Trends of the Dengue Serotype-4 Circulation with Epidemiological, Phylogenetic, and Entomological Insights in Lao PDR between 2015 and 2019
Abstract
:1. Introduction
2. Results
2.1. Dengue Surveillance Activity between 2012 and 2019.
2.2. Epidemiological Analysis of the Patients Infected by DENV-4
2.3. Phylogenetic Analysis of DENV-4
2.4. Entomological Survey on the Aedes sp. Vectors in Vientiane Capital
3. Discussion
4. Materials and Methods
4.1. Human Samples Collection
4.2. Ethical Statement
4.3. Dengue Virus Screening
4.4. Gene E Sequencing Analysis
4.5. Epidemiological Analysis
4.6. Mosquito Surveillance
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cao-Lormeau, V.-M. Tropical Islands as New Hubs for Emerging Arboviruses. Emerg. Infect. Dis. 2016, 22, 913–915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Brady, O.J.; Gething, P.W.; Bhatt, S.; Messina, J.P.; Brownstein, J.S.; Hoen, A.G.; Moyes, C.L.; Farlow, A.W.; Scott, T.W.; Hay, S.I. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl. Trop. Dis. 2012, 6, e1760. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Dengue and Severe Dengue Update 23 June 2020. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed on 14 July 2020).
- Gubler, D. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol. 2002, 10, 100–103. [Google Scholar] [CrossRef]
- Marcombe, S.; Fustec, B.; Cattel, J.; Chonephetsarath, S.; Thammavong, P.; Phommavanh, N.; David, J.-P.; Corbel, V.; Sutherland, I.W.; Hertz, J.C.; et al. Distribution of insecticide resistance and mechanisms involved in the arbovirus vector Aedes aegypti in Laos and implication for vector control. Barker CM, editor. PLoS Negl. Trop. Dis. 2019, 13, e0007852. [Google Scholar] [CrossRef] [Green Version]
- Hawley, W.A. The biology of Aedes albopictus. J. Am. Mosq. Control. Assoc. Suppl. 1988, 1, 1–39. [Google Scholar]
- Tangena, J.-A.; Marcombe, S.; Thammavong, P.; Chonephetsarath, S.; Somphong, B.; Sayteng, K.; Grandadam, M.; Sutherland, I.W.; Lindsay, S.W.; Brey, P.T. Bionomics and insecticide resistance of the arboviral vector Aedes albopictus in northern Lao PDR. PLoS ONE 2018, 13, e0206387. [Google Scholar] [CrossRef] [Green Version]
- Katzelnick, L.C.; Fonville, J.M.; Gromowski, G.D.; Bustos-Arriaga, J.; Green, A.; James, S.; Lau, L.; Montoya, M.; Wang, C.; VanBlargan, L.A.; et al. Dengue viruses cluster antigenically but not as discrete serotypes. Science 2015, 349, 1338–1343. [Google Scholar] [CrossRef] [Green Version]
- Henchal, E.A.; Putnak, J.R. The dengue viruses. Clin. Microbiol. Rev. 1990, 3, 376–396. [Google Scholar] [CrossRef]
- Weaver, S.; Vasilakis, N. Molecular evolution of dengue viruses: Contributions of phylogenetics to understanding the history and epidemiology of the preeminent arboviral disease. Infect. Genet. Evol. 2009, 9, 523–540. [Google Scholar] [CrossRef] [Green Version]
- Gubler, D. Dengue and dengue hemorrhagic fever. Clin. Microbiol. Rev. 1998, 11, 480–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuno, G.; Chang, G.-J.J.; Tsuchiya, K.R.; Karabatsos, N.; Cropp, C.B. Phylogeny of the genus Flavivirus. J. Virol. 1998, 72, 73–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rico-Hesse, R. Microevolution and virulence of dengue viruses. Adv. Exp. Med. Biol. 2003, 59, 315–341. [Google Scholar]
