Design and Simulation of Novel 3-DOF Spherical Voice Coil Motor
Abstract
:1. Introduction
2. Structure Design
2.1. Basic Structure
2.2. Operating Principle
3. Simulation
3.1. Parameter Settings for Simulation
3.2. Plan of the Simulations
3.3. Simulation Results
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gan, L.; Pei, Y.; Chai, F. Tilting torque calculation of a novel tiered type permanent magnet spherical motor. IEEE Trans. Ind. Electron. 2019, 67, 421–431. [Google Scholar] [CrossRef]
- Tao, W.; Li, G.; Ju, L.; Zhou, R.; Hu, C. Design and analysis of a novel spherical motor based on the principle of reluctance. In Proceedings of the 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Shenzhen, China, 4–7 November 2018; pp. 1–6. [Google Scholar]
- Yan, L.; Duan, Z.; Zhang, Q.; Qiao, H.; Gerada, C. Development and structure of multi-dof spherical induction motor. In Proceedings of the 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, China, 31 May–2 June 2018; pp. 2831–2835. [Google Scholar]
- Mizuno, A.; Oikawa, K.; Aoyagi, M.; Kajiwara, H.; Tamura, H.; Takano, T. Examination of high-torque sandwich-type spherical ultrasonic motor using with high-power multimode annular vibrating stator. Actuators 2018, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Mansour, N.A.; Shin, B.; Ryu, B.; Kim, Y. Development of a Novel Miniaturized Electromagnetic Actuator for a Modular Serial Manipulator. Actuators 2021, 10, 14. [Google Scholar] [CrossRef]
- Diep, B.T.; Nguyen, N.D.; Tran, T.T.; Nguyen, Q.H. Design and Experimental Validation of a 3-DOF Force Feedback System Featuring Spherical Manipulator and Magnetorheological Actuators. Actuators 2020, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.H.; Hu, C.C.; Hsieh, C.L.; Liu, C.S. Design of VCM actuator for optical zooming smartphone cameras. Microsyst. Technol. 2019, 25, 277–281. [Google Scholar] [CrossRef]
- Kwon, T.H.; Ro, J.S. Analysis and Optimal Design of a Novel Actuator System for a Camera Module. IEEE Access 2020, 9, 3441–3450. [Google Scholar] [CrossRef]
- Hsieh, C.L.; Liu, C.S.; Cheng, C.C. Design of a 5 degree of freedom–voice coil motor actuator for smartphone camera modules. Sens. Actuators A Phys. 2020, 309, 112014. [Google Scholar] [CrossRef]
- Chung, M.J. Development of compact auto focus actuator for camera phone by applying new electromagnetic configuration. In Proceedings of the Optomechatronic Actuators and Manipulation, Sapporo, Japan, 5–7 December 2005; Volume 6048, p. 60480J. [Google Scholar]
- Yu, H.C.; Lee, T.Y.; Wang, S.J.; Lai, M.L.; Ju, J.J.; Huang, D.R.; Lin, S.K. Design of a voice coil motor used in the focusing system of a digital video camera. IEEE Trans. Magn. 2005, 41, 3979–3981. [Google Scholar]
- Chiu, C.W.; Chao, P.C.P.; Wu, D.Y. Optimal design of magnetically actuated optical image stabilizer mechanism for cameras in mobile phones via genetic algorithm. IEEE Trans. Magn. 2007, 43, 2582–2584. [Google Scholar] [CrossRef]
- Lai, L.K.; Tsai, C.L.; Liu, T.S. Design of compact linear electromagnetic actuator for auto-focusing in phone camera. IEEE Trans. Magn. 2011, 47, 4740–4744. [Google Scholar] [CrossRef]
