Prevalence, Antimicrobial Resistance Profiles, Virulence and Enterotoxins-Determinant Genes of MRSA Isolated from Subclinical Bovine Mastitis in Egypt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Milk Samples
2.2. California Mastitis Test (CMT)
2.3. Isolation and Identification of S. aureus
2.4. Antimicrobial Susceptibility Testing of S. aureus
2.5. Detection of Virulence and Enterotoxins Genes of MRSA Strains Using PCR
2.5.1. Genomic DNA Extraction
2.5.2. Polymerase Chain Reaction (PCR)
2.6. Statistical Analysis
3. Results
3.1. Prevalence of S. aureus Subclinical Bovine Mastitis
3.2. Antimicrobial Susceptibility Phenotypic Profiles of the S. aureus Isolates
3.3. Virulence Determinant Genes of MRSA Strains
3.4. Prevalence of Enterotoxins Genes among MRSA Strains
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abdel-Moein, K.A.; Zaher, H.M. Occurrence of multidrug-resistant methicillin-resistant Staphylococcus aureus among healthy farm animals: A public health concern. Int. J. Veter. Sci. Med. 2019, 7, 55–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, S.; Martins, V.C.; Cardoso, F.A.; Germano, J.; Rodrigues, M.; Duarte, C.; Bexiga, R.; Cardoso, S.; Freitas, P.P. Biosensors for On-Farm Diagnosis of Mastitis. Front. Bioeng. Biotechnol. 2019, 7, 186. [Google Scholar] [CrossRef] [PubMed]
- Gordon, R.J.; Lowy, F.D. Pathogenesis of Methicillin-Resistant Staphylococcus aureus Infection. Clin. Infect. Dis. 2008, 46, S350–S359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ameen, F.; Reda, S.A.; El Shatoury, S.; Riad, E.M.; Enany, M.E.; Alarfaj, A.A. Prevalence of antibiotic resistant mastitis pathogens in dairy cows in Egypt and potential biological control agents produced from plant endophytic actinobacteria. Saudi J. Biol. Sci. 2019, 26, 1492–1498. [Google Scholar] [CrossRef]
- El-Jakee, J.; Atta, N.S.; Samy, A.; Bakry, M.; Elgabry, E.; Kandil, M.M.; El-Said, W.G. Antimicrobial resistance in clinical isolates of Staphylococcus aureus from bovine and human sources in Egypt. Glob. Vet. 2011, 7, 581–586. [Google Scholar]
- Bień, J.; Sokolova, O.; Bozko, P. Characterization of Virulence Factors of Staphylococcus aureus: Novel Function of Known Virulence Factors That Are Implicated in Activation of Airway Epithelial Proinflammatory Response. J. Pathog. 2011, 2011, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Panizzi, P.; Friedrich, R.; Fuentes-Prior, P.; Bode, W.; Bock, P.E. The staphylocoagulase family of zymogen activator and adhesion proteins. Cell. Mol. Life Sci. 2004, 61, 2793–2798. [Google Scholar] [CrossRef] [Green Version]
- Mubarack, H.; Doss, A.; Vijayasanthi, M.; Venkataswamy, R. Antimicrobial drug susceptibility of Staphylococcus aureus from subclinical bovine mastitis in Coimbatore, Tamilnadu, South India. Vet. World 2012, 5, 352. [Google Scholar] [CrossRef]
- Mathema, B.; Mediavilla, J.; Kreiswirth, B.N. Sequence Analysis of the Variable Number Tandem Repeat in Staphylococcus aureus Protein A Gene. In Methods in Molecular Biology; Springer Science and Business Media LLC: Totowa, NJ, USA, 2008; pp. 285–305. [Google Scholar]
- Enany, M.E.; Algammal, A.M.; Shagar, G.I.; Hanora, A.M.; Elfeil, W.K.; Elshaffy, N.M. Molecular typing and evaluation of Sidr honey inhibitory effect on virulence genes of MRSA strains isolated from catfish in Egypt. Pak. J. Pharm. Sci. 2018, 31, 5. [Google Scholar]
- Younis, A.; Krifucks, O.; Fleminger, G.; Heller, E.D.; Gollop, N.; Saran, A.; Leitner, G. Staphylococcus aureus leucocidin, a virulence factor in bovine mastitis. J. Dairy Res. 2005, 72, 188–194. [Google Scholar] [CrossRef]
- Holzinger, D.; Gieldon, L.; Mysore, V.; Nippe, N.; Taxman, D.J.; Duncan, J.A.; Broglie, P.M.; Marketon, K.; Austermann, J.; Vogl, T.; et al. Staphylococcus aureus Panton-Valentine leukocidin induces an inflammatory response in human phagocytes via the NLRP3 inflammasome. J. Leukoc. Biol. 2012, 92, 1069–1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, B.S.; Bohach, G.A.; Lee, S.U.; Davis, W.C.; Fox, L.K.; Ferens, W.A.; Seo, K.S.; Koo, H.C.; Kwon, N.H.; Park, Y.H. Immunosuppression by T regulatory cells in cows infected with Staphylococcal superantigen. J. Vet. Sci. 2005, 6, 247–250. [Google Scholar] [CrossRef] [Green Version]
- Burton, J.; Erskine, R.J. Immunity and mastitis Some new ideas for an old disease. Vet. Clin. N. Am. Food Anim. Pr. 2003, 19, 1–45. [Google Scholar] [CrossRef]
- GAIN. Egypt Livestock and Products Annual 2018. Available online: https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Livestock%20and%20%E2%80%8EProducts%20Annual_Cairo_Egypt_9-19-2018.pdf%E2%80%8E (accessed on 19 September 2018).
