Journal Description
Actuators
Actuators
is an international, peer-reviewed, open access journal on the science and technology of actuators and control systems published monthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within SCIE (Web of Science), Scopus, Inspec, and other databases.
- Journal Rank: JCR - Q2 (Engineering, Mechanical) / CiteScore - Q1 (Control and Optimization)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 19 days after submission; acceptance to publication is undertaken in 1.9 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
2.3 (2024);
5-Year Impact Factor:
2.4 (2024)
Latest Articles
A Novel Sub-Module-Based Line-Commutated Converter That Is Actively Resistant to Commutation Failure
Actuators 2025, 14(8), 363; https://doi.org/10.3390/act14080363 (registering DOI) - 23 Jul 2025
Abstract
To improve the ability of line-commutated converters (LCCs) to resist commutation failure (CF) when a fault occurs on the AC side, a novel sub-module-based LCC topology actively resistant to CF is proposed in this paper. The control strategy and the parameters of the
[...] Read more.
To improve the ability of line-commutated converters (LCCs) to resist commutation failure (CF) when a fault occurs on the AC side, a novel sub-module-based LCC topology actively resistant to CF is proposed in this paper. The control strategy and the parameters of the proposed sub-module are elaborately designed. The proposed LCC topology can actively resist CF by providing an auxiliary commutation voltage to the AC side, and the sub-module is conducive to the rapid recovery of the thyristor’s forward blocking ability. Additionally, the initial capacitor voltage of the sub-module is designed optimally based on the commutation mechanism. The proposed LCC system can effectively improve the ability to resist CF by increasing the commutation margin of the LCC system. Furthermore, the capacitors are charged and discharged during fault time, so the capacitor voltages do not drop too low and, thus, are better at resisting CF. Matlab/Simulink simulation results verify that the proposed LCC quickens the commutation process, promotes commutation performance, and enhances the immunity of LCCs to CF.
Full article
(This article belongs to the Special Issue Power Electronics and Actuators—Second Edition)
►
Show Figures
Open AccessArticle
Research on Deviation Correction Control Method of Full-Width Horizontal-Axis Roadheader Based on PSO-BP Neural Network PID
by
Qinghua Mao, Shimao Chong, Jianquan Chai, Song Qin and Fei Zhang
Actuators 2025, 14(8), 362; https://doi.org/10.3390/act14080362 - 22 Jul 2025
Abstract
Aiming at the problem of a full-width horizontal-axis roadheader being prone to diverge from the preset trajectory of the tunnel, a deviation correction control method based on particle swarm optimization–backpropagation (PSO-BP) neural network proportional–integral–derivative (PID) control is proposed. The track error model of
[...] Read more.
Aiming at the problem of a full-width horizontal-axis roadheader being prone to diverge from the preset trajectory of the tunnel, a deviation correction control method based on particle swarm optimization–backpropagation (PSO-BP) neural network proportional–integral–derivative (PID) control is proposed. The track error model of the walking system and the transfer function model of the deviation correction control are established. The PSO-BP PID controller is designed; the beginning weights of BP are enhanced by the PSO, and the BP receives the optimal weights to instinctively adapt the PID parameters. An experiment on deviation correction control of the roadheader was carried out. The experimental results indicate that the maximum steady-state error of PSO-BP PID for deflection angle and angular velocity is reduced by 41.03% and 44.93%, respectively, compared with BP PID, and the average rise time for deflection angle and angular velocity is reduced by 75.76%.
Full article
(This article belongs to the Section Actuators for Surface Vehicles)
Open AccessArticle
NPS6D100—A 6D Nanopositioning System with Sub-10 nm Performance in a Ø100 mm × 10 mm Workspace
by
Steffen Hesse, Alex Huaman, Michael Katzschmann and Ludwig Herzog
Actuators 2025, 14(8), 361; https://doi.org/10.3390/act14080361 - 22 Jul 2025
Abstract
This paper presents the development of a compact nanopositioning stage with long-range capabilities and six-degree-of-freedom (DOF) closed-loop control. The system, referred to as NPS6D100, provides Ø100 mm planar and 10 mm vertical travel range while maintaining direct force transfer to the moving platform
[...] Read more.
This paper presents the development of a compact nanopositioning stage with long-range capabilities and six-degree-of-freedom (DOF) closed-loop control. The system, referred to as NPS6D100, provides Ø100 mm planar and 10 mm vertical travel range while maintaining direct force transfer to the moving platform (or slider) in all DOFs. Based on an integrated planar direct drive concept, the system is enhanced by precise vertical actuation and full 6D output feedback control. The mechanical structure, drive architecture, guiding, and measurement subsystems are described in detail, along with experimental results that confirm sub-10 nm servo errors under constant setpoint operation and in synchronized multi-axis motion scenarios. With its scalable and low-disturbance design, the NPS6D100 is well suited as a nanopositioning platform for sub-10 nm applications in nanoscience and precision metrology.
Full article
(This article belongs to the Special Issue Recent Developments in Precision Actuation Technologies)
►▼
Show Figures

