Deep Domain Adaptation with Correlation Alignment and Supervised Contrastive Learning for Intelligent Fault Diagnosis in Bearings and Gears of Rotating Machinery
Abstract
:1. Introduction
- We propose DCASCL, a novel domain adaptation (DA) framework applied to fault diagnosis of mechanical machinery. DCASCL simultaneously considers domain distribution alignment and class distribution alignment. We experimentally validate that these two aspects complement each other.
- The correlation alignment is used to realize the domain distribution alignment by minimizing the difference between the covariance matrices of the source and target domain features. The supervised contrastive learning loss is combined with classifier discrepancy loss to align the feature distributions class-wisely. Unlike other methods, DCASCL utilizes class label information through the supervised contrastive learning loss term, which makes it possible to align the features of samples of the same class more tightly while pushing apart those of dissimilar classes.
- Three different datasets with distinct transfer tasks are employed to validate the feasibility of DCASCL. Furthermore, extensive comparison experiments are carried out to demonstrate the effectiveness of DCASCL over several popular cross-domain diagnostic methods.
2. Methods
2.1. Problem Description
2.2. Model Structure
2.3. Optimization Objectives of DCASCL
2.4. Training Process
Algorithm 1: Training process of DCASCL |
Input: the labeled samples and the corresponding label , the unlabeled samples , number of epochs (E), number of batch size (B), initial learning rate, and the trade-off parameter Output: Optimal parameters of F, Optimal parameters and of and 1. For epoch = 1 to E do 2. increases from 0 to 1 3. For i = 1 to B do 4. #Step 1: Simultaneously update parameters of F, , and , 5. Calculate classification loss and correlation alignment loss using Equations (1) and (3) 6. Update parameters of F, , using the Equation (16) 7. #Step 2: Update parameters of and , fix parameters of F 8. Calculate classifier discrepancy using Equation (7) 9. Update parameters of , using the Equation (8) 10. #Step 3: Update parameters of F, fix parameters of and 11. Calculate classifier discrepancy and supervised contrastive learning loss using Equations (7) and (12) 12. Update parameters of , using the Equation (17) 13. End 14. End |
3. Experimental Results and Discussion
3.1. Dataset Description
3.2. Data Processes
3.3. Implementation Details
3.4. Comparison Methods
- (1)
- No Domain Adaptation: 1D-CNN serves as a baseline method, utilizing only source domain data to directly train the model for diagnostic tasks in the target domain.
- (2)
- Only Domain Distribution Alignment: Both MK-MMD [43] and CORAL [15] align distributions by matching statistical differences between two domains. DANN [44] introduces a domain discriminator to differentiate between domains and encourages the model to learn representations that are invariant across domains by confusing the discriminator.
- (3)
- Only Class Distribution Alignment: MCD [30] method maximizes discrepancy in predictions on unlabeled target samples between two separate classifiers during optimization. Meanwhile, it minimizes this discrepancy when optimizing the feature extractor to generate target features under the support of the source domain.
3.5. Experimental Results and Analysis
4. Model Analysis
4.1. Ablation Studies
4.2. Feature Visualization
4.3. Parameter Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, S.; Lei, S.; Jiefei, G.; Ke, L.; Lang, Z.; Pecht, M. Rotating machinery fault detection and diagnosis based on deep domain adaptation: A survey. Chin. J. Aeronaut. 2023, 36, 45–74. [Google Scholar] [CrossRef]
- Joksimović, G.M.; Riger, J.; Wolbank, T.M.; Perić, N.; Vašak, M. Stator-current spectrum signature of healthy cage rotor induction machines. IEEE Trans. Ind. Electron. 2012, 60, 4025–4033. [Google Scholar] [CrossRef]