- Dego, O.K.; Tareke, F. Bovine mastitis in selected areas of southern Ethiopia. Trop. Anim. Health Prod. 2003, 35, 197–205. [Google Scholar] [CrossRef]
- Quinn, P.J.; Markey, B.K.; Leonard, F.C.; Hartigan, P.; Fanning, S.; Fitzpatrick, E. Veterinary Microbiology and Microbial Disease, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 1–928. [Google Scholar]
- Clements, A.; Taylor, D.J.; Fitzpatrick, J.L. Evaluation of diagnostic procedures for subclinical mastitis in meat-producing sheep. J. Dairy Res. 2003, 70, 139–148. [Google Scholar] [CrossRef]
- Monday, S.R.; Bohach, G.A. Use of Multiplex PCR To Detect Classical and Newly Described Pyrogenic Toxin Genes in Staphylococcal Isolates. J. Clin. Microbiol. 1999, 37, 3411–3414. [Google Scholar] [CrossRef] [Green Version]
- CLSI, C. Performance Standards for Antimicrobial Susceptibility Testing; Clinical Lab Standards Institute: Wayne, PA, USA, 2016; Volume 26, pp. 1–251. [Google Scholar]
- Abbey, T.C.; Deak, E. What’s New from the CLSI Subcommittee on Antimicrobial Susceptibility Testing M100, 29th Edition. Clin. Microbiol. Newsl. 2019, 41, 203–209. [Google Scholar] [CrossRef]
- Hookey, J.V.; Richardson, J.F.; Cookson, B.D. Molecular Typing of Staphylococcus aureus Based on PCR Restriction Fragment Length Polymorphism and DNA Sequence Analysis of the Coagulase Gene. J. Clin. Microbiol. 1998, 36, 1083–1089. [Google Scholar] [CrossRef] [Green Version]
- Becker, K.; Roth, R.; Peters, G. Rapid and Specific Detection of Toxigenic Staphylococcus aureus: Use of Two Multiplex PCR Enzyme Immunoassays for Amplification and Hybridization of Staphylococcal Enterotoxin Genes, Exfoliative Toxin Genes, and Toxic Shock Syndrome Toxin 1 Gene. J. Clin. Microbiol. 1998, 36, 2548–2553. [Google Scholar] [CrossRef] [Green Version]
- Akineden, O.; Annemüller, C.; Hassan, A.A.; Lämmler, C.; Wolter, W.; Zschöck, M. Toxin Genes and Other Characteristics ofStaphylococcus aureus Isolates from Milk of Cows with Mastitis. Clin. Diagn. Lab. Immunol. 2001, 8, 959–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnstetter, K.K.; Wolter, D.J.; Tenover, F.C.; McDougal, L.K.; Goering, R. Rapid Multiplex PCR Assay for Identification of USA300 Community-Associated Methicillin-Resistant Staphylococcus aureus Isolates. J. Clin. Microbiol. 2006, 45, 141–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Sayed, M.; Algammal, A.; Abouel-Atta, M.; Mabrok, M.; Emam, A. Pathogenicity, genetic typing, and antibiotic sensitivity of Vibrio alginolyticus isolated from Oreochromis niloticus and Tilapia zillii. Rev. Med. Vet. 2019, 170, 80–86. [Google Scholar]
- Algammal, A.M.; Wahdan, A.; Elhaig, M. Potential efficiency of conventional and advanced approaches used to detect Mycobacterium bovis in cattle. Microb. Pathog. 2019, 134, 103574. [Google Scholar] [CrossRef] [PubMed]
- Helmy, Y.A.; Kassem, I.I.; Kumar, A.; Rajashekara, G. In Vitro Evaluation of the Impact of the Probiotic E. coli Nissle 1917 on Campylobacter jejuni’s Invasion and Intracellular Survival in Human Colonic Cells. Front. Microbiol. 2017, 8, 1588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helmy, Y.A.; Deblais, L.; Kassem, I.I.; Kathayat, D.; Rajashekara, G. Novel small molecule modulators of quorum sensing in avian pathogenic Escherichia coli (APEC). Virulence 2018, 9, 1640–1657. [Google Scholar] [CrossRef] [Green Version]
