Image-Based Visual Servoing for Three Degree-of-Freedom Robotic Arm with Actuator Faults
Abstract
:1. Introduction
- (1)
- Compared to [30], this study simultaneously considers the impact of both multiplicative and additive actuator faults on the system and reconstructs model uncertainties, load disturbances, and actuator faults as centralized uncertainties. The iterative learning fault observer (ILFO) is proposed to accurately and quickly estimate time-varying uncertainties. The dynamic relationship between the image feature point and the robotic arm is established, and super-twisting sliding mode visual servo controller (STSMVSC) with suitable sliding surfaces and control laws is designed to provide appropriate input torques to complete the visual servoing trajectory tracking task. Moreover, the stability analysis of the proposed observer and controller is provided using the Lyapunov theory.
- (2)
- In the simulation, the effectiveness and robustness of the proposed fault-tolerant control method are demonstrated under different coupled actuator fault severities. Compared to the fault-tolerant control method based on the extended state observer and STSMVSC, the proposed method can more quickly and accurately approach centralized uncertainties. Compared to the fault-tolerant control method based on ILFO and a traditional sliding mode visual servo controller, the proposed method can effectively reduce the chattering phenomenon and provide superior tracking performance.
2. Problem Formulation
2.1. Image-Based Visual Servoing
2.2. Faulty Robotic Arm Dynamic Model
3. Fault-Tolerant Visual Servo Control
3.1. Iterative Learning Observer
3.2. Fault-Tolerant Sliding Mode Controller
4. Numerical Simulations
- Case 1
- The simulation time is set to 50 s, with actuator faults occurring at the 20th, 30th and 40th seconds, respectively. The input torque with faults, as shown in Equation (10), is described as
- Case 2
- The simulation time is set to 50 s, with a time-varying actuator fault persisting after the 20th second. The input torque with faults, as shown in Equation (10), is described as
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lagneau, R.; Krupa, A.; Marchal, M. Automatic shape control of deformable wires based on model-free visual servoing. IEEE Robot. Autom. Lett. 2020, 5, 5252–5259. [Google Scholar] [CrossRef]
- Palmieri, P.; Troise, M.; Gaidano, M.; Melchiorre, M.; Mauro, S. Inflatable robotic manipulator for space debris mitigation by visual servoing. In Proceedings of the 2023 9th International Conference on Automation, Robotics and Applications (ICARA), Abu Dhabi, United Arab Emirates, 10–12 February 2023; pp. 175–179. [Google Scholar]
- De Farias, C.; Adjigble, M.; Tamadazte, B.; Stolkin, R.; Marturi, N. Dual quaternion-based visual servoing for grasping moving objects. In Proceedings of the 2021 IEEE 17th International Conference on Automation Science and Engineering (CASE), Lyon, France, 23–27 August 2021; pp. 151–158. [Google Scholar]
- Wang, N.; He, H.K. Extreme learning-based monocular visual servo of an unmanned surface vessel. IEEE Trans. Ind. Inform. 2021, 17, 5152–5163. [Google Scholar] [CrossRef]
- Gao, H.; Shen, F.; Zhang, F.; Zhang, Z.T. A high precision and fast alignment method based on binocular vision. Int. J. Precis. Eng. Manuf. 2022, 23, 969–984. [Google Scholar] [CrossRef]
- Dallej, T.; Gouttefarde, M.; Andreff, N.; Herve, P.E.; Martinet, P. Modeling and vision-based control of large-dimension cable-driven parallel robots using a multiple-camera setup. Mechatronics 2019, 61, 20–36. [Google Scholar] [CrossRef]
- Banlue, T.; Sooraksa, P.; Noppanakeepong, S. A practical position-based visual servo design and implementation for automated fault insertion test. Int. J. Control Autom. Syst. 2014, 12, 1090–1101. [Google Scholar] [CrossRef]
- Zhao, M.; Yang, Y.; Peng, X.B.; Liu, A.M.; Cheng, Y.; Wang, H.F. Neural network based visual servo for quick-change device alignment in context of fusion reactor remote maintenance. Fusion Eng. Des. 2022, 181, 113218. [Google Scholar] [CrossRef]