- Hong, L.; Dhupia, J.S. A time domain approach to diagnose gearbox fault based on measured vibration signals. J. Sound Vib. 2014, 333, 2164–2180. [Google Scholar] [CrossRef]
- Yan, X.; Jia, M. A novel optimized SVM classification algorithm with multi-domain feature and its application to fault diagnosis of rolling bearing. Neurocomputing 2018, 313, 47–64. [Google Scholar] [CrossRef]
- Lu, J.; Qian, W.; Li, S.; Cui, R. Enhanced K-nearest neighbor for intelligent fault diagnosis of rotating machinery. Appl. Sci. 2021, 11, 919. [Google Scholar] [CrossRef]
- Janssens, O.; Slavkovikj, V.; Vervisch, B.; Stockman, K.; Loccufier, M.; Verstockt, S.; Van de Walle, R.; Van Hoecke, S. Convolutional neural network based fault detection for rotating machinery. J. Sound Vib. 2016, 377, 331–345. [Google Scholar] [CrossRef]
- Wang, P.; Yan, R.; Gao, R.X. Virtualization and deep recognition for system fault classification. J. Manuf. Syst. 2017, 44, 310–316. [Google Scholar] [CrossRef]
- Shao, H.; Jiang, H.; Zhao, H.; Wang, F. A novel deep autoencoder feature learning method for rotating machinery fault diagnosis. Mech. Syst. Signal Process. 2017, 95, 187–204. [Google Scholar] [CrossRef]
- Lei, Y.; Yang, B.; Jiang, X.; Jia, F.; Li, N.; Nandi, A.K. Applications of machine learning to machine fault diagnosis: A review and roadmap. Mech. Syst. Signal Process. 2020, 138, 106587. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Q.; Yu, X.; Sun, C.; Wang, S.; Yan, R.; Chen, X. Applications of unsupervised deep transfer learning to intelligent fault diagnosis: A survey and comparative study. IEEE Trans. Instrum. Meas. 2021, 70, 1–28. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W. Deep learning-based partial domain adaptation method on intelligent machinery fault diagnostics. IEEE Trans. Ind. Electron. 2020, 68, 4351–4361. [Google Scholar] [CrossRef]
- Liao, Y.; Huang, R.; Li, J.; Chen, Z.; Li, W. Deep semisupervised domain generalization network for rotary machinery fault diagnosis under variable speed. IEEE Trans. Instrum. Meas. 2020, 69, 8064–8075. [Google Scholar]
- Lu, N.; Xiao, H.; Sun, Y.; Han, M.; Wang, Y. A new method for intelligent fault diagnosis of machines based on unsupervised domain adaptation. Neurocomputing 2021, 427, 96–109. [Google Scholar] [CrossRef]
- Borgwardt, K.M.; Gretton, A.; Rasch, M.J.; Kriegel, H.P.; Schölkopf, B.; Smola, A.J. Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics 2006, 22, e49–e57. [Google Scholar] [CrossRef]
- Sun, B.; Saenko, K. Deep coral: Correlation alignment for deep domain adaptation. In Proceedings of the Computer Vision–ECCV 2016 Workshops, Amsterdam, The Netherlands, 8–10, 15–16 October 2016; Proceedings, Part III 14; Springer: Berlin/Heidelberg, Germany, 2016; pp. 443–450. [Google Scholar]
- Sun, B.; Feng, J.; Saenko, K. Correlation alignment for unsupervised domain adaptation. In Domain Adaptation in Computer Vision Applications; Springer: Cham, France, 2017; pp. 153–171. [Google Scholar]
- Zellinger, W.; Grubinger, T.; Lughofer, E.; Natschläger, T.; Saminger-Platz, S. Central moment discrepancy (cmd) for domain-invariant representation learning. arXiv 2017, arXiv:1702.08811. [Google Scholar]
- Long, M.; Cao, Y.; Wang, J.; Jordan, M. Learning transferable features with deep adaptation networks. In Proceedings of the International Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 97–105. [Google Scholar]
- Wen, L.; Gao, L.; Li, X. A new deep transfer learning based on sparse auto-encoder for fault diagnosis. IEEE Trans. Syst. Man Cybern. Syst. 2017, 49, 136–144. [Google Scholar] [CrossRef]
- Yang, B.; Lei, Y.; Jia, F.; Xing, S. An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings. Mech. Syst. Signal Process. 2019, 122, 692–706. [Google Scholar] [CrossRef]
- Che, C.; Wang, H.; Ni, X.; Fu, Q. Domain adaptive deep belief network for rolling bearing fault diagnosis. Comput. Ind. Eng. 2020, 143, 106427. [Google Scholar] [CrossRef]