- Rico-Hesse, R. Molecular evolution and distribution of dengue viruses type 1 and 2 in nature. Virology 1990, 174, 479–493. [Google Scholar] [CrossRef]
- Wang, E.; Ni, H.; Xu, R.; Barrett, A.D.T.; Watowich, S.J.; Gubler, D.J.; Weaver, S. Evolutionary relationships of endemic/epidemic and sylvatic dengue viruses. J. Virol. 2000, 74, 3227–3234. [Google Scholar] [CrossRef] [Green Version]
- Messina, J.; Brady, O.J.; Scott, T.W.; Zou, C.; Pigott, D.M.; Duda, K.A.; Bhatt, S.; Katzelnick, L.; Howes, R.E.; Battle, K.E.; et al. Global spread of dengue virus types: Mapping the 70 year history. Trends Microbiol. 2014, 22, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Hamel, R.; Surasombatpattana, P.; Wichit, S.; Dauvé, A.; Donato, C.; Pompon, J.F.; Vijaykrishna, D.; Liegeois, F.; Vargas, R.M.; Luplertlop, N.; et al. Phylogenetic analysis revealed the co-circulation of four dengue virus serotypes in Southern Thailand. PLoS ONE 2019, 14, e0221179. [Google Scholar] [CrossRef] [Green Version]
- Lanciotti, R.S.; Gubler, D.J.; Trent, D.W. Molecular evolution and phylogeny of dengue-4 viruses. J. Gen. Virol. 1997, 78, 2279–2284. [Google Scholar] [CrossRef]
- Heringer, M.; Souza, T.M.A.; Lima, M.D.R.Q.; Nunes, P.C.G.; Faria, N.R.D.C.; De Bruycker-Nogueira, F.; Chouin-Carneiro, T.; Nogueira, R.M.R.; Dos Santos, F.B. Dengue type 4 in Rio de Janeiro, Brazil: Case characterization following its introduction in an endemic region. BMC Infect. Dis. 2017, 17, 410. [Google Scholar] [CrossRef] [Green Version]
- Klungthong, C.; Zhang, C.; Mammen, M.P.; Ubol, S.; Holmes, E.C. The molecular epidemiology of dengue virus serotype 4 in Bangkok, Thailand. Virology 2004, 329, 168–179. [Google Scholar] [CrossRef] [Green Version]
- Fukunaga, T.; Phommasack, B.; Bounlu, K.; Saito, M.; Tadano, M.; Makino, Y.; Kanemura, K.; Arakaki, S.; Shinjo, M.; Insisiengmay, S. Epidemiological situation of dengue infection in Lao P.D.R. Trop. Med. 1994, 35, 219–227. [Google Scholar]
- Khampapongpane, B.; Lewis, H.C.; Ketmayoon, P.; Phonekeo, D.; Somoulay, V.; Khamsing, A.; Phengxay, M.; Sisouk, T.; Sisouk, P.; Bryant, J.E. National dengue surveillance in the Lao People’s Democratic Republic, 2006–2012: Epidemiological and laboratory findings. West. Pac. Surveill Response J. 2014, 5, 7–13. [Google Scholar]
- Soukaloun, D. Dengue infection in Lao PDR. Southeast Asian J. Trop. Med. Public Health. 2014, 45, 113–119. [Google Scholar] [PubMed]
- Bounlu, K.; Tadano, M.; Makino, Y.; Arakaki, S.; Kanemura, K.; Fukunaga, T. A seroepidemiological study of dengue and Japanese encephalitis virus infections in Vientiane, Lao PDR. Jpn. J. Trop. Med. Hyg. 1992, 20, 149–156. [Google Scholar] [CrossRef]
- Makino, Y.; Saito, M.; Phommasack, B.; Vongxay, P.; Kanemura, K.; Pothawan, T.; Bounsou; Insisiengmay, S.; Sompaw; Fukunaga, T. Arbovirus Infections in Pilot Areas in Laos. Trop. Med. 1995, 36, 131–139. [Google Scholar]
- Guo, X.; Zhao, Q.; Wu, C.; Zuo, S.; Zhang, X.; Jia, N.; Liu, J.; Zhou, H.-N.; Zhang, J.-S. First isolation of dengue virus from Lao PDR in a Chinese traveler. Virol. J. 2013, 10, 70. [Google Scholar] [CrossRef] [Green Version]