Figure 1
Open AccessArticle
Performance Enhancement of Seismically Protected Buildings Using Viscoelastic Tuned Inerter Damper
by
Pan-Pan Gai, Jun Dai, Yang Yang, Qin-Sheng Bi, Qing-Song Guan and Gui-Yu Zhang
Actuators 2025, 14(8), 360; https://doi.org/10.3390/act14080360 - 22 Jul 2025
Abstract
In this paper, a viscoelastic (VE) tuned inerter damper (TID) that replaces conventional stiffness and damping elements with a cost-effective VE element is proposed to achieve a target-based improvement of seismically protected buildings. The semi-analytical solution of the optimal tuning frequency ratio of
[...] Read more.
In this paper, a viscoelastic (VE) tuned inerter damper (TID) that replaces conventional stiffness and damping elements with a cost-effective VE element is proposed to achieve a target-based improvement of seismically protected buildings. The semi-analytical solution of the optimal tuning frequency ratio of the VE TID is presented based on a two-degree-of-freedom (2-DOF) system, accounting for inherent structural damping disturbances, and then is extended to a MDOF system via an effective mass ratio. The accuracy of the semi-analytical solution is validated by comparing the numerical solution. Finally, numerical analyses on a viscoelastically damped building and a base-isolated building with optimally designed VE TIDs under historical earthquakes are performed. The numerical results validate the target-based improvement capability of the VE TID with a modest mass ratio in avoiding large strokes or deformation of existing dampers and isolators, and further reducing the specific mode vibration.
Full article
(This article belongs to the Section Control Systems)
►▼
Show Figures

Figure 1
Open AccessArticle
Integrated Intelligent Control for Trajectory Tracking of Nonlinear Hydraulic Servo Systems Under Model Uncertainty
by
Haoren Zhou, Jinsheng Zhang and Heng Zhang
Actuators 2025, 14(8), 359; https://doi.org/10.3390/act14080359 - 22 Jul 2025
Abstract
To address the challenges of model uncertainty, strong nonlinearities, and controller tuning in high-precision trajectory tracking for hydraulic servo systems, this paper proposes a hierarchical GA-PID-MPC fusion strategy. The architecture integrates three functional layers: a Genetic Algorithm (GA) for online parameter optimization, a
[...] Read more.
To address the challenges of model uncertainty, strong nonlinearities, and controller tuning in high-precision trajectory tracking for hydraulic servo systems, this paper proposes a hierarchical GA-PID-MPC fusion strategy. The architecture integrates three functional layers: a Genetic Algorithm (GA) for online parameter optimization, a Model Predictive Controller (MPC) for future-oriented planning, and a Proportional–Integral–Derivative (PID) controller for fast feedback correction. These modules are dynamically coordinated through an adaptive cost-aware blending mechanism based on real-time performance evaluation. The MPC module operates on a linearized state–space model and performs receding-horizon control with weights and horizon length tuned by GA. In parallel, the PID controller is enhanced with online gain projection to mitigate nonlinear effects. The blending coefficient is adaptively updated to balance predictive accuracy and real-time responsiveness, forming a robust single-loop controller. Rigorous theoretical analysis establishes global input-to-state stability and performance under average dwell-time constraints.
Full article
(This article belongs to the Section Control Systems)
►▼
Show Figures

Figure 1
Open AccessArticle
Dynamics Modeling and Control Method for Non-Cooperative Target Capture with a Space Netted Pocket System
by
Wenyu Wang, Huibo Zhang, Jinming Yao, Wenbo Li, Zhuoran Huang, Chao Tang and Yang Zhao
Actuators 2025, 14(7), 358; https://doi.org/10.3390/act14070358 - 21 Jul 2025
Abstract
The space flexible netted pocket capture system provides a flexible and stable solution for capturing non-cooperative space objects. This paper investigates the control problem for the capture of non-cooperative targets undergoing motion. A dynamic model of the capturing net is established based on
[...] Read more.
The space flexible netted pocket capture system provides a flexible and stable solution for capturing non-cooperative space objects. This paper investigates the control problem for the capture of non-cooperative targets undergoing motion. A dynamic model of the capturing net is established based on the absolute nodal coordinate formulation (ANCF) and equivalent plate–shell theory. A contact collision force model is developed using a spring–damper model. Subsequently, a feedforward controller is designed based on the estimated collision force from the dynamic model, aiming to compensate for the collision effects between the target and the net. By incorporating the collision estimation data, an extended state observer is designed, taking into account the collision estimation errors and the flexible uncertainties. A sliding mode feedback controller is then designed using the fast terminal sliding mode control method. Finally, simulation analysis of target capture under different motion states is conducted. The results demonstrate that the spacecraft system’s position and attitude average flutter amplitudes are less than m and deg. In comparison to standard sliding mode control, the designed controller reduces the attitude jitter amplitude by an order of magnitude, thus demonstrating its effectiveness and superiority.
Full article
(This article belongs to the Section Control Systems)
►▼
Show Figures