- Qian, Q.; Qin, Y.; Wang, Y.; Liu, F. A new deep transfer learning network based on convolutional auto-encoder for mechanical fault diagnosis. Measurement 2021, 178, 109352. [Google Scholar] [CrossRef]
- Li, Q.; Shen, C.; Chen, L.; Zhu, Z. Knowledge mapping-based adversarial domain adaptation: A novel fault diagnosis method with high generalizability under variable working conditions. Mech. Syst. Signal Process. 2021, 147, 107095. [Google Scholar] [CrossRef]
- Wang, H.; Bai, X.; Tan, J.; Yang, J. Deep prototypical networks based domain adaptation for fault diagnosis. J. Intell. Manuf. 2022, 33, 1–11. [Google Scholar] [CrossRef]
- Wu, H.; Li, J.; Zhang, Q.; Tao, J.; Meng, Z. Intelligent fault diagnosis of rolling bearings under varying operating conditions based on domain-adversarial neural network and attention mechanism. ISA Trans. 2022, 130, 477–489. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, W.; Xu, N.X.; Ding, Q. Deep learning-based machinery fault diagnostics with domain adaptation across sensors at different places. IEEE Trans. Ind. Electron. 2019, 67, 6785–6794. [Google Scholar] [CrossRef]
- Chen, Z.; He, G.; Li, J.; Liao, Y.; Gryllias, K.; Li, W. Domain adversarial transfer network for cross-domain fault diagnosis of rotary machinery. IEEE Trans. Instrum. Meas. 2020, 69, 8702–8712. [Google Scholar] [CrossRef]
- Chen, C.; Chen, Z.; Jiang, B.; Jin, X. Joint domain alignment and discriminative feature learning for unsupervised deep domain adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 3296–3303. [Google Scholar]
- Dai, S.; Cheng, Y.; Zhang, Y.; Gan, Z.; Liu, J.; Carin, L. Contrastively smoothed class alignment for unsupervised domain adaptation. In Proceedings of the Asian Conference on Computer Vision, Kyoto, Japan, 30 November 2020. [Google Scholar]
- Saito, K.; Watanabe, K.; Ushiku, Y.; Harada, T. Maximum classifier discrepancy for unsupervised domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 3723–3732. [Google Scholar]
- Li, S.; Liu, C.H.; Xie, B.; Su, L.; Ding, Z.; Huang, G. Joint adversarial domain adaptation. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 729–737. [Google Scholar]
- Zhang, W.; Peng, G.; Li, C.; Chen, Y.; Zhang, Z. A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals. Sensors 2017, 17, 425. [Google Scholar] [CrossRef] [PubMed]
- Khosla, P.; Teterwak, P.; Wang, C.; Sarna, A.; Tian, Y.; Isola, P.; Maschinot, A.; Liu, C.; Krishnan, D. Supervised contrastive learning. Adv. Neural Inf. Process. Syst. 2020, 33, 18661–18673. [Google Scholar]
- Sohn, K.; Berthelot, D.; Carlini, N.; Zhang, Z.; Zhang, H.; Raffel, C.A.; Cubuk, E.D.; Kurakin, A.; Li, C.L. Fixmatch: Simplifying semi-supervised learning with consistency and confidence. Adv. Neural Inf. Process. Syst. 2020, 33, 596–608. [Google Scholar]
- Ganin, Y.; Lempitsky, V. Unsupervised domain adaptation by backpropagation. In Proceedings of the International Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 1180–1189. [Google Scholar]
- Smith, W.A.; Randall, R.B. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study. Mech. Syst. Signal Process. 2015, 64, 100–131. [Google Scholar] [CrossRef]
- Zhang, B.; Zhou, C.; Li, W.; Ji, S.; Li, H.; Tong, Z.; Ng, S.K. Intelligent bearing fault diagnosis based on open set convolutional neural network. Mathematics 2022, 10, 3953. [Google Scholar] [CrossRef]
- Case Western Reserve University Bearings Vibration Dataset. Available online: https://engineering.case.edu/bearingdatacenter/download-data-file (accessed on 15 August 2022).
- Li, K.; Ping, X.; Wang, H.; Chen, P.; Cao, Y. Sequential fuzzy diagnosis method for motor roller bearing in variable operating conditions based on vibration analysis. Sensors 2013, 13, 8013–8041. [Google Scholar] [CrossRef]
- Li, K. School of Mechanical Engineering, Jiangnan University. Available online: http://mad-net.org:8765/explore.html?t=0.5831516555847212 (accessed on 20 August 2019).