- Dubot-Pérès, A.; Vongphrachanh, P.; Denny, J.; Phetsouvanh, R.; Linthavong, S.; Sengkeopraseuth, B.; Khasing, A.; Xaythideth, V.; Moore, C.E.; Vongsouvath, M.; et al. An Epidemic of Dengue-1 in a Remote Village in Rural Laos. PLoS Negl. Trop. Dis. 2013, 7, e2360. [Google Scholar] [CrossRef] [Green Version]
- Lao, M.; Caro, V.; Thiberge, J.-M.; Bounmany, P.; Vongpayloth, K.; Buchy, P.; Duong, V.; Vanhlasy, C.; Hospied, J.-M.; Thongsna, M.; et al. Co-Circulation of Dengue Virus Type 3 Genotypes in Vientiane Capital, Lao PDR. PLoS ONE 2014, 9, e115569. [Google Scholar] [CrossRef]
- Castonguay-Vanier, J.; Klitting, R.; Sengvilaipaseuth, O.; Piorkowski, G.; Baronti, C.; Sibounheuang, B.; Vongsouvath, M.; Chanthongthip, A.; Thongpaseuth, S.; Mayxay, M.; et al. Molecular epidemiology of dengue viruses in three provinces of Lao PDR, 2006–2010. PLoS Neglected Trop. Dis. 2018, 12, e0006203. [Google Scholar] [CrossRef] [Green Version]
- Somlor, S.; Vongpayloth, K.; Diancourt, L.; Buchy, P.; Duong, V.; Phonekeo, D.; Ketmayoon, P.; Vongphrachanh, P.; Brey, P.T.; Caro, V.; et al. Chikungunya virus emergence in the Lao PDR, 2012–2013. PLoS ONE 2017, 12, e0189879. [Google Scholar] [CrossRef]
- Yang, C.-F.; Chang, S.-F.; Hsu, T.-C.; Su, C.-L.; Wang, T.-C.; Lin, S.-H.; Yang, S.-L.; Lin, C.-C.; Shu, P.-Y. Molecular characterization and phylogenetic analysis of dengue viruses imported into Taiwan during 2011–2016. PLoS Neglected Trop. Dis. 2018, 12, e0006773. [Google Scholar] [CrossRef] [PubMed]
- Calvez, E.; Somlor, S.; Viengphouthong, S.; Balière, C.; Bounmany, P.; Keosenhom, S.; Caro, V.; Grandadam, M. Rapid genotyping protocol to improve dengue virus serotype 2 survey in Lao PDR. PLoS ONE 2020, 15, e0237384. [Google Scholar] [CrossRef] [PubMed]
- Lestari, C.S.W.; Yohan, B.; Yunita, A.; Meutiawati, F.; Hayati, R.F.; Trimarsanto, H.; Sasmono, R. Phylogenetic and evolutionary analyses of dengue viruses isolated in Jakarta, Indonesia. Virus Genes 2017, 53, 778–788. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, S.; Tiraki, D.; Diwan, A.; Lalwani, S.K.; Modak, M.; Mishra, A.C.; Arankalle, V.A. Co-circulation of all the four dengue virus serotypes and detection of a novel clade of DENV-4 (genotype I) virus in Pune, India during 2016 season. PLoS ONE 2018, 13, e0192672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vongpunsawad, S.; Intharasongkroh, D.; Thongmee, T.; Poovorawan, Y. Seroprevalence of antibodies to dengue and chikungunya viruses in Thailand. PLoS ONE 2017, 12, e0180560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, J.-J.; Liu, C.-K.; Tsai, W.-Y.; Liu, L.-T.; Tyson, J.; Tsai, C.-Y.; Lin, P.-C.; Wang, W.-K. Seroprevalence of dengue virus in two districts of Kaohsiung City after the largest dengue outbreak in Taiwan since World War II. PLoS Neglected Trop. Dis. 2018, 12, e0006879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox-Lewis, A.; Hopkins, J.; Sar, P.; Sao, S.; Pheaktra, N.; Day, N.P.J.; Blacksell, S.D.; Turner, P. Seroprevalence of Dengue Virus and Rickettsial Infections in Cambodian Children. Am. J. Trop. Med. Hyg. 2019, 100, 635–638. [Google Scholar] [CrossRef]
