Mechanism Design of a Transformable Crawling Robot and Feasibility Analysis for the Unstructured Environment
Abstract
:1. Introduction
2. Design and Analysis of Robot Mechanism
2.1. Mechanism Design
2.2. Kinematics Analysis
3. Feasibility Analysis of Arc Surface Locomotion
4. Simulation Test of Robot Locomotion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Mongeau, J.M.; Demir, A.; Lee, J.; Cowan, N.J.; Full, R.J. Locomotion- and mechanics-mediated tactile sensing: Antenna reconfiguration simplifies control during high-speed navigation in cockroaches. J. Exp. Biol. 2013, 216, 4530–4541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucker, D.B.; McBrayer, L.D. Overcoming obstacles: The effect of obstacles on locomotor performance and behaviour. Biol. J. Linn. Soc. 2012, 107, 813–823. [Google Scholar] [CrossRef] [Green Version]
- Kohlsdorf, T.; Biewener, A.A. Negotiating obstacles: Running kinematics of the lizard Sceloporus malachiticus. J. Zool. 2006, 270, 359–371. [Google Scholar] [CrossRef]
- Heitler, W.J. The locust jump. J. Comp. Physiol. 1974, 89, 93–104. [Google Scholar] [CrossRef]
- Li, C.; Pullin, A.O.; Haldane, D.W.; Lam, H.K.; Fearing, R.S.; Full, R.J. Terradynamically streamlined shapes in animals and robots enhance traversability through densely cluttered terrain. Bioinspiration Biomim. 2015, 10, 046003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayaram, K.; Mongeau, J.M.; Mohapatra, A.; Birkmeyer, P.; Fearing, R.S.; Full, R.J. Transition by head-on collision: Mechanically mediated manoeuvres in cockroaches and small robots. J. R. Soc. Interface 2018, 15, 20170664. [Google Scholar] [CrossRef] [PubMed]
- Jayaram, K.; Full, R.J. Cockroaches traverse crevices, crawl rapidly in confined spaces, and inspire a soft, legged robot. PNAS 2016, 113, E950–E957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonard, J.J.; Durrant-Whyte, H.F. Simultaneous Map Building and Localization for an Autonomous Mobile Robot. In Proceedings of the Proceedings IROS ’91:IEEE/RSJ International Workshop on Intelligent Robots and Systems ’91, Osaka, Japan, 3–4 November 1991; pp. 1442–1447. [Google Scholar]
- Thrun, S.; Burgard, W.; Fox, D. A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), San Francisco, CA, USA, 24–28 April 2000; pp. 321–328. [Google Scholar]
- Lussier Desbiens, A.; Cutkosky, M.R. Landing and Perching on Vertical Surfaces with Microspines for Small Unmanned Air Vehicles. J. Intell. Rob. Syst. 2009, 57, 313–327. [Google Scholar] [CrossRef]
- Lussier Desbiens, A.; Asbeck, A.; Cutkosky, M. Landing, perching and taking off from vertical surfaces. Int. J. Rob. Res. 2011, 30, 355–370. [Google Scholar] [CrossRef]
- Jung, G.-P.; Casarez, C.S.; Lee, J.; Baek, S.-M.; Yim, S.-J.; Chae, S.-H.; Fearing, R.S.; Cho, K.-J. JumpRoACH: A Trajectory-Adjustable Integrated Jumping-Crawling Robot. IEEE-Asme Trans. Mechatron. 2019, 24, 947–958. [Google Scholar] [CrossRef]
- Woodward, M.A.; Sitti, M. Design of a Miniature Integrated Multi-Modal Jumping and Gliding Robot. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 556–561. [Google Scholar]
- Ngoc Thien, T.; Hoang Vu, P.; Park, H.C. Design and demonstration of a bio-inspired flapping-wing-assisted jumping robot. Bioinspiration Biomim. 2019, 14, 036010. [Google Scholar]
- Kim, K.; Spieler, P.; Lupu, E.-S.; Ramezani, A.; Chung, S.-J. A bipedal walking robot that can fly, slackline, and skateboard. Sci. Robot. 2021, 6, eabf8136. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-C.; Huang, K.-J.; Chen, W.-H.; Shen, S.-Y.; Li, C.-H.; Lin, P.-C. Quattroped: A Leg--Wheel Transformable Robot. IEEE/ASME Trans. Mechatron. 2014, 19, 730–742. [Google Scholar] [CrossRef]
- Shang, H.; Wei, D.; Kang, R.; Chen, Y. Gait analysis and control of a deployable robot. Mech. Mach. Theory 2018, 120, 107–119. [Google Scholar] [CrossRef]
- Ding, W.; Yao, Y.-A. Self-crossing Motion Analysis of a Novel Inpipe Parallel Robot with Two Foldable Platforms. In Proceedings of the Mechanisms, Transmissions and Applications, Aachen, Germany, 3 April 2015; pp. 221–229. [Google Scholar]
- Lu, S.N.; Zlatanov, D.; Ding, X.L.; Molfino, R. A new family of deployable mechanisms based on the Hoekens linkage. Mech. Mach. Theory 2014, 73, 130–153. [Google Scholar] [CrossRef]
- Hernandez, A.; Altuzarra, O.; Petuya, V.; Pinto, C.; Amezua, E. A robot for non-destructive testing weld inspection of offshore mooring chains. Int. J. Adv. Rob. Syst. 2018, 15, 1729881418770532. [Google Scholar] [CrossRef]
- Liu, Y.F.; Li, J.; Hu, X.H.; Zhang, Z.M.; Cheng, L.; Lin, Y.; Zhang, W.J. Modeling and control of piezoelectric inertia-friction actuators: Review and future research directions. Mech. Sci. 2015, 6, 95–107. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, J.; Wang, Z.; Zhang, Z.; Xing, Y.; Ji, A. Mechanism Design of a Transformable Crawling Robot and Feasibility Analysis for the Unstructured Environment. Actuators 2022, 11, 60. https://doi.org/10.3390/act11020060
Yuan J, Wang Z, Zhang Z, Xing Y, Ji A. Mechanism Design of a Transformable Crawling Robot and Feasibility Analysis for the Unstructured Environment. Actuators. 2022; 11(2):60. https://doi.org/10.3390/act11020060
Chicago/Turabian StyleYuan, Jiwei, Zhouyi Wang, Zhourong Zhang, Yuhang Xing, and Aihong Ji. 2022. "Mechanism Design of a Transformable Crawling Robot and Feasibility Analysis for the Unstructured Environment" Actuators 11, no. 2: 60. https://doi.org/10.3390/act11020060
APA StyleYuan, J., Wang, Z., Zhang, Z., Xing, Y., & Ji, A. (2022). Mechanism Design of a Transformable Crawling Robot and Feasibility Analysis for the Unstructured Environment. Actuators, 11(2), 60. https://doi.org/10.3390/act11020060