced macrophage apoptosis by altering Ca+ 2-dependent cell signaling. J. Infect. Dis. 2000, 182, 240–251. [Google Scholar] [CrossRef] [Green Version]
- Maiti, D.; Bhattacharyya, A.; Basu, J. Lipoarabinomannan from Mycobacterium tuberculosis promotes macrophage survival by phosphorylating bad through a phosphatidylinositol 3-kinase/Akt pathway. J. Biol. Chem. 2001, 276, 329–333. [Google Scholar] [CrossRef] [Green Version]
- Wong, D.; Chao, J.D.; Av-Gay, Y. Mycobacterium tuberculosis-secreted phosphatases: From pathogenesis to targets for TB drug development. Trends Microbiol. 2013, 21, 100–109. [Google Scholar] [CrossRef]
- Poirier, V.; Bach, H.; Av-Gay, Y. Mycobacterium tuberculosis promotes anti-apoptotic activity of the macrophage by PtpA protein-dependent dephosphorylation of host GSK3α. J. Biol. Chem. 2014, 289, 29376–29385. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Teng, J.L.; Zhao, D. The ubiquitin ligase TRIM27 functions as a host restriction factor antagonized by Mycobacterium tuberculosis PtpA during mycobacterial infection. Sci. Rep. 2016, 6, 34827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, L.; Wu, X.; Jin, C.; Li, F.; Xiong, S.; Dong, Y. MptpB promotes Mycobacteria survival by inhibiting the expression of inflammatory mediators and cell apoptosis in macrophages. Front. Cell Infect. Microbiol. 2018, 8, 171. [Google Scholar] [CrossRef] [PubMed]
- Prisic, S.; Husson, R.N. Mycobacterium tuberculosis serine/threonine protein kinases. Microbiol. Spectr. 2014, 2, 1–42. [Google Scholar] [CrossRef] [Green Version]
- Jayakumar, D.; Jacobs, W.R.; Narayanan, S. Protein kinase E of Mycobacterium tuberculosis has a role in the nitric oxide stress response and apoptosis in a human macrophage model of infection. Cell Microbiol. 2008, 10, 365–374. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Narayanan, S. pknE, a serine/threonine kinase of Mycobacterium tuberculosis modulates multiple apoptotic paradigms. Infect. Genet. Evol. 2012, 12, 737–747. [Google Scholar] [CrossRef]
- Velmurugan, K.; Chen, B.; Miller, J.L. Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells. PLoS Pathog. 2007, 3, e110. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.L.; Velmurugan, K.; Cowan, M.J.; Briken, V. The type I NADH dehydrogenase of Mycobacterium tuberculosis counters phagosomal NOX2 activity to inhibit TNF-α-mediated host cell apoptosis. PLoS Pathog. 2010, 6, e1000864. [Google Scholar] [CrossRef]
- Olsen, A.; Chen, Y.; Ji, Q.; Zhu, G.; De Silva, A.D.; Vilchèze, C.; Weisbrod, T.; Li, W.; Xu, J.; Larsen, M.; et al. Targeting Mycobacterium tuberculosis tumor necrosis factor alpha-downregulating genes for the development of antituberculous vaccines. MBio 2016, 7, e01023-15. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Singh, V.; Lau, A.; Stokes, R.W.; Obregón-Henao, A.; Orme, I.M.; Wong, D.; Av-Gay, Y.; Hmama, Z. Mycobacterium tuberculosis nucleoside diphosphate kinase inactivates small GTPases leading to evasion of innate immunity. PLoS Pathog. 2013, 9, e1003499. [Google Scholar] [CrossRef] [Green Version]
- Bhusal, R.P.; Bashiri, G.; Kwai, B.X.; Sperry, J.; Leung, I.K. Targeting isocitrate lyase for the treatment of latent tuberculosis. Drug Discov. Today 2017, 22, 1008–1016. [Google Scholar] [CrossRef]
- Li, J.M.; Na, L.; Zhu, D.Y.; Wan, L.G.; He, Y.L.; Chun, Y. Isocitrate lyase from Mycobacterium tuberculosis promotes survival of Mycobacterium smegmatis within macrophage by suppressing cell apoptosis. Chin. Med. J. 2008, 121, 1114–1119. [Google Scholar] [CrossRef] [PubMed]