- Luz, M.A.D.V.; Nabeshima, T.; Moi, M.L.; Dimamay, M.T.A.; Pangilinan, L.-A.S.; Dimamay, M.P.S.; Matias, R.R.; Mapua, C.A.; Buerano, C.C.; De Guzman, F.; et al. An Epidemic of Dengue Virus Serotype-4 during the 2015–2017: The Emergence of a Novel Genotype IIa of DENV-4 in the Philippines. Jpn. J. Infect. Dis. 2019, 72, 413–419. [Google Scholar] [CrossRef] [Green Version]
- Abubakar, S.; Wong, P.-F.; Chan, Y.F. Emergence of dengue virus type 4 genotype IIA in Malaysia. J. Gen. Virol. 2002, 83, 2437–2442. [Google Scholar] [CrossRef]
- Ahamed, S.F.; Rosario, V.; Britto, C.; Dias, M.; Nayak, K.; Chandele, A.; Murali-Krishna, K.; Shet, A. Emergence of new genotypes and lineages of dengue viruses during the 2012–15 epidemics in southern India. Int. J. Infect. Dis. 2019, 84, S34–S43. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Jing, Q.L.; Liu, Y.; Cao, Y.M.; Su, W.Z.; Biao, D.; Yang, Z.C. Molecular characterization and genotype shift of dengue virus strains between 2001 and 2014 in Guangzhou. Epidemiol. Infect. 2016, 145, 760–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupont-Rouzeyrol, M.; Aubry, M.; O’Connor, O.; Roche, C.; Gourinat, A.-C.; Guigon, A.; Pyke, A.; Grangeon, J.-P.; Nilles, E.J.; Chanteau, S.; et al. Epidemiological and molecular features of dengue virus type-1 in New Caledonia, South Pacific, 2001–2013. Virol. J. 2014, 11, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hang, V.T.T.; Holmes, E.C.; Veasna, D.; Quy, N.T.; Hien, T.T.; Quail, M.; Churcher, C.; Parkhill, J.; Cardosa, J.; Farrar, J.; et al. Emergence of the Asian 1 Genotype of Dengue Virus Serotype 2 in Viet Nam: In Vivo Fitness Advantage and Lineage Replacement in South-East Asia. PLoS Negl. Trop. Dis. 2010, 4, e757. [Google Scholar] [CrossRef]
- Quiner, C.A.; Parameswaran, P.; Ciota, A.T.; Ehrbar, D.J.; Dodson, B.L.; Schlesinger, S.; Kramer, L.D.; Harris, E. Increased Replicative Fitness of a Dengue Virus 2 Clade in Native Mosquitoes: Potential Contribution to a Clade Replacement Event in Nicaragua. J. Virol. 2014, 88, 13125–13134. [Google Scholar] [CrossRef] [Green Version]
- Lambrechts, L.; Fansiri, T.; Pongsiri, A.; Thaisomboonsuk, B.; Klungthong, C.; Richardson, J.H.; Ponlawat, A.; Jarman, R.G.; Scott, T.W. Dengue-1 Virus Clade Replacement in Thailand Associated with Enhanced Mosquito Transmission. J. Virol. 2011, 86, 1853–1861. [Google Scholar] [CrossRef] [Green Version]
- Hanley, K.A.; Nelson, J.T.; Schirtzinger, E.E.; Whitehead, S.S.; Hanson, C.T. Superior infectivity for mosquito vectors contributes to competitive displacement among strains of dengue virus. BMC Ecol. 2008, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Fansiri, T.; Fontaine, A.; Diancourt, L.; Caro, V.; Thaisomboonsuk, B.; Richardson, J.H.; Jarman, R.G.; Ponlawat, A.; Lambrechts, L. Genetic Mapping of Specific Interactions between Aedes aegypti Mosquitoes and Dengue Viruses. PLoS Genet. 2013, 9, e1003621. [Google Scholar] [CrossRef] [Green Version]
- Lambrechts, L. Quantitative genetics of Aedes aegypti vector competence for dengue viruses: Towards a new paradigm? Trends Parasitol. 2011, 27, 111–114. [Google Scholar] [CrossRef] [Green Version]