Figure 1
Open AccessArticle
Modeling and Control for an Aerial Work Quadrotor with a Robotic Arm
by
Wenwu Zhu, Fanzeng Wu, Haibo Du, Lei Li and Yao Zhang
Actuators 2025, 14(7), 357; https://doi.org/10.3390/act14070357 - 21 Jul 2025
Abstract
This paper focuses on the integrated modeling and disturbance rejection of the aerial work quadrotor with a robotic arm. First, to address the issues of model incompleteness and parameter uncertainty commonly encountered in traditional Newton–Euler-based modeling approaches for such a system, the Lagrangian
[...] Read more.
This paper focuses on the integrated modeling and disturbance rejection of the aerial work quadrotor with a robotic arm. First, to address the issues of model incompleteness and parameter uncertainty commonly encountered in traditional Newton–Euler-based modeling approaches for such a system, the Lagrangian energy conservation principle is adopted. By treating the quadrotor and robotic arm as a unified system, an integrated dynamic model is developed, which accurately captures the coupled dynamics between the aerial platform and the manipulator. The innovative approach fills the gap in existing research where model expressions are incomplete and parameters are ambiguous. Next, to reduce the adverse effects of the robotic arm’s motion on the entire system stability, a finite-time disturbance observer and a fast non-singular terminal sliding mode controller (FNTSMC) are designed. Lyapunov theory is used to prove the finite-time stability of the closed-loop system. It breaks through the limitations of the traditional Lipschitz framework and, for the first time at both the theoretical and methodological levels, achieves finite-time convergence control for the aerial work quadrotor with a robotic arm system. Finally, comparative simulations with the integral sliding mode controller (ISMC), sliding mode controller (SMC), and PID controller demonstrate that the proposed algorithm reduces the regulation time by more than 45% compared to ISMC and SMC, and decreases the overshoot by at least 68% compared to the PID controller, which improves the convergence performance and disturbance rejection capability of the closed-loop system.
Full article
(This article belongs to the Special Issue Advanced Learning and Intelligent Control Algorithms for Robots)
►▼
Show Figures

Figure 1
Open AccessReview
The Small Frontier: Trends Toward Miniaturization and the Future of Planetary Surface Rovers
by
Carrington Chun, Faysal Chowdoury, Muhammad Hassan Tanveer, Sumit Chakravarty and David A. Guerra-Zubiaga
Actuators 2025, 14(7), 356; https://doi.org/10.3390/act14070356 - 20 Jul 2025
Abstract
The robotic exploration of space began only five decades ago, and yet in the intervening years, a wide and diverse ecosystem of robotic explorers has been developed for this purpose. Such devices have greatly benefited from miniaturization trends and the increased availability of
[...] Read more.
The robotic exploration of space began only five decades ago, and yet in the intervening years, a wide and diverse ecosystem of robotic explorers has been developed for this purpose. Such devices have greatly benefited from miniaturization trends and the increased availability of high-quality commercial off-the-shelf (COTS) components. This review outlines the specific taxonomic distinction between planetary surface rovers and other robotic space exploration vehicles, such as orbiters and landers. Additionally, arguments are made to standardize the classification of planetary rovers by mass into categories similar to those used for orbital satellites. Discussions about recent noteworthy trends toward the miniaturization of planetary rovers are also included, as well as a compilation of previous planetary rovers. This analysis compiles relevant metrics such as the mass, the distance traveled, and the locomotion or actuation technique for previous planetary rovers. Additional details are also examined about archetypal rovers that were chosen as representatives of specific small-scale rover classes. Finally, potential future trends for miniature planetary surface rovers are examined by way of comparison to similar miniaturized orbital robotic explorers known as CubeSats. Based on the existing relationship between CubeSats and their Earth-based simulation equivalents, CanSats, the importance of a potential Earth-based analog for miniature rovers is identified. This research establishes such a device, coining the new term ‘CanBot’ to refer to pathfinding systems that are deployed terrestrially to help develop future planetary surface exploration robots. Establishing this explicit genre of robotic vehicle is intended to provide a unified means for categorizing and encouraging the development of future small-scale rovers.
Full article
(This article belongs to the Special Issue Feature Papers in Actuators for Surface Vehicles)
►▼
Show Figures

Figure 1
Open AccessReview
Advances in Langevin Piezoelectric Transducer Designs for Broadband Ultrasonic Transmitter Applications
by
Jinwook Kim, Jinwoo Kim and Juwon Kang
Actuators 2025, 14(7), 355; https://doi.org/10.3390/act14070355 - 19 Jul 2025
Abstract
Langevin ultrasonic transducers, also known as Tonpilz transducers, are widely used in high-power ultrasonic applications, including underwater sonar arrays, ultrasonic cleaning, and sonication devices. Traditionally designed for narrowband operation centered on a fundamental longitudinal resonance mode, their performance has been limited by structural
[...] Read more.
Langevin ultrasonic transducers, also known as Tonpilz transducers, are widely used in high-power ultrasonic applications, including underwater sonar arrays, ultrasonic cleaning, and sonication devices. Traditionally designed for narrowband operation centered on a fundamental longitudinal resonance mode, their performance has been limited by structural constraints that tie resonance frequency to overall transducer length and mass. However, technical demands in biomedical, industrial, and underwater technologies have driven the development of broadband Langevin transducers capable of operating over wider frequency ranges. Lower frequencies are desirable for deep penetration and cavitation effects, while higher frequencies offer improved resolution and directivity. Recent design innovations have focused on modifications to the three key components of the transducer: the head mass, piezoelectric drive stack, and tail mass. Techniques such as integrating flexural or edge-resonance modes, adopting piezocomposite stacks, and tailoring structural geometry have shown promising improvements in bandwidth and transmitting efficiency. This review examines broadband Langevin transducer designs over the past three decades, offering detailed insights into design strategies for future development of high-power broadband ultrasonic transducers.
Full article
(This article belongs to the Section Control Systems)
►▼
Show Figures

Figure 1
Open AccessArticle
Coordinating the Redundant DOFs of Humanoid Robots
by
Pietro Morasso
Actuators 2025, 14(7), 354; https://doi.org/10.3390/act14070354 - 18 Jul 2025
Abstract
The new generation of robots (Industry 5.0 and beyond) is expected to be accompanied by the massive introduction of autonomous and cooperative agents in our society, both in the industrial and service sectors. Cooperation with humans will be simplified by humanoid robots with
[...] Read more.
The new generation of robots (Industry 5.0 and beyond) is expected to be accompanied by the massive introduction of autonomous and cooperative agents in our society, both in the industrial and service sectors. Cooperation with humans will be simplified by humanoid robots with a similar kinematic outline and a similar kinematic redundancy, which is required by the diversity of tasks that will be performed. A bio-inspired approach is proposed for coordinating the redundant DOFs of such agents. This approach is based on the ideomotor theory of action, combined with the passive motion paradigm, to implicitly address the degrees of freedom problem, without any kinematic inversion, while producing coordinated motor patterns structured according to the typical features of biological motion. At the same time, since the approach is force-field-based, it allows us to integrate the computational loop parallel modules that exploit the redundancy of the system for satisfying geometric or kinematic constraints implemented by appropriate repulsive force fields. Moreover, the model is expanded to include dynamic constraints associated with the Lagrangian dynamics of the humanoid robot to improve the energetic efficiency of the generated actions.
Full article
(This article belongs to the Special Issue Design and Application of Actuators with Multi-DOF Movement-2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Development of a Compliant Pediatric Upper-Limb Training Robot Using Series Elastic Actuators
by
Jhon Rodriguez-Torres, Paola Niño-Suarez and Mauricio Mauledoux
Actuators 2025, 14(7), 353; https://doi.org/10.3390/act14070353 - 18 Jul 2025
Abstract
Series elastic actuators (SEAs) represent a key technological solution to enhance safety, performance, and adaptability in robotic devices for physical training. Their ability to decouple the rigid actuator’s mechanical impedance from the load, combined with passive absorption of external disturbances, makes them particularly
[...] Read more.
Series elastic actuators (SEAs) represent a key technological solution to enhance safety, performance, and adaptability in robotic devices for physical training. Their ability to decouple the rigid actuator’s mechanical impedance from the load, combined with passive absorption of external disturbances, makes them particularly suitable for pediatric applications. In children aged 2 to 5 years—where motor control is still developing and movements can be unpredictable or unstructured—SEAs provide a compliant mechanical response that ensures user protection and enables safe physical interaction. This study explores the role of SEAs as a central component for imparting compliance and backdrivability in robotic systems designed for upper-limb training. A dynamic model is proposed, incorporating interaction with the user’s limb, along with a computed torque control strategy featuring integral action. The system’s performance is validated through simulations and experimental tests, demonstrating stable trajectory tracking, disturbance absorption, and effective impedance decoupling. The results support the use of SEAs as a foundational technology for developing safe adaptive robotic solutions in pediatric contexts capable of responding flexibly to user variability and promoting secure interaction in early motor development environments.
Full article
(This article belongs to the Special Issue Biomechanics, Actuation, and Control Strategies of Prosthetics, Orthotics, and Exoskeletons)
►▼
Show Figures

