Optimizing High-Power Performance of [001]-Oriented Pb(Mg1/3Nb2/3)-PbTiO3 Through Combined DC and AC Polarization Above Curie Temperature
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PMN-PT | Pb(Mg1/3Nb2/3)O3-PbTiO3 |
PIN-PMN-PT | Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 |
PZT | Pb(Zr1−xTix)O3 |
PT | PbTiO3 |
SCs | single crystals |
AC | alternating current |
ACP | alternating current polarization |
DC | direct current |
DCP | direct current polarization |
FC | field cooling |
FCP | field-cooling polarization |
UFC | ultrahigh-temperature field cooling |
UFCP | ultrahigh-temperature field-cooling polarization |
FOM | piezoelectric figure of merit |
MEMSs | micro-electromechanical systems |
MPB | morphotropic phase boundary |
RT | room temperature |
R | rhombohedral |
T | tetragonal |
C | cubic |
M | monoclinic |
RMS | root mean square |
FWHM | full width at half maximum |
Appendix A
References
- Zhou, S.; Gao, X.; Park, G.; Yang, X.; Qi, B.; Lin, M.; Huang, H.; Bian, Y.; Hu, H.; Chen, X.; et al. Transcranial volumetric imaging using a conformal ultrasound patch. Nature 2024, 629, 810–818. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.Y.; Chen, J.Q.; Yang, P.; Liu, Z.Q.; Tao, X.L.; Dong, X.Y.; Hu, J.; Chu, X.C.; Wang, Z.L.; Chen, X.Y. A Piezo-Tribovoltaic Nanogenerator with Ultrahigh Output Power Density and Dynamic Sensory Functions. Adv. Energy Mater. 2024, 14, 2303080. [Google Scholar] [CrossRef]
- Song, Y.; Tang, Z.K.; Shi, R.C.; Wang, S.J.; Lin, D.; Luo, C.T. Design of PMN-PT-based dual-resonance acoustic emission sensor for partial discharge detection. Sens. Actuators A-Phys. 2024, 373, 115432. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, R.; Zhu, Y.; Luo, B.; Luo, C.; Han, T. A Piezoelectric-Piezoresistive Coupled Electric Field Sensor for Large Dynamic Range Measurement from DC to 1.5 kHz. IEEE Sens. J. 2024, 24, 902. [Google Scholar] [CrossRef]
- Zheng, G.B.; Chen, Z.J.; Chen, X.; Liu, S.Q.; Cao, W.W. High-field complex parameters characterization of PMN-PT single crystal/epoxy 1-3 composites (φ = 0.4) under a high AC electric field with a varied intensity. Ultrasonics 2024, 144, 107447. [Google Scholar] [CrossRef]
- Li, J.; Torelló, A.; Kovacova, V.; Prah, U.; Aravindhan, A.; Granzow, T.; Usui, T.; Hirose, S.; Defay, E. High cooling performance in a double-loop electrocaloric heat pump. Science 2023, 382, 801–805. [Google Scholar] [CrossRef]
- Wu, J.; Wu, L.J.; Song, R.; Niu, J.Y.; Xie, M.L.; Cao, M.Y.; Zhang, Q.; Liu, Y.X.; Li, Y.B. A Two-DOF Linear Ultrasonic Motor with High Thrust Force Density and High Power Density Utilizing Torsional/Centrosymmetric-Bending/Symmetric-Bending Modes. IEEE Trans. Ind. Electron. 2022, 69, 8220–8230. [Google Scholar] [CrossRef]
- Yang, L.Y.; Huang, H.B.; Xi, Z.Z.; Zheng, L.M.; Xu, S.Q.; Tian, G.; Zhai, Y.Z.; Guo, F.F.; Kong, L.P.; Wang, Y.G.; et al. Simultaneously achieving giant piezoelectricity and record coercive field enhancement in relaxor-based ferroelectric crystals. Nat. Commun. 2022, 13, 2444. [Google Scholar] [CrossRef]
- Tang, W.B.; Wang, Y.Q.; Xiang, G.L.; Zhao, X.F.; Pan, Z.Y.; Wang, Y.P.; Yang, Y.; Wang, Y.J.; Yuan, G.L. Enhanced high-power performance of Fe-doped PZMNZT piezoelectric ceramics. J. Am. Ceram. Soc. 2023, 106, 6868–6878. [Google Scholar] [CrossRef]
- Kong, S.Y.; Hong, C.H.; Zhang, W.J.; Liu, Y.; Wang, Z.J.; Yang, X.M.; Su, R.B.; Long, X.F.; He, C. Performance enhancement of soft-PZT5 piezoelectric ceramics using poling technique. J. Am. Ceram. Soc. 2022, 105, 4744–4750. [Google Scholar] [CrossRef]
- Kuwata, J.; Uchino, K.; Nomura, S. Dielectric and Piezoelectric Properties of 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 Single Crystals. Jpn. J. Appl. Phys. 1982, 21, 1298. [Google Scholar] [CrossRef]