- Cologna, R.; Armstrong, P.M.; Rico-Hesse, R. Selection for Virulent Dengue Viruses Occurs in Humans and Mosquitoes. J. Virol. 2005, 79, 853–859. [Google Scholar] [CrossRef] [Green Version]
- Wai, K.T.; Arunachalam, N.; Tana, S.; Espino, F.; Kittayapong, P.; Abeyewickreme, W.; Hapangama, D.; Tyagi, B.K.; Htun, P.T.; Koyadun, S.; et al. Estimating dengue vector abundance in the wet and dry season: Implications for targeted vector control in urban and peri-urban Asia. Pathog. Glob. Health 2012, 106, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Miot, E.F.; Calvez, E.; Aubry, F.; Dabo, S.; Grandadam, M.; Marcombe, S.; Oke, C.; Logan, J.G.; Brey, P.T.; Lambrechts, L. Risk of arbovirus emergence via bridge vectors: Case study of the sylvatic mosquito Aedes malayensis in the Nakai district, Laos. Sci. Rep. 2020, 10, 7750–7759. [Google Scholar] [CrossRef] [PubMed]
- Calvez, E.; Guillaumot, L.; Girault, D.; Richard, V.; O’Connor, O.; Paoaafaite, T.; Teurlai, M.; Pocquet, N.; Cao-Lormeau, V.-M.; Dupont-Rouzeyrol, M. Dengue-1 virus and vector competence of Aedes aegypti (Diptera: Culicidae) populations from New Caledonia. Parasites Vectors 2017, 10, 381. [Google Scholar] [CrossRef] [PubMed]
- Vazeille, M.; Gaborit, P.; Mousson, L.; Girod, R.; Failloux, A.-B. Competitive advantage of a dengue 4 virus when co-infecting the mosquito Aedes aegypti with a dengue 1 virus. BMC Infect. Dis. 2016, 16, 318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, S.L.; Anderson, S.L.; Alto, B.W. Vector competence of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) for dengue virus in the Florida Keys. J. Med. Entomol. 2012, 49, 942–946. [Google Scholar] [CrossRef]
- Lambrechts, L.; Chevillon, C.; Albright, R.G.; Thaisomboonsuk, B.K.; Richardson, J.H.; Jarman, R.G.; Scott, T.W. Genetic specificity and potential for local adaptation between dengue viruses and mosquito vectors. BMC Evol. Boil. 2009, 9, 160. [Google Scholar] [CrossRef] [Green Version]
- Warrilow, D.; Northill, J.A.; Pyke, A.; Smith, G.A. Single rapid TaqMan fluorogenic probe based PCR assay that detects all four dengue serotypes. J. Med. Virol. 2002, 66, 524–528. [Google Scholar] [CrossRef]
- Ito, M.; Takasaki, T.; Yamada, K.-I.; Nerome, R.; Tajima, S.; Kurane, I. Development and Evaluation of Fluorogenic TaqMan Reverse Transcriptase PCR Assays for Detection of Dengue Virus Types 1 to 4. J. Clin. Microbiol. 2004, 42, 5935–5937. [Google Scholar] [CrossRef] [Green Version]
- Hall, T.A. Bioedit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Afreen, N.; Naqvi, I.H.; Broor, S.; Ahmed, A.E.; Kazim, S.N.; Dohare, R.; Kumar, M.; Parveen, S. Evolutionary Analysis of Dengue Serotype 2 Viruses Using Phylogenetic and Bayesian Methods from New Delhi, India. PLoS Neglected Trop. Dis. 2016, 10, e0004511. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-S.; Lai, Y.-L.; Lo, S.; Barkham, T.; Aw, P.; Ooi, P.-L.; Tai, J.-C.; Hibberd, M.L.; Johansson, P.; Khoo, S.-P.; et al. Dengue Virus Surveillance for Early Warning, Singapore. Emerg. Infect. Dis. 2010, 16, 847–849. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Ali, I. The Complete Genome Phylogeny of Geographically Distinct Dengue Virus Serotype 2 Isolates (1944–2013) Supports Further Groupings within the Cosmopolitan Genotype. PLoS ONE 2015, 10, e0138900. [Google Scholar] [CrossRef] [PubMed]