- Meena, L.S. An overview to understand the role of PE_PGRS family proteins in Mycobacterium tuberculosis H37Rv and their potential as new drug targets. Biotechnol. Appl. Biochem. 2015, 62, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Long, Q.; Zeng, J.; Li, P.; Yang, W.; Chen, X.; Xie, J. Mycobacterium tuberculosis PE_PGRS41 enhances the intracellular survival of M. smegmatis within macrophages via blocking innate immunity and inhibition of host defense. Sci. Rep. 2017, 7, 46716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, Q.; Xiang, X.; Yin, Q.; Li, S.; Yang, W.; Sun, H.; Xie, J.; Deng, W. PE_PGRS62 promotes the survival of Mycobacterium smegmatis within macrophages via disrupting ER stress-mediated apoptosis. J. Cell. Physiol. 2019, 234, 19774–19784. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Deng, W.; Zeng, J.; Ren, S.; Ali, M.K.; Gu, Y.; Li, Y.; Xie, J. Mycobacterium tuberculosis PE_PGRS18 enhances the intracellular survival of M. smegmatis via altering host macrophage cytokine profiling and attenuating the cell apoptosis. Apoptosis 2017, 22, 502–509. [Google Scholar] [CrossRef]
- Danelishvili, L.; Yamazaki, Y.; Selker, J.; Bermudez, L.E. Secreted Mycobacterium tuberculosis Rv3654c and Rv3655c proteins participate in the suppression of macrophage apoptosis. PLoS ONE 2010, 5, e10474. [Google Scholar] [CrossRef]
- Rengarajan, J.; Bloom, B.R.; Rubin, E.J. Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc. Natl. Acad. Sci. USA 2005, 102, 8327–8332. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Lu, Q.; Dong, Y.; Yue, Y.; Xiong, S. Rv3033, as an Emerging Anti-apoptosis Factor, Facilitates Mycobacteria Survival via Inhibiting Macrophage Intrinsic Apoptosis. Front. Immunol. 2018, 9, 2136. [Google Scholar] [CrossRef] [Green Version]
- Danelishvili, L.; Everman, J.; McNamara, M.; Bermudez, L. Inhibition of the plasma-membrane-associated serine protease cathepsin G by Mycobacterium tuberculosis Rv3364c suppresses caspase-1 and pyroptosis in macrophages. Front. Microbiol. 2012, 2, 281. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.M.; Jeon, B.Y.; Lee, H.M.; Jin, H.S.; Yuk, J.M.; Song, C.H.; Lee, S.H.; Lee, Z.W.; Cho, S.N.; Kim, J.M.; et al. Mycobacterium tuberculosis eis regulates autophagy, inflammation, and cell death through redox-dependent signaling. PLoS Pathog. 2010, 6, e1001230. [Google Scholar] [CrossRef] [Green Version]
- Joseph, S.; Yuen, A.; Singh, V.; Hmama, Z. Mycobacterium tuberculosis Cpn60. 2 (GroEL2) blocks macrophage apoptosis via interaction with mitochondrial mortalin. Biol. Open 2017, 6, 481–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutta, N.K.; Mehra, S.; Martinez, A.N.; Alvarez, X.; Renner, N.A.; Morici, L.A.; Pahar, B.; Maclean, A.G.; Lackner, A.A.; Kaushal, D. The stress-response factor SigH modulates the interaction between Mycobacterium tuberculosis and host phagocytes. PLoS ONE 2012, 7, e28958. [Google Scholar] [CrossRef]
- Raman, S.; Song, T.; Puyang, X.; Bardarov, S.; Jacobs, W.R.; Husson, R.N. The alternative sigma factor SigH regulates major components of oxidative and heat stress responses in Mycobacterium tuberculosis. J. Bacteriol. 2001, 183, 6119–6125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehra, S.; Golden, N.A.; Stuckey, K.; Didier, P.J.; Doyle, L.A.; Russell-Lodrigue, K.E.; Sugimoto, C.; Hasegawa, A.; Sivasubramani, S.K.; Roy, C.J.; et al. The Mycobacterium tuberculosis stress response factor SigH is required for bacterial burden as well as immunopathology in primate lungs. J. Infect. Dis. 2012, 205, 1203–1213. [Google Scholar] [CrossRef] [PubMed]
- Londono, C.; Osorio, C.; Gama, V.; Alzate, O. Mortalin, apoptosis, and neurodegeneration. Biomolecules 2012, 2, 143–164. [Google Scholar] [CrossRef] [Green Version]