- Kuwata, J.; Uchino, K.; Nomura, S. Phase transitions in the Pb (Zn1/3Nb2/3)O3-PbTiO3 system. Ferroelectrics 1981, 37, 579–582. [Google Scholar] [CrossRef]
- Shrout, T.R.; Chang, Z.P.; Kim, N.; Markgraf, S. Dielectric behavior of single crystals near the (1−X) Pb(Mg1/3Nb2/3)O3-(x) PbTiO3 morphotropic phase boundary. Ferroelectr. Lett. Sect. 1990, 12, 63–69. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Uchino, K.; Viehland, D. Substituent Effects in 0.65Pb(Mg1/3Nb2/3O30.35PbTiO3 Piezoelectric Ceramics. J. Electroceram. 2001, 6, 13–19. [Google Scholar] [CrossRef]
- Sun, E.W.; Cao, W.W. Relaxor-based ferroelectric single crystals: Growth, domain engineering, characterization and applications. Prog. Mater. Sci. 2014, 65, 124–210. [Google Scholar] [CrossRef]
- Hu, M.; Chang, Z.C.; Nie, N.; Wan, Z.J.; Dong, W.; Fu, Q.Y. La-doped PMN-PT transparent ceramics with ultra-high electro-optic effect and its application in optical devices. J. Adv. Ceram. 2023, 12, 1441–1453. [Google Scholar] [CrossRef]
- Negi, A.; Kim, H.P.; Hua, Z.L.; Timofeeva, A.; Zhang, X.Y.; Zhu, Y.; Peters, K.; Kumah, D.; Jiang, X.N.; Liu, J. Ferroelectric Domain Wall Engineering Enables Thermal Modulation in PMN-PT Single Crystals. Adv. Mater. 2023, 35, 2211286. [Google Scholar] [CrossRef]
- Kim, H.P.; Wan, H.; Luo, C.; Sun, Y.; Yamashita, Y.; Karaki, T.; Lee, H.Y.; Jiang, X. A Review on Alternating Current Poling for Perovskite Relaxor-PbTiO3 Single Crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 3037–3047. [Google Scholar] [CrossRef]
- Yamamoto, N.; Yamashita, Y.; Hosono, Y.; Itsumi, K.; Higuchi, K. Ultrasonic Probe, Piezoelectric Transducer, Method of Manufacturing Ultrasonic Probe, and Method of Manufacturing Piezoelectric Transducer. U.S. Patent No. US 2014/0062261 A1, 6 March 2014. [Google Scholar]
- Guo, L.; Su, B.; Wang, C.X.; He, X.; Wang, Z.J.; Yang, X.M.; Long, X.F.; He, C. Orientation dependence of dielectric and piezoelectric properties of tetragonal relaxor ferroelectric single crystals by alternate current poling. J. Appl. Phys. 2020, 127, 184104. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Z.; Han, L.; Yang, X.; Zhang, X.; Li, X.; Liu, L.; Karpinsky, D.; Lookman, T.; Luo, H.; et al. Mesophase induced by alternating-current poling in relaxor ferroelectric single crystals. Acta Mater. 2024, 268, 119782. [Google Scholar] [CrossRef]
- Wu, H.; Han, S.; Liu, J.; Zhu, X.; Wang, J.; Sha, H.; Xu, G. Enhanced high-power behaviors of Mn-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 piezoelectric crystals through combining direct and alternating current polarization. J. Alloys Compd. 2024, 989, 174370. [Google Scholar] [CrossRef]
- Wan, H. Study on Alternating Current Poling of Relaxor-PbTiO3 Single Crystals. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2022. [Google Scholar]
- Sun, Y.Q.; Karaki, T.; Fujii, T.; Yamashita, Y. Enhanced electric property of relaxor ferroelectric crystals with low AC voltage high-temperature poling. Jpn. J. Appl. Phys. 2020, 59, SPPD08. [Google Scholar] [CrossRef]
- Luo, C.; Karaki, T.; Yamashita, Y.; Xu, J.Y. High temperature and low voltage AC poling for 0.24Pb(1/2Nb1/2)O-0.46Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 piezoelectric single crystals manufactured by continuous-feeding Bridgman method. J. Mater. 2021, 7, 621–628. [Google Scholar] [CrossRef]
- Xiong, J.J.; Wang, Z.J.; Yang, X.M.; Long, X.F.; He, C. Optimizing the Piezoelectric and Dielectric Properties of Pb(In1/2Nb1/2)O-3-PbTiO3 Ferroelectric Crystals via Alternating Current Poling Waveform. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 2775–2780. [Google Scholar] [CrossRef]
- Qiu, C.R.; Wang, B.; Zhang, N.; Zhang, S.J.; Liu, J.F.; Walker, D.; Wang, Y.; Tian, H.; Shrout, T.R.; Xu, Z.; et al. Transparent ferroelectric crystals with ultrahigh piezoelectricity. Nature 2020, 577, 350–354. [Google Scholar] [CrossRef]