Figure 1
Open AccessArticle
Optimization of Soft Actuator Control in a Continuum Robot
by
Oleksandr Sokolov, Serhii Sokolov, Angelina Iakovets and Miroslav Malaga
Actuators 2025, 14(7), 352; https://doi.org/10.3390/act14070352 - 17 Jul 2025
Abstract
This study presents a quasi-static optimization framework for the pressure-based control of a multi-segment soft continuum manipulator. The proposed method circumvents traditional curvature and length-based modeling by directly identifying the quasi-static input–output relationship between actuator pressures and the 6-DoF end-effector pose. Experimental data
[...] Read more.
This study presents a quasi-static optimization framework for the pressure-based control of a multi-segment soft continuum manipulator. The proposed method circumvents traditional curvature and length-based modeling by directly identifying the quasi-static input–output relationship between actuator pressures and the 6-DoF end-effector pose. Experimental data were collected using a high-frequency electromagnetic tracking system under monotonic pressurization to minimize hysteresis effects. Transfer functions were identified for each coordinate–actuator pair using the System Identification Toolbox in MATLAB, and optimal actuator pressures were computed analytically by solving a constrained quadratic program via a manual active-set method. The resulting control strategy achieved sub-millimeter positioning error while minimizing the number of actuators engaged. The approach is computationally efficient, sensor-minimal, and fully implementable in open-loop settings. Despite certain limitations due to sensor nonlinearity and actuator hysteresis, the method provides a robust foundation for feedforward control and the real-time deployment of soft robots in quasi-static tasks.
Full article
(This article belongs to the Special Issue Advanced Technologies in Soft Actuators)
►▼
Show Figures

Figure 1
Open AccessArticle
Fuzzy Adaptive Control for a 4-DOF Hand Rehabilitation Robot
by
Paul Tucan, Oana-Maria Vanta, Calin Vaida, Mihai Ciupe, Dragos Sebeni, Adrian Pisla, Simona Stiole, David Lupu, Zoltan Major, Bogdan Gherman, Vasile Bulbucan, Ionut Zima, Jose Machado and Doina Pisla
Actuators 2025, 14(7), 351; https://doi.org/10.3390/act14070351 - 17 Jul 2025
Abstract
This paper presents the development of a fuzzy-PID control able to adapt to several robot–patient interaction modes by monitoring patient evolution during the rehabilitation procedure. This control system is designed to provide targeted rehabilitation therapy through three interaction modes: passive; active–assistive; and resistive.
[...] Read more.
This paper presents the development of a fuzzy-PID control able to adapt to several robot–patient interaction modes by monitoring patient evolution during the rehabilitation procedure. This control system is designed to provide targeted rehabilitation therapy through three interaction modes: passive; active–assistive; and resistive. By integrating a fuzzy inference system into the classical PID architecture, the FPID controller dynamically adjusts control gains in response to tracking error and patient effort. The simulation results indicate that, in passive mode, the FPID controller achieves a 32% lower RMSE, reduced overshoot, and a faster settling time compared to the conventional PID. In the active–assistive mode, the FPID demonstrates enhanced responsiveness and reduced error lag when tracking a sinusoidal reference, while in resistive mode, it more effectively compensates for imposed load disturbances. A rehabilitation scenario simulating repeated motion cycles on a healthy subject further confirms that the FPID controller consistently produces a lower overall RMSE and variability.
Full article
(This article belongs to the Special Issue Biomechanics, Actuation, and Control Strategies of Prosthetics, Orthotics, and Exoskeletons)
►▼
Show Figures

Figure 1
Open AccessArticle
A Hybrid Flying Robot Utilizing Water Thrust and Aerial Propellers: Modeling and Motion Control System Design
by
Thien-Dinh Nguyen, Cao-Tri Dinh, Tan-Ngoc Nguyen, Jung-Suk Park, Thinh Huynh and Young-Bok Kim
Actuators 2025, 14(7), 350; https://doi.org/10.3390/act14070350 - 17 Jul 2025
Abstract
In this paper, a hybrid flying robot that utilizes water thrust and aerial propeller actuation is proposed and analyzed, with the aim of applications in hazardous tasks in the marine field, such as firefighting, ship inspections, and search and rescue missions. For such
[...] Read more.
In this paper, a hybrid flying robot that utilizes water thrust and aerial propeller actuation is proposed and analyzed, with the aim of applications in hazardous tasks in the marine field, such as firefighting, ship inspections, and search and rescue missions. For such tasks, existing solutions like drones and water-powered robots inherited fundamental limitations, making their use ineffective. For instance, drones are constrained by limited flight endurance, while water-powered robots struggle with horizontal motion due to the couplings between translational motions. The proposed hydro-aerodynamic hybrid actuation in this study addresses these significant drawbacks by utilizing water thrust for sustainable vertical propulsion and propeller-based actuation for more controllable horizontal motion. The characteristics and mathematical models of the proposed flying robots are presented in detail. A state feedback controller and a proportional–integral–derivative (PID) controller are designed and implemented in order to govern the proposed robot’s motion. In particular, a linear matrix inequality approach is also proposed for the former design so that a robust performance is ensured. Simulation studies are conducted where a purely water-powered flying robot using a nozzle rotation mechanism is deployed for comparison, to evaluate and validate the feasibility of the flying robot. Results demonstrate that the proposed system exhibits superior performance in terms of stability and tracking, even in the presence of external disturbances.
Full article
(This article belongs to the Special Issue Actuator-Based Control Strategies for Marine Vehicles)
►▼
Show Figures