- Sudhan, N.; Singh, R.; Singh, M.; Soodan, J. Studies on prevalence, etiology and diagnosis of subclinical mastitis among crossbred cows. Indian J. Anim. Res. 2005, 39, 127–130. [Google Scholar]
- Seegers, H.; Fourichon, C. Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet. Res. 2003, 34, 475–491. [Google Scholar] [CrossRef] [Green Version]
- Whist, A.; Østerås, O.; Sølverød, L. Staphylococcus aureus and Streptococcus dysgalactiae in Norwegian herds after introduction of selective dry cow therapy and teat dipping. J. Dairy Res. 2006, 74, 1–8. [Google Scholar] [CrossRef]
- Haltia, L.; Honkanen-Buzalski, T.; Spiridonova, I.; Olkonen, A.; Myllys, V. A study of bovine mastitis, milking procedures and management practices on 25 Estonian dairy herds. Acta Vet. Scand. 2006, 48, 22. [Google Scholar] [CrossRef] [Green Version]
- Scherrer, D.; Corti, S.; Muehlherr, J.; Zweifel, C.; Stephan, R. Phenotypic and genotypic characteristics of Staphylococcus aureus isolates from raw bulk-tank milk samples of goats and sheep. Vet. Microbiol. 2004, 101, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Okuma, K.; Ma, X.X.; Yuzawa, H.; Hiramatsu, K. Insights on antibiotic resistance of Staphylococcus aureus from its whole genome: Genomic island SCC. Drug Resist. Updat. 2003, 6, 41–52. [Google Scholar] [CrossRef]
- Leonard, F.; Markey, B. Meticillin-resistant Staphylococcus aureus in animals: A review. Vet. J. 2008, 175, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Eid, H.M.; Algammal, A.M.; Elfeil, W.K.; Youssef, F.M.; Harb, S.M.; Abd-Allah, E.M. Prevalence, molecular typing, and antimicrobial resistance of bacterial pathogens isolated from ducks. Vet. World 2019, 12, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Pitkälä, A.; Haveri, M.; Pyörälä, S.; Myllys, V.; Honkanen-Buzalski, T. Bovine Mastitis in Finland 2001—Prevalence, Distribution of Bacteria, and Antimicrobial Resistance. J. Dairy Sci. 2004, 87, 2433–2441. [Google Scholar] [CrossRef] [Green Version]
- Bengtsson, B.; Unnerstad, H.E.; Ekman, T.; Artursson, K.; Nilsson-Öst, M.; Waller, K.P. Antimicrobial susceptibility of udder pathogens from cases of acute clinical mastitis in dairy cows. Vet. Microbiol. 2009, 136, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Weese, J.S. Methicillin-resistant Staphylococcus aureus in animals. ILAR J. 2010, 51, 233–244. [Google Scholar] [CrossRef] [Green Version]
- Feucht, C.; Patel, D.R. Principles of pharmacology. Pediatric Clin. 2011, 58, 11–19. [Google Scholar] [CrossRef]
- Chopra, I.; Roberts, M.C. Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef] [Green Version]
- Enany, M.E.; Algammal, A.M.; Nasef, S.A.; Abo-Eillil, S.A.M.; Bin-Jumah, M.N.; Taha, A.E.; Allam, A. The occurrence of the multidrug resistance (MDR) and the prevalence of virulence genes and QACs resistance genes in E. coli isolated from environmental and avian sources. AMB Express 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Frénay, H.M.; Theelen, J.P.; Schouls, L.M.; Vandenbroucke-Grauls, C.M.; Verhoef, J.; Van Leeuwen, W.J.; Mooi, F.R. Discrimination of epidemic and nonepidemic methicillin-resistant Staphylococcus aureus strains on the basis of protein A gene polymorphism. J. Clin. Microbiol. 