- Yamashita, Y.; Yamagata, Y.; Xiang, Y.; Maiwa, H.; Xu, Z.Z.; Jiang, X.N. Comparison of field-cooling DC poling and AC poling for lead perovskite relaxor-PbTiO3 single crystals grown by a continuous feeding Bridgman process. Jpn. J. Appl. Phys. 2024, 63, 04SP37. [Google Scholar] [CrossRef]
- Luo, C.; Karaki, T.; Wang, Z.K.; Sun, Y.Q.; Yamashita, Y.; Xu, J.Y. High piezoelectricity after field cooling AC poling in temperature stable ternary single crystals manufactured by continuous-feeding Bridgman method. J. Adv. Ceram. 2022, 11, 57–65. [Google Scholar] [CrossRef]
- Shibiru, A.T.; Fujii, I.; Nam, H.; Sapkota, P.; Khanal, G.P.; Wang, Z.K.; Ueno, S.; Wada, S. Optimization of conditions for AC plus DC poling above Curie temperature of barium titanate ceramic for piezoelectric property enhancement. J. Ceram. Soc. Jpn. 2024, 132, 346–349. [Google Scholar] [CrossRef]
- Shibiru, A.T.; Fujii, I.; Sapkota, P.; Nam, H.; Khanal, G.P.; Ueno, S.; Wada, S. Advancing piezoelectric properties of barium titanate ceramic through AC plus DC field poling over Curie temperature. Jpn. J. Appl. Phys. 2024, 63, 08SP10. [Google Scholar] [CrossRef]
- Chen, Z.J.; Song, L.J.; Cao, W.W. Characterization of high-power mechanical quality factor of piezoelectric ceramic discs under self-heating condition. J. Mater. Res. Technol. 2023, 23, 5040–5049. [Google Scholar] [CrossRef]
- Song, H.C.; Kim, S.W.; Kim, H.S.; Lee, D.G.; Kang, C.Y.; Nahm, S. Piezoelectric Energy Harvesting Design Principles for Materials and Structures: Material Figure-of-Merit and Self-Resonance Tuning. Adv. Mater. 2020, 32, 2002208. [Google Scholar] [CrossRef] [PubMed]
- Adoukatl, C.; Ntamack, G.E.; Azrar, L. High order analysis of a nonlinear piezoelectric energy harvesting of a piezo patched cantilever beam under parametric and direct excitations. Mech. Adv. Mater. Struct. 2023, 30, 4835–4861. [Google Scholar] [CrossRef]
- Yu, J.W.; Xu, L. Nonlinear Equivalent Circuit of High-Power Sandwich Piezoelectric Ultrasonic Transducer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 3126–3136. [Google Scholar] [CrossRef]
- Li, G.; Tian, F.H.; Gao, X.Y.; Tian, H.; Qiao, L.; Liu, J.F.; Li, F.; Xu, Z. Investigation of High-Power Properties of PIN-PMN-PT Relaxor-Based Ferroelectric Single Crystals and PZT-4 Piezoelectric Ceramics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 1641–1646. [Google Scholar] [CrossRef]
- Luan, P.; Liu, X.; Du, H.L.; Wu, W.H.; Hu, H.L.; Li, F.; Wei, X.Y.; Xu, Z. High second-order nonlinearity in single-domain tetragonal PMN-PT single crystal. Appl. Phys. Lett. 2024, 125, 042901. [Google Scholar] [CrossRef]
- Xu, G.S.; Luo, H.S.; Guo, Y.P.; Gao, Y.Q.; Xu, H.Q.; Qi, Z.Y.; Zhong, W.Z.; Yin, Z.W. Growth and piezoelectric properties of Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals by the modified Bridgman technique. Solid State Commun. 2001, 120, 321–324. [Google Scholar] [CrossRef]
- IEEE Std 1859-2017; IEEE Standard for Relaxor-Based Single Crystals for Transducer and Actuator Applications. IEEE: New York, NY, USA, 2017. [CrossRef]
- IEEE Std 176-1987; IEEE Standard on Piezoelectricity. IEEE: New York, NY, USA, 1988. [CrossRef]
- Xue, W.; Wang, X.; Zhu, Y.; Luo, C. Studies on the High-Power Piezoelectric Property Measurement Methods and Decoupling the Power and Temperature Effects on PZT-5H. Sensors 2025, 25, 349. [Google Scholar] [CrossRef]
- Sun, Y.Q.; Karaki, T.; Fujii, T.; Yamashita, Y.J. Spurious-mode vibrations caused by alternating current poling and their solution process for Pb(Mg1/3Nb2/3)O-3-PbTiO3 single crystals. J. Mater. 2022, 8, 96–103. [Google Scholar] [CrossRef]
- Kim, H.P.; Wan, H.; Lee, H.Y.; Yamashita, Y.; Jo, W.; Jiang, X. Thermal stability studies of alternating current poled Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals grown by solid-state crystal growth. Mater. