Impact Force Analysis in Inertia-Type Piezoelectric Motors
Abstract
:1. Introduction
2. Structure and Operational Principle
2.1. Stator Structure
2.2. Motor Driving Principle
3. Electromechanical Modeling and Verification of Friction Coupler Movement
3.1. Kinetic Model
3.2. Equivalent Circuitry
4. Experiments
4.1. Transient Voltage, Current and Vibration Velocity Waveforms during Slip Times (On a Multilayer Actuator)
4.2. Transient Voltage and Current Waveforms during Slip Times (Stator in Motor)
5. Motor Characteristics
5.1. Load Characteristics
5.2. Slider Transient Response during Slip Times
5.3. Mean Step Size at Different Frequencies
5.4. Open Loop Single Step Movements under Various Loads
6. Discussion and Features
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meissner, A. Converting Electrical Oscillations into Mechanical Movement. U.S. Patent 1 804 838, 12 May 1931. [Google Scholar]
- Sashida, T. Motor Device Utilizing Ultrasonic Oscillation. U.S. Patent 4 562 374, 31 December 1985. [Google Scholar]
- Kurosawa, M.; Nakamura, K.; Okamoto, T.; Ueha, S. An ultrasonic motor using bending vibrations of a short cylinder. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1989, 36, 517–521. [Google Scholar] [CrossRef] [PubMed]
- Uchino, K.; Ohnishi, K. Linear motor. U.S. Patent 4 857 791, 15 August 1989. [Google Scholar]
- Spanner, K.; Koc, B. Piezoelectric Motors, an Overview. Actuators 2016, 5, 6. [Google Scholar] [CrossRef]
- Higuchi, T.; Watanabe, M. Apparatus for Effecting Fine Movement by Impact Force Produced by Piezoelectric or Electro-strictive Element. U.S. Patent 4 894 579, 23 May 1987. [Google Scholar]
- Pohl, D.W. Dynamic piezoelectric translation devices. Rev. Sci. Instrum. 1987, 58, 54–57. [Google Scholar] [CrossRef]
- Niedermann, P.; Emch, R.; Descouts, P. Simple piezoelectric translation device. Rev. Sci. Instrum. 1988, 59, 368–369. [Google Scholar] [CrossRef]
- Okamoto, Y.; Yoshida, Y. Development of linear actuators using piezoelectric elements. Electron. Comm. Jpn. 1998, 81, 11–17. [Google Scholar] [CrossRef]
- Ha, J.-L.; Fung, R.-F.; Yang, C.-S. Hysteresis identification and dynamic responses of the impact drive mechanism. J. Sound Vib. 2005, 283, 943–956. [Google Scholar] [CrossRef]
- Ho, S.; Shin, Y. Design of a Semi-Oval Shaped Ultrasonic Motor. Int. J. Autom. Technol. 2013, 7, 537–543. [Google Scholar] [CrossRef]
- Sun, M.; Wang, Y.; Huang, W.; Lu, Q. Research on a symmetric non-resonant piezoelectric linear motor. J. Vibroeng. 2016, 5, 2916–2925. [Google Scholar] [CrossRef] [Green Version]
- Chu, X.; Zhong, Z.; Zhu, C.; Zhao, Y.; Li, L. A novel low-voltage non-resonant piezoelectric linear actuator based on two alternative principles. Ferroelectrics 2016, 505, 147–158. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Hung, S.-K. A Piezoelectric Two-Degree-of-Freedom Nanostepping Motor with Parallel Design. IEEE/ASME Trans. Mechatron. 2015, 21, 2197–2199. [Google Scholar] [CrossRef]
- Yao, J.; Cai, J.; Hu, Y.; Wen, J.; Wan, N.; Wang, H.; Li, J. An Umbrella-Shaped Linear Piezoelectric Actuator Based on Stick-Slip Motion Principle. IEEE Access 2019, 7, 157724–157729. [Google Scholar] [CrossRef]
- Yang, X.; Tang, J.; Guo, W.; Huang, H.; Fan, H.; Liu, J.; Li, T. Design and Analysis of a Stepping Piezoelectric Actuator Free of Backward Motion. Actuators 2021, 10, 200. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, X.; Huang, H.; Dong, J.; Fan, Z.; Zhao, H. On the Suppression of the Backward Motion of a Piezo-Driven Precision Positioning Platform Designed by the Parasitic Motion Principle. IEEE Trans. Ind. Electron. 2019, 67, 3870–3878. [Google Scholar] [CrossRef]
- Gao, W.; Sato, S.; Sakurai, Y.; Kiyono, S. Design of a Precision Linear-Rotary Positioning Actuator. J. Robot. Mechatron. 2006, 18, 803–807. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, L.; Huang, H. A Dynamic Model of Stick-Slip Piezoelectric Actuators Considering the Deformation of Overall System. IEEE Trans. Ind. Electron. 2020, 68, 11266–11275. [Google Scholar] [CrossRef]
- Xu, J.-J.; Chen, X.-F.; Wang, Y.; Huang, W.-Q.; Pan, L. A non-resonant vibration linear motor based on displacement amplification structure. In Proceedings of the 2011 Symposium on Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA), Shenzhen, China, 9–11 December 2011; pp. 196–199. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, M.; Cheng, Y.; Zheng, D.; Peng, Y. A stick-slip/inchworm hybrid rotary piezo motor based on a symmetric triangular driving mechanism. Appl. Phys. Lett. 2019, 115, 131904. [Google Scholar] [CrossRef]
- Ho, S.-T.; Jan, S.-J. A piezoelectric motor for precision positioning applications. Precis. Eng. 2016, 43, 285–293. [Google Scholar] [CrossRef]
- Xu, Z.; Li, X.; Wang, K.; Liang, T.; Dong, J.; Huang, H. A stick–slip piezoelectric actuator with high consistency in forward and reverse motions. Rev. Sci. Instrum. 2020, 91, 105005. [Google Scholar] [CrossRef]
- Tang, J.; Wei, J.; Wang, Y.; Xu, Z.; Huang, H. A Novel Rotation-Structure Based Stick-Slip Piezoelectric Actuator with High Consistency in Forward and Reverse Motions. Actuators 2021, 10, 189. [Google Scholar] [CrossRef]
- Koc, B.; Delibas, B. Design of a 2-phase Piezoelectric Inertia Drive Type Motor, ACTUATOR 2022. In Proceedings of the International Conference and Exhibition on New Actuator Systems and Applications, Mannheim, Germany, 29–30 June 2022; pp. 1–4. [Google Scholar]
- Delibas, B.; Koc, B. A Method to Realize Low Velocity Movability and Eliminate Friction Induced Noise in Piezoelectric Ultrasonic Motors. IEEE/ASME Trans. Mechatron. 2020, 25, 2677–2687. [Google Scholar] [CrossRef]
- Wallaschek, J. Contact mechanics of piezoelectric ultrasonic motors. Smart Mater. Struct. 1998, 7, 369–381. [Google Scholar] [CrossRef]
- Armstrong-Helouvry, B. Stick slip and control in low-speed motion. IEEE Trans. Autom. Control 1993, 38, 1483–1496. [Google Scholar] [CrossRef]
- Ikeda, T. Fundamentals of Piezoelectricity; Oxford Press: Oxford, UK, 1997. [Google Scholar]
- Slabki, M.; Wu, J.; Weber, M.; Breckner, P.; Isaia, D.; Nakamura, K.; Koruza, J. Anisotropy of the high-power piezoelectric properties of Pb(Zr, Ti)O3. J. Am. Cer. Soc. 2019, 102, 6008–6017. [Google Scholar] [CrossRef]
- Goldfarb, M.; Celanovic, N. Modeling piezoelectric stack actuators for control of micromanipulation. IEEE Control Syst. 1997, 17, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Satoru, T. Piezoelectric Actuator. Japanese Patent 1991283580A, 13 December 1991. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koc, B.; Delibas, B. Impact Force Analysis in Inertia-Type Piezoelectric Motors. Actuators 2023, 12, 52. https://doi.org/10.3390/act12020052
Koc B, Delibas B. Impact Force Analysis in Inertia-Type Piezoelectric Motors. Actuators. 2023; 12(2):52. https://doi.org/10.3390/act12020052
Chicago/Turabian StyleKoc, Burhanettin, and Bülent Delibas. 2023. "Impact Force Analysis in Inertia-Type Piezoelectric Motors" Actuators 12, no. 2: 52. https://doi.org/10.3390/act12020052
APA StyleKoc, B., & Delibas, B. (2023). Impact Force Analysis in Inertia-Type Piezoelectric Motors. Actuators, 12(2), 52. https://doi.org/10.3390/act12020052