- Kaur, D.; Mathew, S.; Nair, C.; Begum, A.; Jainanarayan, A.K.; Sharma, M.; Brahmachari, S.K. Structure based drug discovery for designing leads for the non-toxic metabolic targets in multi drug resistant Mycobacterium tuberculosis. J. Transl. Med. 2017, 15, 261. [Google Scholar] [CrossRef] [Green Version]
- Paik, S.; Choi, S.; Lee, K.I.; Back, Y.W.; Son, Y.J.; Jo, E.K.; Kim, H.J. Mycobacterium tuberculosis acyl carrier protein inhibits macrophage apoptotic death by modulating the reactive oxygen species/c-Jun N-terminal kinase pathway. Microbes Infect. 2019, 21, 40–49. [Google Scholar] [CrossRef]
- Li, F.; Feng, L.; Jin, C.; Wu, X.; Fan, L.; Xiong, S.; Dong, Y. LpqT improves mycobacteria survival in macrophages by inhibiting TLR2 mediated inflammatory cytokine expression and cell apoptosis. Tuberculosis 2018, 111, 57–66. [Google Scholar] [CrossRef]
- Su, H.; Zhu, S.; Zhu, L.; Huang, W.; Wang, H.; Zhang, Z.; Xu, Y. Recombinant lipoprotein Rv1016c derived from Mycobacterium tuberculosis is a TLR-2 ligand that induces macrophages apoptosis and inhibits MHC II antigen processing. Front Cell. Infect. Microbiol. 2016, 6, 147. [Google Scholar] [CrossRef] [Green Version]
- Blasco, B.; Chen, J.M.; Hartkoorn, R.; Sala, C.; Uplekar, S.; Rougemont, J.; Pojer, F.; Cole, S.T. Virulence regulator EspR of Mycobacterium tuberculosis is a nucleoid-associated protein. PLoS Pathog. 2012, 8, e1002621. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zuo, M.; Chen, H.; Liu, S.; Wu, X.; Cui, Z.; Yang, H.; Liu, H.; Ge, B. Mycobacterium tuberculosis lipoprotein MPT83 induces apoptosis of infected macrophages by activating the TLR2/p38/COX-2 signaling pathway. J. Immunol. 2017, 198, 4772–4780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, C.; Wu, X.; Dong, C.; Li, F.; Fan, L.; Xiong, S.; Dong, Y. EspR promotes mycobacteria survival in macrophages by inhibiting MyD88 mediated inflammation and apoptosis. Tuberculosis 2019, 116, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Etna, M.P.; Giacomini, E.; Severa, M.; Coccia, E.M. Pro-and anti-inflammatory cytokines in tuberculosis: A two-edged sword in TB pathogenesis. Semin. Immunol. 2014, 26, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Balcewicz-Sablinska, M.K.; Gan, H.; Remold, H. Interleukin 10 produced by macrophages inoculated with Mycobacterium avium attenuates mycobacteria-induced apoptosis by reduction of TNF-α activity. J. Infect Dis. 1999, 180, 1230–1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, C.G.; Kullberg, M.C.; Jankovic, D.; Cheever, A.W.; Caspar, P.; Coffman, R.L.; Sher, A. Transgenic mice expressing human interleukin-10 in the antigen-presenting cell compartment show increased susceptibility to infection with Mycobacterium avium associated with decreased macrophage effector function and apoptosis. Infect. Immun. 2002, 70, 6672–6679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, N.R.; Swan, K.; Li, X.; Tachado, S.D.; Koziel, H. Impaired M. tuberculosis—Mediated apoptosis in alveolar macrophages from HIV+ persons: Potential role of IL-10 and BCL-3. J. Leukoc. Biol. 2009, 86, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Pollara, G.; Turner, C.T.; Tomlinson, G.S.; Bell, L.C.; Khan, A.; Peralta, L.F.; Ricciardolo, F.L. Exaggerated in vivo IL-17 responses discriminate recall responses in active TB. bioRxiv 2019. bioRxiv: 516690. [Google Scholar]