- Zhou, S.Z.; Shen, C.; Pang, F.Y.; Chen, Z.; Gu, J.; Zhu, S.Q. Position-based visual servoing control for multi-joint hydraulic manipulator. J. Intell. Robot. Syst. 2022, 105, 33. [Google Scholar] [CrossRef]
- Wang, G.J.; Qin, J.H.; Liu, Q.C.; Ma, Q.C.; Zhang, C. Image-based visual servoing of quadrotors to arbitrary flight targets. IEEE Robot. Autom. Lett. 2023, 8, 2022–2029. [Google Scholar] [CrossRef]
- Asl, H.J.; Yoon, J. Robust image-based control of the quadrotor unmanned aerial vehicle. Nonlinear Dyn. 2016, 85, 2035–2048. [Google Scholar]
- Liu, N.; Shao, X.L. Desired compensation RISE-based IBVS control of quadrotors for tracking a moving target. Nonlinear Dyn. 2019, 95, 2605–2624. [Google Scholar] [CrossRef]
- Li, Y.R.; Lien, W.Y.; Huang, Z.H.; Chen, C.T. Hybrid visual servo control of a robotic manipulator for cherry tomato harvesting. Actuators 2023, 12, 253. [Google Scholar] [CrossRef]
- Wang, Y.; Lang, H.X.; de Silva, C.W. A hybrid visual servo controller for robust grasping by wheeled mobile robots. Nonlinear Dyn. 2010, 15, 757–769. [Google Scholar] [CrossRef]
- Gao, J.; An, X.M.; Proctor, A.; Bradley, C. Sliding mode adaptive neural network control for hybrid visual servoing of underwater vehicles. Ocean Eng. 2017, 142, 666–675. [Google Scholar] [CrossRef]
- Hamel, T.; Mahony, R. Visual servoing of an under-actuated dynamic rigid-body system: An image-based approach. IEEE Trans. Robot. Autom. 2002, 18, 187–198. [Google Scholar] [CrossRef]
- Santamaria-Navarro, A.; Grosch, P.; Lippiello, V.; Sola, J.; Andrade-Cetto, L. Uncalibrated visual servo for unmanned aerial manipulation. IEEE-ASME Trans. Mechatron. 2017, 22, 1610–1621. [Google Scholar] [CrossRef]
- Gong, Z.Y.; Tao, B.; Yang, H.; Yin, Z.P.; Ding, H. An uncalibrated visual servo method based on projective homography. IEEE Trans. Autom. Sci. Eng. 2018, 15, 806–817. [Google Scholar] [CrossRef]
- Norouzi-Ghazbi, S.; Mehrkish, A.; Fallah, M.M.H.; Janabi-Sharifi, F. Constrained visual predictive control of tendon-driven continuum robots. Robot. Auton. Syst. 2021, 145, 103856. [Google Scholar] [CrossRef]
- Qiu, Z.J.Z.; Hu, S.Q.; Liangm, X.W. Model predictive control for uncalibrated and constrained image-based visual servoing without joint velocity measurements. IEEE Access 2019, 7, 73540–73554. [Google Scholar] [CrossRef]
- Huang, Y.T.; Zhu, M.; Zheng, Z.W.; Low, K.H. Homography-based visual servoing for underactuated VTOL UAVs tracking a 6-DOF moving ship. IEEE Trans. Veh. Technol. 2022, 71, 2385–2398. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Zhang, R.X.; Zhu, Z.F. Robust Kalman filtering with long short-term memory for image-based visual servo control. Multimed. Tools Appl. 2019, 78, 26341–26371. [Google Scholar] [CrossRef]
- Ren, X.L.; Li, H.W.; Li, Y.C. Image-based visual servoing control of robot manipulators using hybrid algorithm with feature constraints. IEEE Access 2020, 8, 223495–223508. [Google Scholar] [CrossRef]
- Kang, M.; Chen, H.; Dong, J.X. Adaptive visual servoing with an uncalibrated camera using extreme learning machine and Q-learning. Neurocomputing 2020, 402, 384–394. [Google Scholar] [CrossRef]
- Jin, Z.H.; Wu, J.H.; Liu, A.D.; Zhang, W.A.; Yu, L. Policy-based deep reinforcement learning for visual servoing control of mobile robots with visibility constraints. IEEE Trans. Ind. Electron. 2021, 69, 1898–1908. [Google Scholar] [CrossRef]
- Aghili, F. Fault-tolerant and adaptive visual servoing for capturing moving objects. IEEE/ASME Trans. Mechatron. 2021, 27, 1773–1783. [Google Scholar] [CrossRef]
- Yang, L.; Yuan, C.; Lai, G.Y. Adaptive fault-tolerant visual control of robot manipulators using an uncalibrated camera. Nonlinear Dyn. 2022, 111, 3379–3392. [Google Scholar] [CrossRef]
- Fazeli, S.M.; Abedi, M.; Molaei, A.; Hassani, M.; Khosrave, M.A.; Ameri, A. Active fault-tolerant control of cable-driven parallel robots. Nonlinear Dyn. 2023, 111, 6335–6347. [Google Scholar] [CrossRef]
- Nasiri, A.; Nguang, S.K.; Swain, A.; Almakhles, D. Passive actuator fault tolerant control for a class of MIMO nonlinear systems with uncertainties. Int. J. Control 2019, 92, 693–704. [Google Scholar] [CrossRef]