1994, 32, 846–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hata, E.; Katsuda, K.; Kobayashi, H.; Uchida, I.; Tanaka, K.; Eguchi, M. Genetic Variation among Staphylococcus aureus Strains from Bovine Milk and Their Relevance to Methicillin-Resistant Isolates from Humans. J. Clin. Microbiol. 2010, 48, 2130–2139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikawaty, R.; Brouwer, E.; Mevius, D.; Fluit, A.C.; Van Duijkeren, E.; Verhoef, J. Virulence Factors of Genotyped Bovine Mastitis Staphylococcus aureus Isolates in The Netherlands. Int. J. Dairy Sci. 2010, 5, 60–70. [Google Scholar] [CrossRef]
- Barrio, M.B.; Rainard, P.; Prévost, G. LukM/LukF′-PV is the most active Staphylococcus aureus leukotoxin on bovine neutrophils. Microbes Infect. 2006, 8, 2068–2074. [Google Scholar] [CrossRef] [PubMed]
- Rall, V.L.M.; Vieira, F.; Rall, R.; Vieitis, R.; Fernandes, A.; Candeias, J.M.G.; Cardoso, K.; Araujo, J. PCR detection of staphylococcal enterotoxin genes in Staphylococcus aureus strains isolated from raw and pasteurized milk. Vet. Microbiol. 2008, 132, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Normanno, G.; Firinu, A.; Virgilio, S.; Mula, G.; Dambrosio, A.; Poggiu, A.; Decastelli, L.; Mioni, R.; Scuota, S.; Bolzoni, G. Coagulase-positive Staphylococci and Staphylococcus aureus in food products marketed in Italy. Int. J. Food Microbiol. 2005, 98, 73–79. [Google Scholar] [CrossRef]
- Asao, T.; Kumeda, Y.; Kawai, T.; Shibata, T.; Oda, H.; Haruki, K.; Nakazawa, H.; Kozaki, S. An extensive outbreak of staphylococcal food poisoning due to low-fat milk in Japan: Estimation of enterotoxin A in the incriminated milk and powdered skim milk. Epidemiol. Infect. 2003, 130, 33–40. [Google Scholar] [CrossRef]
- Omoe, K.; Ishikawa, M.; Shimoda, Y.; Hu, D.-L.; Ueda, S.; Shinagawa, K. Detection of seg, seh, and sei genes in Staphylococcus aureus Isolates and Determination of the Enterotoxin Productivities of S. aureus Isolates Harboring seg, seh, or sei Genes. J. Clin. Microbiol. 2002, 40, 857–862. [Google Scholar] [CrossRef] [Green Version]
Antimicrobial Agent | Disc Conc. | Diameter of Inhibition Zone (mm) | ||
---|---|---|---|---|
R | I | S | ||
Pen | 10 units | 28 or less | - | 29 or more |
Amo-Cla | 10–20 µg | 19 or less | - | 20 or more |
Amp-Sul | 10 µg | 11or less | 12–14 | 15 or more |
Tet | 30 µg | 14 or less | 15–18 | 19 or more |
Ceft | 30 µg | 14 or less | 15–22 | 23 or more |
Cef | 30 µg | ≤21 mm | - | - |
Ery | 15 µg | 13 or less | 14–17 | 18 or more |
Primer | Primer Sequence. | Annealing Temperature | Recycling Conditions | References |
---|---|---|---|---|
coa1 | ATA GAG ATG CTG GTA CAG G | 58 °C | 39 cycles; 94 °C for 1 min, 58 °C for 1 min, 72 °C for 1 min | [22] |
coa 2 | GCT TCC GAT TGT TCG ATG C | |||
sea-3b | CCT TTG GAA ACG GTT AAA ACG | 55 °C | 30 cycles; 95 °C for 1 min, 55 °C for 1 min, 72 °C for 2 min | [23] |
sea-4b | TCT GAA CCT TCC CAT CAA AAA C | |||
seb-1c | TCG CAT CAA ACT GAC AAA CG | 55 °C | ||
seb-4b | GCA GGT ACT CTA TAA GTG CCT GC | |||
sec-3b | CTC AAG AAC TAG ACA TAA AAG CTA GG | 55 °C | ||
sec-4b | TCA AAA TCG GAT TAA CAT TAT CC | |||