All Samples (n = 15,152) | Dengue Positive a (n = 8771) | Sample Serotyped (DENV-1 to DENV-4) (n = 3616) | DENV-4 (n = 1187) | |
---|---|---|---|---|
Mean age (SD) | 23.5 (15.7) n = 15,062 | 23.9 (14.4) n = 8718 | 24.5 (14.5) n = 3589 | 27.4 (14.6) n = 1181 |
Sex | ||||
Female (%) | 6197 (40.9) | 3775 (43.0) | 1526 (42.3) | 620 (52.2) |
Male (%) | 5945 (39.2) | 3243 (39.3) | 1403 (38.8) | 557 (46.9) |
Unknown (%) † | 3010 (19.9) | 1550 (17.7) | 682 (18.9) | 10 (0.8) |
Mean number of days of fever (SD) | 3.8 (2.4) | 3.6 (1.8) | 3.4 (1.8) | 3.6 (1.7) |
Clinical diagnosis b | ||||
DF (%) | 11,910 (78.6) | 7036 (80.2) | 2868 (79.4) | 1154 (97.2) |
DHF (%) | 213 (1.4) | 168 (1.9) | 49 (1.4) | 13 (1.1) |
DSS (%) | 27 (0.2) | 23 (0.3) | 17 (0.5) | 9 (0.8) |
Unknown (%) † | 3002 (19.8) | 1541 (17.6) | 677 (18.8) | 11 (0.9) |
Sample Identification | Years of Collection | Isolation Source | Genbank Number |
---|---|---|---|
LaoPDR-Vientiane, 2013-2769 | 2013 | Cell supernatant | MT122852 |
LaoPDR-Vientiane (ex Thailand), 2014-2864 | 2014 | Cell supernatant | MT122853 |
LaoPDR-Vientiane (ex Malaysia), 2014-2867 | 2014 | Cell supernatant | MT122854 |
LaoPDR-Vientiane, 2015–3131 | 2015 | Cell supernatant | MT122855 |
LaoPDR-Vientiane, 2015–3401 | 2015 | Cell supernatant | MT122856 |
LaoPDR-Vientiane, 2015–3480 | 2015 | Cell supernatant | MT122857 |
LaoPDR-Vientiane, 2016–3599 | 2016 | Cell supernatant | MT122858 |
LaoPDR-Vientiane, 2016–3869 | 2016 | Cell supernatant | MT122859 |
LaoPDR-Vientiane, 2016–3932 | 2016 | Cell supernatant | MT122860 |
LaoPDR-Vientiane, 2016–4108 | 2016 | Cell supernatant | MT122861 |
LaoPDR-Vientiane, 2016–4132 | 2016 | Cell supernatant | MT122862 |
LaoPDR-Vientiane, 2016–4291 | 2016 | Cell supernatant | MT122863 |
LaoPDR-Vientiane, 2016–4441 (Fatal case) | 2016 | Plasma | MT122864 |
LaoPDR-Saravane, 2017–5506 | 2017 | Plasma | MT122865 |
LaoPDR-Saravane, 2017–5534 | 2017 | Cell supernatant | MT122866 |
LaoPDR-Attapeu, 2017–5797 | 2017 | Cell supernatant | MT122867 |
LaoPDR-Vientiane, 2017–5842 | 2017 | Cell supernatant | MT122868 |
LaoPDR-Vientiane, 2017–5871 | 2017 | Plasma | MT122869 |
LaoPDR-Attapeu, 2017–5876 (Fatal case) | 2017 | Plasma | MT122870 |
LaoPDR-Vientiane, 2017–5988 | 2017 | Plasma | MT122871 |
LaoPDR-Vientiane, 2017–6237 | 2017 | Plasma | MT122872 |
LaoPDR-Attapeu, 2017–6243 | 2017 | Plasma | MT122873 |
LaoPDR-Vientiane, 2017–6358 (Fatal case) | 2017 | Plasma | MT122874 |
LaoPDR-Attapeu, 2017–6583 (Fatal case) | 2017 | Plasma | MT122875 |
LaoPDR-Vientiane, 2017–6509 | 2017 | Plasma | MT122876 |
LaoPDR-Bolikhamxay, 2017–7305 | 2017 | Plasma | MT122877 |
LaoPDR-Vientiane, 2017–7321 | 2017 | Plasma | MT122878 |
LaoPDR-Attapeu, 2018–7509 | 2018 | Plasma | MT122879 |
LaoPDR-Vientiane, 2018–7590 | 2018 | Plasma | MT122880 |
LaoPDR-Xayaboury, 2018–7626 (Fatal case) | 2018 | Plasma | MT122881 |
LaoPDR-Savannakhet, 2018–7842 | 2018 | Plasma | MT122882 |
