Optimization Study of Pneumatic–Electric Combined Braking Strategy for 30,000-ton Heavy-Haul Trains
Abstract
:1. Introduction
2. Longitudinal Dynamic Model of Heavy-Haul Trains
2.1. Coupler Force Model
2.2. Pneumatic Braking System Model
2.3. Locomotive Electric Braking and Resistance Model
3. Model Verification
4. Optimization of Pneumatic–Electric Combined Braking Strategy
4.1. Optimization of Electric Braking Force Distribution Strategy
4.2. Optimization of Braking Time-Matching Strategy
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, H.; Tai, G.; Lin, Z.; Huang, Y. Research on Control Strategy of Heavy-Haul Train on Long and Steep Downgrades. Actuators 2022, 11, 145. [Google Scholar] [CrossRef]
- Wei, S.; Zhu, L.; Chen, L.; Lin, Q. An AdaBoost-Based Intelligent Driving Algorithm for Heavy-Haul Trains. Actuators 2021, 10, 188. [Google Scholar] [CrossRef]
- Geng, Z. Technology of Datong-Qinhuangdao Heavy-haul Transport; China Railway Publishing House: Beijing, China, 2009; pp. 154–196. [Google Scholar]
- Wang, L. Simulation and Test on 30,000-ton Combined Heavy Haul Train on Daqin Line. Master’s Thesis, China Academy of Railway Sciences, Beijing, China, 2015. [Google Scholar]
- Ge, X.; Ling, L.; Chen, S.; Wang, C.; Wang, K. Countermeasures for preventing coupler jack-knifing of slave control locomotives in 20,000-tonne heavy-haul trains during cycle braking. Veh. Syst. Dyn. 2022, 60, 3269–3290. [Google Scholar] [CrossRef]
- Ju, X.; Jiang, Y.; Jing, L.; Liu, P. Quantized Predefined-Time Control for Heavy-Lift Launch Vehicles under Actuator Faults and Rate Gyro Malfunctions. ISA Trans. 2023, 138, 133–150. [Google Scholar] [CrossRef]
- Li, Z.; Hu, J.; Leng, B.; Xiong, L.; Fu, Z. An Integrated of Decision Making and Motion Planning Framework for Enhanced Oscillation-Free Capability. IEEE Trans. Intell. Transp. Syst. 2024, 25, 5718–5732. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, R.; Du, H.; Yu, J.; Chen, X. Electro-pneumatic Brake for Heavy Haul Locomotive During Automatic Driving at Long Downgrade Segment. J. Transp. Syst. Eng. Inf. Technol. 2023, 23, 311–318. [Google Scholar]
- Xu, M.; Li, G.; Li, W.; Zhang, T.; Zhang, W.; Bai, F. Analysis of longitudinal force degradation and running safety of heavy-haul combined trains. J. Railw. Sci. Eng. 2023, 20, 321–332. [Google Scholar]
- Chang, C.; Wang, X.; Jiang, Y.; Guo, G.; Wang, Y. Numerical Model of Steel Friction and Elasticity Cement Composite Draft Gear. China Railw. Sci. 2016, 37, 83–88. [Google Scholar]
- Chang, C.; Ma, Y.; Guo, G.; Chen, B. Simulation Study on the Influences of Longitudinal Force on Super Long Heavy Haul Trains. China Railw. Sci. 2021, 42, 87–94. [Google Scholar]
- He, W.; Chang, C.; Wang, J.; Guo, G. Analysis on Key Influencing Factors of Longitudinal Force with 30 000 t Heavy Haul Trains in Braking Conditions. J. China Railw. Soc. 2024, 46, 53–59. [Google Scholar]
- Zhang, W.; Li, W.; Fan, Y.; Cao, Y. Influence of Cyclic Pneumatic Brake on the Longitudinal Dynamics of Heavy-Haul Combined Trains. IEEE Trans. Intell. Transport. Syst. 2024, 25, 2545–2557. [Google Scholar] [CrossRef]
- Wang, M.; Wei, W.; Zhang, Y.; Zhang, J.; Yu, P.; Zhao, X.; Liu, B. Simulation Study on Influence of ECP Signal Propagation Mode on Longitudinal Impulse of 30,000 t Heavy-haul Train under Braking Condition. Roll. Stock 2023, 6, 161–166. [Google Scholar]
- Ma, Q.; Yao, Y.; Meng, F.; Wei, W. The design of electronically controlled pneumatic brake signal propagation mode for electronic control braking of a 30,000-ton heavy-haul train. Proc. Inst. Mech. Eng. Part F-J. Rail Rapid Transit 2024, 238, 268–279. [Google Scholar] [CrossRef]
- Serajian, R.; Mohammadi, S.; Nasr, A. Influence of train length on in-train longitudinal forces during brake application. Veh. Syst. Dyn. 2019, 57, 192–206. [Google Scholar] [CrossRef]
- Wang, M.; Wei, W.; Zhang, Y.; Zhang, J.; Yu, P.; Zhao, X.; Liu, B.; Yu, P. Comparative Study on Coupler Force of 30,000-Ton Heavy-Haul Train Formation Scheme. Machinery 2023, 50, 65–70. [Google Scholar]
- Zhao, X.; Wei, W.; Zhang, J.; Hu, Y. Influence of Segment Impedance Characteristics of Draft Gear on Longitudinal Impulse of Heavy Haul Train. J. China Railw. Soc. 2017, 39, 33–42. [Google Scholar]
- Wei, W.; Zhao, X.; Jiang, Y.; Zhang, J. The Integrated Model of Train Air Brake and Longitudinal Dynamics. J. China Railw. Soc. 2012, 34, 39–46. [Google Scholar]
- Zhou, Y.C.; Shi, Z.Y.; Hecht, M. Comparison of friction draft gear models for simulation in longitudinal train dynamics. Veh. Syst. Dyn. 2022, 60, 2436–2450. [Google Scholar] [CrossRef]
- Laboratory of Computational Mechanics. Chapter 2 Mechanical System as an Object for Modeling. In Universal Mechanism Technical Manual; Bryansk State Technical University: Bryansk, Russia, 2012; pp. 47–59. [Google Scholar]
- Cole, C.; Spiryagin, M.; Wu, Q.; Sun, Y. Modelling, simulation and applications of longitudinal train dynamics. Veh. Syst. Dyn. 2017, 55, 1498–1571. [Google Scholar] [CrossRef]
- Wu, Q.; Cole, C.; Spiryagin, M.; Chang, C.; Wei, W.; Ursulyak, L.; Shvets, S.; Murtaza, M.A.; Mirza, I.M.; Zhelieznov, K.; et al. Freight train air brake models. Int. J. Rail Transp. 2023, 11, 1–49. [Google Scholar] [CrossRef]
- Ge, X.; Chen, Q.; Ling, L.; Zhai, W.; Wang, K. An approach for simulating the air brake system of long freight trains based on fluid dynamics. Railway Eng. Sci. 2023, 31, 122–134. [Google Scholar] [CrossRef]
- Liu, K.; Wang, Z.; Liu, P.; Liu, G.; Wang, Y.; Zhang, W. A heavy-haul train longitudinal-vertical coupled dynamics model and its dynamic behaviour under emergency braking. Veh. Syst. Dyn. 2024, Volume, 1–24. [Google Scholar] [CrossRef]
- TB/T 1407.1—2018; National Railway Administration of the People’s Republic of China. Railway Train Traction Calculation—Part 1: Train with Locomotives. China Railway Press: Beijing, China, 2018.