Figure 1
Open AccessArticle
Gaussian Process Regression-Based Fixed-Time Trajectory Tracking Control for Uncertain Euler–Lagrange Systems
by
Tong Li, Tianqi Chen and Liang Sun
Actuators 2025, 14(7), 349; https://doi.org/10.3390/act14070349 - 16 Jul 2025
Abstract
The fixed-time trajectory tracking control problem of the uncertain nonlinear Euler–Lagrange system is studied. To ensure the fast, high-precision trajectory tracking performance of this system, a non-singular terminal sliding-mode controller based on Gaussian process regression is proposed. The control algorithm proposed in this
[...] Read more.
The fixed-time trajectory tracking control problem of the uncertain nonlinear Euler–Lagrange system is studied. To ensure the fast, high-precision trajectory tracking performance of this system, a non-singular terminal sliding-mode controller based on Gaussian process regression is proposed. The control algorithm proposed in this paper is applicable to periodic motion scenarios, such as spacecraft autonomous orbital rendezvous and repetitive motions of robotic manipulators. Gaussian process regression is employed to establish an offline data-driven model, which is utilized for compensating parametric uncertainties and external disturbances. The non-singular terminal sliding-mode control strategy is used to avoid singularity and ensure fast convergence of tracking errors. In addition, under the Lyapunov framework, the fixed-time convergence stability of the closed-loop system is rigorously demonstrated. The effectiveness of the proposed control scheme is verified through simulations on a spacecraft rendezvous mission and periodic joint trajectory tracking for a robotic manipulator.
Full article
(This article belongs to the Section Aerospace Actuators)
►▼
Show Figures

Figure 1
Open AccessArticle
Distributed Sensing Enabled Embodied Intelligence for Soft Finger Manipulation
by
Chukwuemeka Ochieze, Zhen Liu and Ye Sun
Actuators 2025, 14(7), 348; https://doi.org/10.3390/act14070348 - 15 Jul 2025
Abstract
Soft continuum robots are constructed from soft and compliant materials and can provide high flexibility and adaptability to various applications. They have theoretically infinite degrees of freedom (DOFs) and can generate highly nonlinear behaviors, which leads to challenges in accurately modeling and controlling
[...] Read more.
Soft continuum robots are constructed from soft and compliant materials and can provide high flexibility and adaptability to various applications. They have theoretically infinite degrees of freedom (DOFs) and can generate highly nonlinear behaviors, which leads to challenges in accurately modeling and controlling their deformation, compliance, and behaviors. Inspired by animals, embodied intelligence utilizes physical bodies as an intelligent resource for information processing and task completion and offloads the computational cost of central control, which provides a unique approach to understanding and modeling soft robotics. In this study, we propose a theoretical framework to explain and guide distributed sensing enabled embodied intelligence for soft finger manipulation from a physics-based perspective. Specifically, we aim to provide a theoretical foundation to guide future sensor design and placement by addressing two key questions: (1) whether and why the state of a specific material point such as the tip trajectory of a soft finger can be predicted using distributed sensing, and, (2) how many sensors are sufficient for accurate prediction. These questions are critical for the design of soft and compliant robotic systems with embedded sensing for embodied intelligence. In addition to theoretical analysis, the study presents a feasible approach for real-time trajectory prediction through optimized sensor placement, with results validated through both simulation and experiment. The results showed that the tip trajectory of a soft finger can be predicted with a finite number of sensors with proper placement. While the proposed method is demonstrated in the context of soft finger manipulation, the framework is theoretically generalizable to other compliant soft robotic systems.
Full article
(This article belongs to the Special Issue Soft Robotics: Actuation, Control, and Application)
►▼
Show Figures

Figure 1
Open AccessReview
Recent Advances in Bidirectional Converters and Regenerative Braking Systems in Electric Vehicles
by
Hamid Naseem and Jul-Ki Seok
Actuators 2025, 14(7), 347; https://doi.org/10.3390/act14070347 - 14 Jul 2025
Abstract
As electric vehicles (EVs) continue to advance toward widespread adoption, innovations in power electronics are playing a pivotal role in improving efficiency, performance, and sustainability. This review presents recent progress in bidirectional converters and regenerative braking systems (RBSs), highlighting their contributions to energy
[...] Read more.
As electric vehicles (EVs) continue to advance toward widespread adoption, innovations in power electronics are playing a pivotal role in improving efficiency, performance, and sustainability. This review presents recent progress in bidirectional converters and regenerative braking systems (RBSs), highlighting their contributions to energy recovery, battery longevity, and vehicle-to-grid integration. Bidirectional converters support two-way energy flow, enabling efficient regenerative braking and advanced charging capabilities. The integration of wide-bandgap semiconductors, such as silicon carbide and gallium nitride, further enhances power density and thermal performance. The paper evaluates various converter topologies, including single-stage and multi-stage architectures, and assesses their suitability for high-voltage EV platforms. Intelligent control strategies, including fuzzy logic, neural networks, and sliding mode control, are discussed for optimizing braking force and maximizing energy recuperation. In addition, the paper explores the influence of regenerative braking on battery degradation and presents hybrid energy storage systems and AI-based methods as mitigation strategies. Special emphasis is placed on the integration of RBSs in advanced electric vehicle platforms, including autonomous systems. The review concludes by identifying current challenges, emerging trends, and key design considerations to inform future research and practical implementation in electric vehicle energy systems.
Full article
(This article belongs to the Special Issue Feature Papers in Actuators for Surface Vehicles)
►▼
Show Figures