sed-3b | CTA GTT TGG TAA TAT CTC CTT TAA ACG | 55 °C | ||
sed-4b | TTA ATG CTA TAT CTT ATA GGG TAA ACA TC | |||
spa-III | CAA GCA CCA AAA GAG GAA | 60 °C | 30 cycles; 94 °C for 1 min, 60 °C for 1 min, 72 °C for 1 min | [24] |
spa-IV | CAC CAG GTT TAA CGA CAT | |||
luk-PV-1 | ATCATTAGGTAAAATGTCTGGACATGATCCA | 66 °C | 34 cycles; 94 °C for 30 s, 66 °C for 30 s, 72 °C for 1 min 30 s | [25] |
luk-PV-2 | GCATCAACTGTATTGGATAGCAAAAGC | |||
mecA-1 | TGGCATTCGTGTCACAATCG | 53 °C | 34 cycles; 94 °C for 1 min, 53 °C for 50 s, 72 °C for 1 min | [25] |
mecA-2 | CTGGAACTTGTTGAGCAGAG |
Animal Species | Total Animals (No.) | Total Samples (No.) | Negative Samples (No.) | Positive Samples (No.) | Positive Samples (%) | Chi-Square Value |
---|---|---|---|---|---|---|
Buffaloes | 50 | 200 | 112 | 88 | 44 | 3.057 NS * p = 0.0804 |
Cows | 70 | 280 | 134 | 146 | 52.1 | |
Total | 120 | 480 | 246 | 234 | 48.75 |
CMT Grads | Examined Quarters (No.) | Positive S. aureus Isolates (No.) | S. aureus Isolates (%) |
---|---|---|---|
+++ | 57 | 43 | 75.4 |
++ | 39 | 32 | 82 |
+ | 138 | 9 | 6.5 |
Total | 234 | 84 | 35.9 |
Antimicrobial Agents | Resistant | Intermediate | Sensitive | |||
---|---|---|---|---|---|---|
No. | % | No. | % | No. | % | |
Cef | 30 (MRSA) | 35.7 | - | - | 54 | 64.3 |
Pen | 54 | 64.3 | - | - | 30 | 35.7 |
Amo- Cla | 18 | 21.4 | - | - | 66 | 78.6 |
Amp-Sul | 11 | 13.1 | 12 | 14.3 | 61 | 72.6 |
Tet | 50 | 59.5 | 15 | 17.9 | 19 | 22.6 |
Ceft | 13 | 15.5 | 49 | 58.3 | 22 | 26.2 |
Ery | 26 | 30.9 | 5 | 5.9 | 53 | 63.1 |
Chi-square value | 94.7860 * p < 0.0001 | 186.19 * p < 0.0001 | 104.25 * p < 0.0001 |
Genes | No | % | Chi-Square Value | |
---|---|---|---|---|
Virulence Genes | coa | 30 | 100 | 62.6900 * p < 0.0001 |
spa | 26 | 86.6 | ||
pvl | 3 | 10 | ||
mecA | 30 | 100 | ||
Enterotoxins Genes | sea | 8 | 26.6 | 21.9751 * p < 0.001 |
sea+sec | 1 | 3.3 | ||
sec | 2 | 6.6 | ||
seb | 0 | 0 | ||
sed | 0 | 0 | ||
Chi-square value | 168.0403 * p < 0.0001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Algammal, A.M.; Enany, M.E.; El-Tarabili, R.M.; Ghobashy, M.O.I.; Helmy, Y.A. Prevalence, Antimicrobial Resistance Profiles, Virulence and Enterotoxins-Determinant Genes of MRSA Isolated from Subclinical Bovine Mastitis in Egypt. Pathogens 2020, 9, 362. https://doi.org/10.3390/pathogens9050362
Algammal AM, Enany ME, El-Tarabili RM, Ghobashy MOI, Helmy YA. Prevalence, Antimicrobial Resistance Profiles, Virulence and Enterotoxins-Determinant Genes of MRSA Isolated from Subclinical Bovine Mastitis in Egypt. Pathogens. 2020; 9(5):362. https://doi.org/10.3390/pathogens9050362
Chicago/Turabian StyleAlgammal, Abdelazeem M., Mohamed E. Enany, Reham M. El-Tarabili, Madeha O. I. Ghobashy, and Yosra A. Helmy. 2020. "Prevalence, Antimicrobial Resistance Profiles, Virulence and Enterotoxins-Determinant Genes of MRSA Isolated from Subclinical Bovine Mastitis in Egypt" Pathogens 9, no. 5: 362. https://doi.org/10.3390/pathogens9050362
APA StyleAlgammal, A. M., Enany, M. E., El-Tarabili, R. M., Ghobashy, M. O. I., & Helmy, Y. A. (2020). Prevalence, Antimicrobial Resistance Profiles, Virulence and Enterotoxins-Determinant Genes of MRSA Isolated from Subclinical Bovine Mastitis in Egypt. Pathogens, 9(5), 362. https://doi.org/10.3390/pathogens9050362