- Li, W.; Yao, M.; Zhang, M.; Zhang, W.; Yu, Y.; Wu, J. Analysis and research of blend braking for longitudinal force optimization of heavy haul combined train. J. Railw. Sci. Eng. 2023, 20, 694–705. [Google Scholar]
- Zhao, D.; Ye, F.; Liu, P. Research and Application of Air-Electric Combined Braking Optimization of HXD1 AC Drive Electric Locomotive. Technol. Mark. 2019, 26, 30–32. [Google Scholar]
Models | |||||
---|---|---|---|---|---|
C80 | 203 | 8.5 | 0.9 | 2 | 8 |
HXD1 | 176 | 2.41 | 0.9 | 12 | 24 |
SS4 | 178 | 2.85 | 0.85 | 8 | 16 |
Braking Conditions | Tested Max Coupler Force (kN) | Tested Max Coupler Force Position | Simulated Max Coupler Force (kN) | Simulated Max Coupler Force Position |
---|---|---|---|---|
Emergency braking | −1160 | 67 | −1118 | 72 |
Service braking | −630 | 52 | −638 | 46 |
Strategy Number | Master Locomotive (kN) | No. 1 Slave Locomotive (kN) | No. 2 Slave Locomotive (kN) |
---|---|---|---|
1 | 230 | 230 | 230 |
2 | 150 | 270 | 270 |
3 | 90 | 300 | 300 |
4 | 0 | 345 | 345 |
Strategy Number | Master Locomotive (kN) | No. 1 Slave Locomotive (kN) | No. 2 Slave Locomotive (kN) |
---|---|---|---|
1 | 230 | 230 | 230 |
2 | 300 | 195 | 195 |
3 | 380 | 155 | 155 |
4 | 460 | 115 | 115 |
Strategy Number | Max Compressive Coupler Force (kN) | Max Compressive Coupler Force Position | Max Tensile Coupler Force (kN) | Max Tensile Coupler Force Position |
---|---|---|---|---|
1 | 962 | 118 | 575 | 106 |
2 | 824 | 111 | 672 | 106 |
3 | 767 | 108 | 735 | 106 |
4 | 688 | 112 | 850 | 106 |
Strategy Number | Max Compressive Coupler Force (kN) | Max Compressive Coupler Force Position | Max Tensile Coupler Force (kN) | Max Tensile Coupler Force Position |
---|---|---|---|---|
1 | 962 | 118 | 575 | 106 |
2 | 1106 | 119 | 499 | 106 |
3 | 1218 | 120 | 451 | 295 |
4 | 1312 | 118 | 456 | 296 |
Strategy Number | Electric Braking Command Delay Time (s) | Strategy Number | Pneumatic Braking Command Delay Time (s) |
---|---|---|---|
1 | 0 | 1 | 0 |
2 | 10 | 2 | 10 |
3 | 20 | 3 | 20 |
4 | 30 | 4 | 30 |
Delay Time | Max Compressive Coupler Force (kN) | Max Compressive Coupler Force Position | Max Tensile Coupler Force (kN) | Max Tensile Coupler Force Position |
---|---|---|---|---|
0 | 962 | 118 | 575 | 106 |
10 | 813 | 108 | 454 | 211 |
20 | 616 | 108 | 409 | 211 |
30 | 502 | 127 | 361 | 106 |
−10 | 846 | 108 | 505 | 106 |
−20 | 823 | 112 | 354 | 106 |
−30 | 722 | 108 | 378 | 301 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Shi, C.; Wang, K.; Liu, P.; Liu, G.; Wang, Z.; Zhang, W. Optimization Study of Pneumatic–Electric Combined Braking Strategy for 30,000-ton Heavy-Haul Trains. Actuators 2025, 14, 40. https://doi.org/10.3390/act14010040
Zhang M, Shi C, Wang K, Liu P, Liu G, Wang Z, Zhang W. Optimization Study of Pneumatic–Electric Combined Braking Strategy for 30,000-ton Heavy-Haul Trains. Actuators. 2025; 14(1):40. https://doi.org/10.3390/act14010040
Chicago/Turabian StyleZhang, Mingtao, Congjin Shi, Kun Wang, Pengfei Liu, Guoyun Liu, Zhiwei Wang, and Weihua Zhang. 2025. "Optimization Study of Pneumatic–Electric Combined Braking Strategy for 30,000-ton Heavy-Haul Trains" Actuators 14, no. 1: 40. https://doi.org/10.3390/act14010040
APA StyleZhang, M., Shi, C., Wang, K., Liu, P., Liu, G., Wang, Z., & Zhang, W. (2025). Optimization Study of Pneumatic–Electric Combined Braking Strategy for 30,000-ton Heavy-Haul Trains. Actuators, 14(1), 40. https://doi.org/10.3390/act14010040