- Song, M.G.; Hur, Y.J.; Park, N.C.; Park, K.S.; Park, Y.P.; Lim, S.C.; Park, J.H. Design of a voice-coil actuator for optical image stabilization based on genetic algorithm. IEEE Trans. Magn. 2009, 45, 4558–4561. [Google Scholar] [CrossRef]
- Song, M.G.; Baek, H.W.; Park, N.C.; Park, K.S.; Yoon, T.; Park, Y.P.; Lim, S.C. Development of small sized actuator with compliant mechanism for optical image stabilization. IEEE Trans. Magn. 2010, 46, 2369–2372. [Google Scholar] [CrossRef]
- Hsieh, C.L.; Chang, Y.H.; Chen, Y.T.; Liu, C.S. Design of VCM actuator with L-shape coil for smartphone cameras. Microsyst. Technol. 2018, 24, 1033–1040. [Google Scholar] [CrossRef]
- Chiu, C.W.; Chao, P.C.P.; Kao, N.Y.Y.; Young, F.K. Optimal design and experimental verification of a magnetically actuated optical image stabilization system for cameras in mobile phones. J. Appl. Phys. 2008, 103, 07F136. [Google Scholar] [CrossRef] [Green Version]
- Chao, P.C.P.; Chen, Y.H.; Chiu, C.W.; Tsai, M.Y.; Chang, J.Y.; Lin, S.K. A new two-DOF rotational optical image stabilizer. Microsyst. Technol. 2011, 17, 1037–1049. [Google Scholar] [CrossRef]
- Chang, Y.H.; Lu, C.J.; Liu, C.S.; Liu, D.S.; Chen, S.H.; Liao, T.W.; Peng, W.Y.; Lin, C.H. Design of miniaturized optical image stabilization and autofocusing camera module for cellphones. Sens. Mater. 2017, 29, 989–995. [Google Scholar]
- Xu, J.; Wang, Q.; Li, G.; Zhou, R.; Wen, Y.; Ju, L.; Zhou, S. Sensorless Posture Detection of Reluctance Spherical Motor Based on Mutual Inductance Voltage. Appl. Sci. 2021, 11, 3515. [Google Scholar] [CrossRef]
- Cho, S.; Lim, J.S.; Oh, Y.J.; Jeong, G.; Kang, D.W.; Lee, J. A Study on Output Characteristics of the Spherical Multi-DOF Motor According to the Number of Phases and Pole Pitch Angles. IEEE Trans. Magn. 2018, 54, 8205005. [Google Scholar] [CrossRef]
- Sakaidani, Y.; Hirata, K.; Maeda, S.; Niguchi, N. Feedback control of the 2-DOF actuator specialized for 2-axes rotation. IEEE Trans. Magn. 2013, 49, 2245–2248. [Google Scholar] [CrossRef]
- Kim, H.; Kim, H.; Ahn, D.; Gweon, D. Design of a new type of spherical voice coil actuator. Sens. Actuators A Phys. 2013, 203, 181–188. [Google Scholar] [CrossRef]
- Kim, H.Y.; Kim, H.; Gweon, D.G.; Jeong, J. Development of a novel spherical actuator with two degrees of freedom. IEEE/ASME Trans. Mechatron. 2014, 20, 532–540. [Google Scholar] [CrossRef]
- Heya, A.; Hirata, K.; Ezaki, S.; Ota, T. Dynamic Analysis of a new three-degree-of-freedom actuator for image stabilization. IEEE Trans. Magn. 2017, 53, 8203004. [Google Scholar] [CrossRef]
- Heya, A.; Hirata, K.; Niguchi, N. Dynamic modeling and control of three-degree-of-freedom electromagnetic actuator for image stabilization. IEEE Trans. Magn. 2018, 54, 8207905. [Google Scholar] [CrossRef]
- Heya, A.; Hirata, K. Experimental verification of three-degree-of-freedom electromagnetic actuator for image stabilization. Sensors 2020, 20, 2485. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.; Niguchi, N.; Hirata, K. Design and analysis of a new spherical actuator. In Proceedings of the 2015 IEEE International Magnetics Conference (INTERMAG), Beijing, China, 11–15 May 2015; p. 1. [Google Scholar]