Figure 1
Open AccessProject Report
On Control Synthesis of Hydraulic Servomechanisms in Flight Controls Applications
by
Ioan Ursu, Daniela Enciu and Adrian Toader
Actuators 2025, 14(7), 346; https://doi.org/10.3390/act14070346 - 14 Jul 2025
Abstract
This paper presents some of the most significant findings in the design of a hydraulic servomechanism for flight controls, which were primarily achieved by the first author during his activity in an aviation institute. These results are grouped into four main topics. The
[...] Read more.
This paper presents some of the most significant findings in the design of a hydraulic servomechanism for flight controls, which were primarily achieved by the first author during his activity in an aviation institute. These results are grouped into four main topics. The first one outlines a classical theory, from the 1950s–1970s, of the analysis of nonlinear automatic systems and namely the issue of absolute stability. The uninformed public may be misled by the adjective “absolute”. This is not a “maximalist” solution of stability but rather highlights in the system of equations a nonlinear function that describes, for the case of hydraulic servomechanisms, the flow-control dependence in the distributor spool. This function is odd, and it is therefore located in quadrants 1 and 3. The decision regarding stability is made within the so-called Lurie problem and is materialized by a matrix inequality, called the Lefschetz condition, which must be satisfied by the parameters of the electrohydraulic servomechanism and also by the components of the control feedback vector. Another approach starts from a classical theorem of V. M. Popov, extended in a stochastic framework by T. Morozan and I. Ursu, which ends with the description of the local and global spool valve flow-control characteristics that ensure stability in the large with respect to bounded perturbations for the mechano-hydraulic servomechanism. We add that a conjecture regarding the more pronounced flexibility of mathematical models in relation to mathematical instruments (theories) was used. Furthermore, the second topic concerns, the importance of the impedance characteristic of the mechano-hydraulic servomechanism in preventing flutter of the flight controls is emphasized. Impedance, also called dynamic stiffness, is defined as the ratio, in a dynamic regime, between the output exerted force (at the actuator rod of the servomechanism) and the displacement induced by this force under the assumption of a blocked input. It is demonstrated in the paper that there are two forms of the impedance function: one that favors the appearance of flutter and another that allows for flutter damping. It is interesting to note that these theoretical considerations were established in the institute’s reports some time before their introduction in the Aviation Regulation AvP.970. However, it was precisely the absence of the impedance criterion in the regulation at the appropriate time that ultimately led, by chance or not, to a disaster: the crash of a prototype due to tailplane flutter. A third topic shows how an important problem in the theory of automatic systems of the 1970s–1980s, namely the robust synthesis of the servomechanism, is formulated, applied and solved in the case of an electrohydraulic servomechanism. In general, the solution of a robust servomechanism problem consists of two distinct components: a servo-compensator, in fact an internal model of the exogenous dynamics, and a stabilizing compensator. These components are adapted in the case of an electrohydraulic servomechanism. In addition to the classical case mentioned above, a synthesis problem of an anti-windup (anti-saturation) compensator is formulated and solved. The fourth topic, and the last one presented in detail, is the synthesis of a fuzzy supervised neurocontrol (FSNC) for the position tracking of an electrohydraulic servomechanism, with experimental validation, in the laboratory, of this control law. The neurocontrol module is designed using a single-layered perceptron architecture. Neurocontrol is in principle optimal, but it is not free from saturation. To this end, in order to counteract saturation, a Mamdani-type fuzzy logic was developed, which takes control when neurocontrol has saturated. It returns to neurocontrol when it returns to normal, respectively, when saturation is eliminated. What distinguishes this FSNC law is its simplicity and efficiency and especially the fact that against quite a few opponents in the field, it still works very well on quite complicated physical systems. Finally, a brief section reviews some recent works by the authors, in which current approaches to hydraulic servomechanisms are presented: the backstepping control synthesis technique, input delay treated with Lyapunov–Krasovskii functionals, and critical stability treated with Lyapunov–Malkin theory.
Full article
(This article belongs to the Special Issue Advanced Technologies in Actuators for Control Systems)
►▼
Show Figures