- Shao, S.; McAleer, S.; Yan, R.; Baldi, P. Highly accurate machine fault diagnosis using deep transfer learning. IEEE Trans. Ind. Inform. 2018, 15, 2446–2455. [Google Scholar] [CrossRef]
- SEU Gearbox Dataset. Available online: https://github.com/cathysiyu/mechanical-datasets (accessed on 3 August 2022).
- Li, X.; Zhang, W.; Ding, Q.; Sun, J.Q. Multi-layer domain adaptation method for rolling bearing fault diagnosis. Signal Process. 2019, 157, 180–197. [Google Scholar] [CrossRef]
- Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle, H.; Laviolette, F.; March, M.; Lempitsky, V. Domain-adversarial training of neural networks. J. Mach. Learn. Res. 2016, 17, 1–35. [Google Scholar]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
Module Name | Block Name | Layer Type | In/Out Channel | Kernel Size/Stride | Activation Function |
---|---|---|---|---|---|
Feature extractor | Conv1 | Convolutional | 1/16 | 64/4 | ReLU |
BatchNorm | 16 | / | / | ||
Max Pooling | / | 2/1 | / | ||
Conv2 | Convolutional | 16/32 | 3/2 | ReLU | |
BatchNorm | 32 | / | / | ||
Max Pooling | / | 2/1 | / | ||
Conv3 | Convolutional | 32/64 | 3/2 | ReLU | |
BatchNorm | 64 | / | / | ||
Max Pooling | / | 2/1 | / | ||
Conv4 | Convolutional | 64/64 | 3/2 | ReLU | |
BatchNorm | 64 | / | / | ||
Max Pooling | / | 2/1 | / | ||
Conv5 | Convolutional | 64/64 | 3/1 | ReLU | |
BatchNorm | 64 | / | / | ||
Max Pooling | / | 2/1 | / | ||
Dense1 | Linear | 64 × 56/2048 | / | ReLU | |
BatchNorm | 2048 | / | |||
Dense2 | Linear | 2048/1024 | / | ReLU | |
BatchNorm | 1024 | / | / | ||
Classifier | / | Linear | 1024/512 | / | ReLU |
BatchNorm | 512 | / | / | ||
Dropout | / | / | / | ||
/ | Linear | 512/256 | / | ReLU | |
BatchNorm | 256 | / | / | ||
Dropout | / | / | / | ||
/ | Linear | 256/num classes | / | Softmax |
Fault Type | BF | BF | BF | IF | IF | IF | OF | OF | OF | N |
Fault Size (Inches) | 7 | 14 | 21 | 7 | 14 | 21 | 7 | 14 | 21 | 0 |
Class Label | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Load (hp) | 0, 1, 2, 3 | |||||||||
Total number of samples | 4000 | |||||||||
Train and test set ratio | 7:3 |
Fault Type | IF | N | OF | BF |
Class Label | 0 | 1 | 2 | 3 |
Speed (rpm) | 600, 800,1000 | |||
Total number of samples | 2400 | |||
Train and test set ratio | 7:3 |
Fault Type | Chipped | Health | Miss | Root | Surface |
Class Label | 0 | 1 | 2 | 3 | 4 |
RS-LC | 20 HZ-0V, 30 HZ-2V | ||||
Total number of samples | 3000 | ||||
Train and test set ratio | 7:3 |
Tasks Symbol | Tasks | 1D-CNN | MK-MMD | CORAL | DANN | MCD | DCASCL |
---|---|---|---|---|---|---|---|
C0 | 0 hp → 1 hp | 98.67 | 100 | 98.53 | 99.35 | 100 | 100 |
C1 | 0 hp → 2 hp | 97.08 | 100 | 98.54 | 100 | 100 | 100 |
C2 | 0 hp → 3 hp | 90.84 | 94.65 | 93.65 | 92.76 | 93.45 | 100 |
C3 | 1 hp → 0 hp | 94.04 | 99.81 | 100 | 99.78 | 100 | 100 |
C4 | 1 hp → 2 hp | 93.19 | 100 | 100 | 100 | 100 | 100 |