- Cruz, A.; Ludovico, P.; Torrado, E.; Gama, J.B.; Sousa, J.; Gaifem, J.; Appelberg, R.; Rodrigues, F.; Cooper, A.M.; Pedrosa, J.; et al. IL-17A promotes intracellular growth of Mycobacterium by inhibiting apoptosis of infected macrophages. Front. Immunol. 2015, 6, 498. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.H.; Chen, H.Y.; Huang, C.; Yan, J.M.; Yin, Z.; Zhang, X.L.; Pan, Q. Accumulation of EBI3 induced by virulent Mycobacterium tuberculosis inhibits apoptosis in murine macrophages. Pathog. Dis. 2019, 77, ftz007. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Li, X.; Wu, M. miRNAs reshape immunity and inflammatory responses in bacterial infection. Signal Transduct. Target. Ther. 2018, 3, 14. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Jiang, J.; Wang, X.; Zhai, F.; Cheng, X. miR-582-5p is upregulated in patients with active tuberculosis and inhibits apoptosis of monocytes by targeting FOXO1. PLoS ONE 2013, 8, e78381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Jiao, J.; Xu, W.; Zhao, H.; Zhang, C.; Shi, Y.; Xiao, Z. MiR-155 is upregulated in patients with active tuberculosis and inhibits apoptosis of monocytes by targeting FOXO3. Mol. Med. Rep. 2015, 12, 7102–7108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothchild, A.C.; Sissons, J.R.; Shafiani, S.; Plaisier, C.; Min, D.; Mai, D.; Gilchrist, M.; Peschon, J.; Larson, R.P.; Bergthaler, A.; et al. MiR-155–regulated molecular network orchestrates cell fate in the innate and adaptive immune response to Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 2016, 113, E6172–E6181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xi, X.; Zhang, C.; Han, W.; Zhao, H.; Zhang, H.; Jiao, J. MicroRNA-223 is upregulated in active tuberculosis patients and inhibits apoptosis of macrophages by targeting FOXO3. Genet. Test. Mol. Biomark. 2015, 19, 650–656. [Google Scholar] [CrossRef]
- Sharbati, J.; Lewin, A.; Kutz-Lohroff, B.; Kamal, E.; Einspanier, R.; Sharbati, S. Integrated microRNA-mRNA-analysis of human monocyte derived macrophages upon Mycobacterium avium subsp. hominissuis infection. PLoS ONE 2011, 6, e20258. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, S.; Tang, Y.; Liu, Q.; Yao, Y. MPT64 protein from Mycobacterium tuberculosis inhibits apoptosis of macrophages through NF-kB-miRNA21-Bcl-2 pathway. PLoS ONE 2014, 9, e100949. [Google Scholar] [CrossRef]
- Xue, X.; Qiu, Y.; Yang, H.L. Immunoregulatory role of MicroRNA-21 in macrophages in response to bacillus calmette-guerin infection involves modulation of the TLR4/MyD88 signaling pathway. Cell. Physiol. Biochem. 2017, 42, 91–102. [Google Scholar] [CrossRef]
- Zhao, Z.; Hao, J.; Li, X.; Chen, Y.; Qi, X. MiR-21-5p regulates mycobacterial survival and inflammatory responses by targeting Bcl-2 and TLR4 in Mycobacterium tuberculosis-infected macrophages. FEBS Lett. 2019, 593, 1326–1335. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, X.; Wang, W.; Cai, Y.; Li, S.; Chen, Q.; Liao, M.; Zhang, M.; Zeng, G.; Zhou, B.; et al. Down-regulation of miR-20a-5p triggers cell apoptosis to facilitate mycobacterial clearance through targeting JNK2 in human macrophages. Cell Cycle 2016, 15, 2527–2538. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Yi, Z.; Fu, Y. Downregulation of miR-20b-5p facilitates Mycobacterium tuberculosis survival in RAW 264.7 macrophages via attenuating the cell apoptosis by Mcl-1 upregulation. J. Cell. Biochem. 2019, 120, 5889–5896. [Google Scholar] [CrossRef]
- Tripathi, A.; Srivastava, V.; Singh, B.N. hsa-let-7b-5p facilitates Mycobacterium tuberculosis survival in THP-1 human macrophages by Fas downregulation. FEMS Microbiol. Lett. 2018, 365, fny040. [Google Scholar] [CrossRef] [PubMed]
Effector | Cell Model | Mechanisms | Outcome | References |