LaoPDR-Saravane, 2018–7983 | 2018 | Plasma | MT122883 |
LaoPDR-Vientiane-2018–8364 | 2018 | Plasma | MT122884 |
LaoPDR-Vientiane, 2018–9161 (Fatal case) | 2018 | Plasma | MT122885 |
LaoPDR-Champassak, 2018-DS18-698-16 (Fatal case) | 2018 | Cell supernatant | MT122886 |
LaoPDR-Attapeu, 2019–9310 | 2019 | Plasma | MT122887 |
LaoPDR-Saravane, 2019–9566 (Fatal case) | 2019 | Plasma | MT122888 |
LaoPDR-Vientiane, 2019–9831 | 2019 | Plasma | MT122889 |
LaoPDR-Vientiane, 2019–10299 | 2019 | Plasma | MT122890 |
LaoPDR-Saravane, 2019–10310 | 2019 | Plasma | MT122891 |
LaoPDR-Saravane, 2019–10439 | 2019 | Plasma | MT122892 |
LaoPDR-VientianeProvince, 2019–11393 | 2019 | Plasma | MT122893 |
LaoPDR-Vientiane, 2019–15448 | 2019 | Plasma | MT122894 |
LaoPDR-Vientiane, 2019–15460 | 2019 | Plasma | MT122895 |
LaoPDR-Vientiane, 2019–15690 | 2019 | Plasma | MT122896 |
Fragment | Forward | Genome Position | Reverse | Genome Position |
---|---|---|---|---|
FGT1 | 5′CAT-TCA-GGA-ATG-GGA-TTG-GA3′ | 732–751 | 5′ACA-GTC-CAC-AAT-GGA-GAY-AC3′ | 1362–1381 |
FGT2 | 5′AGG-AGG-AGT-TGT-GAC-ATG3′ | 1268–1285 | 5′TTG-GGC-GCA-TCA-TCA-CAT3′ | 1981–1998 |
F3 | 5′GAG-ATG-GCA-GAA-ACW-CAG-C3′ | 1869–1887 | 5′TTA-GAT-CAA-CCA-CGA-GGC-T3′ | 2593–2611 |
District | Village | Latitude | Longitude |
---|---|---|---|
Sittattanak | Donkoy | 17.562677 | 102.390768 |
Sittattanak | Kao-Gnot | 17.962684 | 102.615035 |
Xaysettha | Sengsavang | 17.995816 | 102.664895 |
Xaithany | Sivilay | 18.003705 | 102.380003 |
Sittattanak | Saphanthong Tai | 17.949470 | 102.628487 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calvez, E.; Pommelet, V.; Somlor, S.; Pompon, J.; Viengphouthong, S.; Bounmany, P.; Chindavong, T.A.; Xaybounsou, T.; Prasayasith, P.; Keosenhom, S.; et al. Trends of the Dengue Serotype-4 Circulation with Epidemiological, Phylogenetic, and Entomological Insights in Lao PDR between 2015 and 2019. Pathogens 2020, 9, 728. https://doi.org/10.3390/pathogens9090728
Calvez E, Pommelet V, Somlor S, Pompon J, Viengphouthong S, Bounmany P, Chindavong TA, Xaybounsou T, Prasayasith P, Keosenhom S, et al. Trends of the Dengue Serotype-4 Circulation with Epidemiological, Phylogenetic, and Entomological Insights in Lao PDR between 2015 and 2019. Pathogens. 2020; 9(9):728. https://doi.org/10.3390/pathogens9090728
Chicago/Turabian StyleCalvez, Elodie, Virginie Pommelet, Somphavanh Somlor, Julien Pompon, Souksakhone Viengphouthong, Phaithong Bounmany, Thep Aksone Chindavong, Thonglakhone Xaybounsou, Phoyphaylinh Prasayasith, Sitsana Keosenhom, and et al. 2020. "Trends of the Dengue Serotype-4 Circulation with Epidemiological, Phylogenetic, and Entomological Insights in Lao PDR between 2015 and 2019" Pathogens 9, no. 9: 728. https://doi.org/10.3390/pathogens9090728
APA StyleCalvez, E., Pommelet, V., Somlor, S., Pompon, J., Viengphouthong, S., Bounmany, P., Chindavong, T. A., Xaybounsou, T., Prasayasith, P., Keosenhom, S., Brey, P. T., Telle, O., Choisy, M., Marcombe, S., & Grandadam, M. (2020). Trends of the Dengue Serotype-4 Circulation with Epidemiological, Phylogenetic, and Entomological Insights in Lao PDR between 2015 and 2019. Pathogens, 9(9), 728. https://doi.org/10.3390/pathogens9090728