Figure 1
Open AccessArticle
Numerical Investigation of the Tribological Performance of Surface-Textured Bushings in External Gear Pumps Under Transient Lubrication Conditions
by
Paolo Casoli, Masoud Hatami Garousi, Massimo Rundo and Carlo Maria Vescovini
Actuators 2025, 14(7), 345; https://doi.org/10.3390/act14070345 - 11 Jul 2025
Abstract
This study presents a computational fluid dynamics (CFDs) investigation of the hydrodynamic behavior of surface-textured lateral bushings in external gear pumps (EGPs), emphasizing the effects of combined sliding and squeezing motions within the lubrication gap. A comprehensive numerical model was developed to analyze
[...] Read more.
This study presents a computational fluid dynamics (CFDs) investigation of the hydrodynamic behavior of surface-textured lateral bushings in external gear pumps (EGPs), emphasizing the effects of combined sliding and squeezing motions within the lubrication gap. A comprehensive numerical model was developed to analyze how surface texturing implemented through different dimple shapes and texture densities influences pressure distribution and load-carrying capacity under transient lubrication conditions. The analysis demonstrates that the interaction between shear-driven flow and squeeze-film compression significantly amplifies pressure, particularly when optimal dimple configurations are applied. Results indicate that dimple geometry, depth, and arrangement critically influence hydrodynamic performance, while excessive texturing reduces effectiveness due to increased average gap height. Cavitation was intentionally not modeled in the early single dimple evaluations to allow clear comparison between configurations. The findings offer a design guideline for employing surface textures to enhance tribological performance and efficiency in EGP applications under realistic dynamic conditions.
Full article
(This article belongs to the Special Issue Advances in Fluid Power Systems and Actuators)
►▼
Show Figures

Figure 1
Open AccessArticle
Dynamic Study on a Passive Damping Scheme for Permanent Magnet Electrodynamic Suspension Vehicle Utilizing Onboard Magnets End Effects
by
Shanqiang Fu, Mingang Chi, Anqi Shu, Junzhi Liu, Shuqing Zhang, Hongfu Shi and Zigang Deng
Actuators 2025, 14(7), 344; https://doi.org/10.3390/act14070344 - 11 Jul 2025
Abstract
The permanent magnet electrodynamic suspension system (PMEDS) has demonstrated significant advantages in high-speed and ultra-high-speed applications due to its simple structure, low cost, and stable levitation force. However, the weak damping characteristic remains a critical issue limiting its practical implementation. This work investigates
[...] Read more.
The permanent magnet electrodynamic suspension system (PMEDS) has demonstrated significant advantages in high-speed and ultra-high-speed applications due to its simple structure, low cost, and stable levitation force. However, the weak damping characteristic remains a critical issue limiting its practical implementation. This work investigates a passive damping plate utilizing the end field of onboard magnets, focusing on magnet-damping plate optimization and vehicle dynamics. Firstly, the configuration, operation principles, and electromagnetic parameters of the PMEDS vehicle are elucidated. Secondly, the dependences of magnet-conductive plate specifications on the damping force are examined. An optimization index based on the levitation-to-damping force ratio is proposed to enable collaborative optimization of magnet and conductive plate parameters. Finally, the vehicle dynamic model is developed using Simpack software to investigate payload and speed effects on dynamic responses under random track excitation, validating the effectiveness of the proposed passive damping solution. This study provides technical references for the design, engineering applications, and performance evaluation of passive damping schemes in PMEDS vehicles.
Full article
(This article belongs to the Special Issue Actuators in Magnetic Levitation Technology and Vibration Control)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Actuators Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Actuators, Applied Sciences, Entropy
Thermodynamics and Heat Transfers in Vacuum Tube Trains (Hyperloop)
Topic Editors: Suyong Choi, Minki Cho, Jungyoul LimDeadline: 30 July 2025
Topic in
Actuators, Algorithms, BDCC, Future Internet, JMMP, Machines, Robotics, Systems
Smart Product Design and Manufacturing on Industrial Internet
Topic Editors: Pingyu Jiang, Jihong Liu, Ying Liu, Jihong YanDeadline: 31 December 2025
Topic in
Actuators, Automation, Electronics, Machines, Robotics, Eng, Technologies
New Trends in Robotics: Automation and Autonomous Systems
Topic Editors: Maki Habib, Fusaomi NagataDeadline: 31 January 2026
Topic in
Actuators, Gels, JFB, Polymers, MCA, Materials
Recent Advances in Smart Soft Materials: From Theory to Practice
Topic Editors: Lorenzo Bonetti, Giulia Scalet, Silvia Farè, Nicola FerroDeadline: 31 December 2026

Conferences
Special Issues
Special Issue in
Actuators
Recent Advances in the Design and Applications for Magnetoelastic and Electroelastic Actuators
Guest Editors: Lucian Pîslaru-Dănescu, Alexandru M. MoregaDeadline: 25 July 2025
Special Issue in
Actuators
Advanced Model Predictive Control and Intelligent Actuation for Multi-Agent and Complex Systems
Guest Editors: Constantin-Florin Caruntu, Anca MaximDeadline: 30 July 2025
Special Issue in
Actuators
Innovative MEMS: Merging Smart Materials with Electronic Techniques for Enhanced Sensing and Actuation
Guest Editors: Michele Rosso, Alessandro NastroDeadline: 30 July 2025
Special Issue in
Actuators
Recent Developments in Precision Actuation Technologies
Guest Editors: Bin-tang Yang, Yikun Yang, Xiaoqing SunDeadline: 31 July 2025