C5 | 1 hp → 3 hp | 95.79 | 99.84 | 100 | 98.43 | 100 | 100 |
C6 | 2 hp → 0 hp | 90.99 | 98.85 | 99.23 | 98.46 | 100 | 100 |
C7 | 2 hp → 1 hp | 95.73 | 99.35 | 99.68 | 100 | 100 | 100 |
C8 | 2 hp → 3 hp | 89.19 | 100 | 100 | 100 | 100 | 100 |
C9 | 3 hp → 0 hp | 91.21 | 94.13 | 92.50 | 93.51 | 92.96 | 100 |
C10 | 3 hp → 1 hp | 94.18 | 99.03 | 92.21 | 94.28 | 100 | 100 |
C11 | 3 hp → 2 hp | 96.24 | 100 | 99.68 | 98.68 | 100 | 100 |
Average | - | 93.93 | 98.81 | 97.84 | 97.94 | 98.87 | 100 |
Tasks Symbol | Tasks | 1D-CNN | MK-MMD | CORAL | DANN | MCD | DCASCL |
---|---|---|---|---|---|---|---|
J0 | 600 rpm → 800 rpm | 83.01 | 89.73 | 93.45 | 95.57 | 98.67 | 99.37 |
J1 | 600 rpm → 1000 rpm | 78.95 | 91.80 | 90.27 | 94.32 | 96.34 | 100 |
J2 | 800 rpm → 600 rpm | 86.09 | 90.36 | 94.05 | 92.51 | 99.07 | 100 |
J3 | 800 rpm → 1000 rpm | 88.65 | 92.63 | 91.25 | 93.83 | 98.12 | 100 |
J4 | 1000 rpm → 600 rpm | 80.49 | 91.27 | 88.14 | 93.67 | 97.81 | 99.68 |
J5 | 1000 rpm → 800 rpm | 90.35 | 93.27 | 92.13 | 92.49 | 97.06 | 100 |
Average | - | 84.59 | 91.51 | 91.55 | 93.73 | 97.85 | 99.84 |
Tasks Symbol | Tasks | 1D-CNN | MK-MMD | CORAL | DANN | MCD | DCASCL |
---|---|---|---|---|---|---|---|
S0 | 20 HZ-0V → 30 HZ-2V | 68.35 | 81.35 | 83.62 | 65.86 | 81.48 | 100 |
S1 | 30 HZ-2V → 20 HZ-0V | 75.43 | 84.52 | 85.17 | 79.32 | 82.93 | 100 |
Average | - | 71.89 | 82.94 | 84.40 | 72.59 | 82.21 | 100 |
Method | 0 hp → 3 hp | 600 rpm → 1000 rpm | 20 HZ-0V → 30 HZ-2V | |||
---|---|---|---|---|---|---|
Accuracy | F1-Score | Accuracy | F1-Score | Accuracy | F1-Score | |
MCD | 91.83 | 89.62 | 96.25 | 96.25 | 81.56 | 81.84 |
MCD+CORAL | 94.33 | 93.84 | 98.19 | 98.19 | 91.44 | 91.52 |
MCD+SCL | 97.25 | 97.20 | 98.75 | 98.75 | 93.89 | 93.88 |
DCASCL | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Dong, H.; Qaid, H.A.A.M.; Wang, Y. Deep Domain Adaptation with Correlation Alignment and Supervised Contrastive Learning for Intelligent Fault Diagnosis in Bearings and Gears of Rotating Machinery. Actuators 2024, 13, 93. https://doi.org/10.3390/act13030093
Zhang B, Dong H, Qaid HAAM, Wang Y. Deep Domain Adaptation with Correlation Alignment and Supervised Contrastive Learning for Intelligent Fault Diagnosis in Bearings and Gears of Rotating Machinery. Actuators. 2024; 13(3):93. https://doi.org/10.3390/act13030093
Chicago/Turabian StyleZhang, Bo, Hai Dong, Hamzah A. A. M. Qaid, and Yong Wang. 2024. "Deep Domain Adaptation with Correlation Alignment and Supervised Contrastive Learning for Intelligent Fault Diagnosis in Bearings and Gears of Rotating Machinery" Actuators 13, no. 3: 93. https://doi.org/10.3390/act13030093
APA StyleZhang, B., Dong, H., Qaid, H. A. A. M., & Wang, Y. (2024). Deep Domain Adaptation with Correlation Alignment and Supervised Contrastive Learning for Intelligent Fault Diagnosis in Bearings and Gears of Rotating Machinery. Actuators, 13(3), 93. https://doi.org/10.3390/act13030093