---|---|---|---|---|
ManLAM | B10R | Blocks Ca+2 influx to the cells. | Inhibition of caspase-1 cleavage, alter mitochondrial membrane permeability and upregulate Bcl-2 | Rojas et al., 2000 |
LAM | THP-1 | Activation of PI3K signaling | Suppression of Bad | Maiti et al., 2001 |
PtpA | THP-1 | Dephosphorylation of GSK3 | Inhibition of caspase-3 cleavage | Poirier et al., 2014 |
U937 | Suppress ubiquitin ligase activity of the TRIM protein | Inhibition of caspase-3 cleavage | Wang et al., 2016 | |
MptpA | RAW264.7 | Reduction of P53 levels | Inhibition of caspase-3 cleavage | Fan et al., 2018 |
PknE | THP-1 | Phosphorylation of Akt | Inhibition of Bad | Kumar and Narayanan et al., 2012 |
Inhibit the expression of pro-apoptotic factors, including P53, TNF-α and Bax | Inhibition of caspase-3 activation | |||
Promote the anti-apoptotic factor Mcl-1 expression | Block Bax mitochondrial translocation | |||
NuoG | THP-1 and BMDM | Blocks of NADPH oxidase mediating ROS production | Inhibition of TNF-α production | Miller et al., 2010 |
Ndk | RAW264.7 | Inhibit NOX2 assembly and ROS production | Inhibition of caspase-3 activation | Sun et al., 2013 |
Icl | RAW264.7 | Unknown | Unknown | Li et al., 2008 |
PE_PGRS62 | THP-1 | Suppression of pro-apoptotic stress-response genes expressions such as CHOP and GRP78/Bip | Inhibit endoplasmic reticulum (ER) stress response | Long et al., 2019 |
PE_PGRS41 | THP-1 | Uncertain | Reduction the cleavage level of caspase 3 and 9 | Deng et al., 2017 |
PE_PGRS18 | THP-1 | Unknown | Unknown | Yang et al., 2017 |
Rv3654c Rv3655c | U937 | Degrade the polypyrimidine tract binding PSF | Suppression of caspase-8 activation | Danelishvili et al., 2010 |
Rv3033 | RAW264.7 and murine BMDM | Abolish translocation of Bax into mitochondria and cytochrome c into cytoplasm | Suppression of caspase-9 activation | Zhang et al., 2018 |
Rv3365c | U937 | Inhibit serine cathepsin G | Suppression of caspase-1 | Danelishvili et al., 2012 |
Eis | Murine BMDM | Block the JNK signaling | Inhibition of ROS production | Shin et al., 2010 |
SigH | Rh-BMDM | Promote prostaglandin synthetase-2 expression | Inhibition P53 dependent pathway | Dutta et al., 2012 |
AcpM | Murine BMDM | Suppress JNK signaling | Reduction of ROS production | Paik et al., 2019 |
LpqT | RAW264.7 | Antagonized TLR-2 signaling | Inhibition of caspase-3 cleavage | Li et al., 2018 |
EspR | RAW264.7 | Block TLR signaling | Inhibition of caspase-8 and 3 cleavage | Jin et al., 2019 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdalla, A.E.; Ejaz, H.; Mahjoob, M.O.; Alameen, A.A.M.; Abosalif, K.O.A.; Elamir, M.Y.M.; Mousa, M.A. Intelligent Mechanisms of Macrophage Apoptosis Subversion by Mycobacterium. Pathogens 2020, 9, 218. https://doi.org/10.3390/pathogens9030218
Abdalla AE, Ejaz H, Mahjoob MO, Alameen AAM, Abosalif KOA, Elamir MYM, Mousa MA. Intelligent Mechanisms of Macrophage Apoptosis Subversion by Mycobacterium. Pathogens. 2020; 9(3):218. https://doi.org/10.3390/pathogens9030218
Chicago/Turabian StyleAbdalla, Abualgasim Elgaili, Hasan Ejaz, Mahjoob Osman Mahjoob, Ayman Ali Mohammed Alameen, Khalid Omer Abdalla Abosalif, Mohammed Yagoub Mohammed Elamir, and Mohammed Alsadig Mousa. 2020. "Intelligent Mechanisms of Macrophage Apoptosis Subversion by Mycobacterium" Pathogens 9, no. 3: 218. https://doi.org/10.3390/pathogens9030218
APA StyleAbdalla, A. E., Ejaz, H., Mahjoob, M. O., Alameen, A. A. M., Abosalif, K. O. A., Elamir, M. Y. M., & Mousa, M. A. (2020). Intelligent Mechanisms of Macrophage Apoptosis Subversion by Mycobacterium. Pathogens, 9(3), 218. https://doi.org/10.3390/pathogens9030218