- Fusayasu, H.; Masuyama, Y.; Hirata, K.; Niguchi, N.; Takahara, K. Analysis Accuracy in Positioning Calculation for Three-Degree-of-Freedom Spherical Actuator. IEEE Trans. Magn. 2021, 57, 8204104. [Google Scholar] [CrossRef]
- Yan, L.; Chen, I.M.; Yang, G.; Lee, K.M. Analytical and experimental investigation on the magnetic field and torque of a permanent magnet spherical actuator. IEEE/ASME Trans. Mechatron. 2006, 11, 409–419. [Google Scholar]
Parameter | Description | Value |
---|---|---|
do | Outermost diameter | 34 (mm) |
db | Fixed base diameter | 3 (mm) |
tc1 | Coil thickness for X, Y rotation | 1 (mm) |
tc2 | Coil thickness for Z rotation | 1 (mm) |
wc2 | Coil width for Z rotation | 6 (mm) |
to | Outer yoke thickness | 2 (mm) |
θo | Outer yoke angle | 60 (deg) |
θc1 | Coil angle 1 | 70 (deg) |
θc2 | Coil angle 2 | 30 (deg) |
ds1 | Spherical bearing inner diameter | 8 (mm) |
ds2 | Spherical bearing outer diameter | 10 (mm) |
di | Inner yoke outer diameter | 15 (mm) |
dm | Magnet diameter | 24 (mm) |
tm | Magnet thickness | 7 (mm) |
Tilt Angle (Deg) | Torque–13 (mN·m) (Coils C1 and C3) | Torque–24 (mN·m) (Coils C2 and C4) | Torque–All (mN·m) (All Coils) |
---|---|---|---|
0 | −5.83 | −3.26 | −9.09 |
5 | −4.69 | −4.05 | −8.74 |
10 | −3.14 | −4.06 | −7.20 |
12 | 0.53 | −8.24 | −7.72 |
15 | −1.28 | −7.81 | −9.09 |
20 | −4.44 | −7.48 | −11.93 |
25 | −7.57 | −7.02 | −14.59 |
30 | −9.66 | −6.20 | −15.85 |
Tilt Angle (Deg) | Torque–LR (mN·m) (Coils Cleft and Cright) | Torque–UD (mN·m) (Coils Cup and Cdown) | Torque–All (mN·m) (All Coils) |
---|---|---|---|
0 | −8.26 | −11.14 | −19.40 |
5 | −8.25 | −11.18 | −19.43 |
10 | −7.58 | −11.30 | −18.89 |
12 | 0 | −11.79 | −11.79 |
15 | 0 | −11.63 | −11.63 |
20 | 0 | −11.63 | −11.63 |
25 | 0 | −11.64 | −11.64 |
30 | 0 | −11.49 | −11.49 |
Tilt Angle (Deg) | Torque–LR (mN·m) (Coils Cleft and Cright) | Torque–UD (mN·m) (Coils Cup and Cdown) | Torque–All (mN·m) (All Coils) |
---|---|---|---|
0 | −8.26 | −11.14 | −19.40 |
5 | −8.25 | −11.18 | −19.43 |
10 | −7.58 | −11.30 | −18.89 |
12 | 0 | −14.35 | −14.35 |
15 | 0 | −14.24 | −14.24 |
20 | 0 | −14.14 | −14.14 |
25 | 0 | −14.20 | −14.20 |
30 | 0 | −14.08 | −14.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-H.; Liu, C.-S.; Yeh, C.-N. Design and Simulation of Novel 3-DOF Spherical Voice Coil Motor. Actuators 2021, 10, 155. https://doi.org/10.3390/act10070155
Lin Y-H, Liu C-S, Yeh C-N. Design and Simulation of Novel 3-DOF Spherical Voice Coil Motor. Actuators. 2021; 10(7):155. https://doi.org/10.3390/act10070155
Chicago/Turabian StyleLin, Yi-Hsuan, Chien-Sheng Liu, and Chiu-Nung Yeh. 2021. "Design and Simulation of Novel 3-DOF Spherical Voice Coil Motor" Actuators 10, no. 7: 155. https://doi.org/10.3390/act10070155
APA StyleLin, Y. -H., Liu, C. -S., & Yeh, C. -N. (2021). Design and Simulation of Novel 3-DOF Spherical Voice Coil Motor. Actuators, 10(7), 155. https://doi.org/10.3390/act10070155