- Wu, Y.W.; Yao, L.N. Fault diagnosis and fault tolerant control for manipulator with actuator multiplicative fault. Int. J. Control Autom. Syst. 2020, 19, 980–987. [Google Scholar] [CrossRef]
- Zhao, B.; Li, Y.C. Local joint information based active fault tolerant control for reconfigurable manipulator. Nonlinear Dyn. 2014, 77, 859–876. [Google Scholar] [CrossRef]
- Le, Q.D.; Kang, H.J. An active fault-tolerant control based on synchronous fast terminal sliding mode for a robot manipulator. Actuators 2022, 11, 195. [Google Scholar] [CrossRef]
- Nguyen, V.C.; Tran, X.Y.; Kang, H.J. A novel high-speed third-order sliding mode observer for fault-tolerant control problem of robot manipulators. Actuators 2022, 11, 259. [Google Scholar] [CrossRef]
- Zhang, J.X.; Yang, G.H. Fuzzy adaptive fault-tolerant control of unknown nonlinear systems with time-varying structure. IEEE Trans. Fuzzy Syst. 2019, 27, 1904–1916. [Google Scholar] [CrossRef]
- Zhong, N.; Li, X.Z.; Yan, Z.Y.; Zhang, Z.J. A Neural Control Architecture for Joint-Drift-Free and Fault-Tolerant Redundant Robot Manipulators. IEEE Access 2018, 6, 66178–66187. [Google Scholar] [CrossRef]
- Anjum, Z.; Guo, Y.; Yao, W. Fault tolerant control for robotic manipulator using fractional-order backstepping fast terminal sliding mode control. Trans. Inst. Meas. Control 2021, 43, 3244–3254. [Google Scholar] [CrossRef]
- Vo, A.T.; Kang, H.J. A novel fault-tolerant control method for robot manipulators based on non-singular fast terminal sliding mode control and disturbance observer. IEEE Access 2020, 8, 109388–109400. [Google Scholar] [CrossRef]
- Li, L.J.; Su, Y.X.; Kong, L.Y.; Jiang, K.; Zhou, Y.J. Finite time fault tolerant control for robot manipulators using time delay estimation and continuous nonsingular fast terminal sliding mode control. Ocean Eng. 2017, 142, 666–675. [Google Scholar]
- Santamaria-Navarro, A.; Grosch, P.; Lippiello, V.; Sola, J.; Andrade-Cetto, L. TDE-based adaptive super-twisting multivariable fast terminal slide mode control for cable-driven manipulators with safety constraint of error. IEEE Access 2023, 11, 6656–6664. [Google Scholar]
- Li, T.; Zhao, H. Global finite-time adaptive control for uncalibrated robot manipulator based on visual servoing. ISA Trans. 2017, 68, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.H.; Yang, G.H. Decentralized adaptive fault-tolerant control for large-scale systems with external disturbances and actuator faults. Automatica 2017, 85, 83–90. [Google Scholar] [CrossRef]
- Van, M.; Kang, H.J.; Shin, K.S. Novel quasi-continuous super-twisting high-order sliding mode controllers for output feedback tracking control of robot manipulators. Proc. Inst. Mech. Eng. Part C-J. Mech. Eng. Sci. 2015, 228, 3240–3257. [Google Scholar] [CrossRef]
- Armstrong, B.; Khatib, O.; Burdick, J. The explicit dynamic model and inertial parameters of the PUMA 560 arm. Proc. IEEE Int. Conf. Robot. Autom. 1986, 3, 510–518. [Google Scholar]
- Tang, P.; Lin, D.F.; Zheng, D.; Fan, S.P.; Ye, J.C. Observer based finite-time fault tolerant quadrotor attitude control with actuator faults. Aerosp. Sci. Technol. 2020, 104, 105968. [Google Scholar] [CrossRef]
Parameters | Real Value | Rough Estimated Value |
---|---|---|
(pixels) | 640 | 600 |
(pixels) | 512 | 500 |
(pixels/m) | 265,000 | 260,000 |
(pixels/m) | 266,500 | 260,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Peng, X.; Li, B.; Li, M.; Wu, J. Image-Based Visual Servoing for Three Degree-of-Freedom Robotic Arm with Actuator Faults. Actuators 2024, 13, 223. https://doi.org/10.3390/act13060223
Li J, Peng X, Li B, Li M, Wu J. Image-Based Visual Servoing for Three Degree-of-Freedom Robotic Arm with Actuator Faults. Actuators. 2024; 13(6):223. https://doi.org/10.3390/act13060223
Chicago/Turabian StyleLi, Jiashuai, Xiuyan Peng, Bing Li, Mingze Li, and Jiawei Wu. 2024. "Image-Based Visual Servoing for Three Degree-of-Freedom Robotic Arm with Actuator Faults" Actuators 13, no. 6: 223. https://doi.org/10.3390/act13060223
APA StyleLi, J., Peng, X., Li, B., Li, M., & Wu, J. (2024). Image-Based Visual Servoing for Three Degree-of-Freedom Robotic Arm with Actuator Faults. Actuators, 13(6), 223. https://doi.org/10.3390/act13060223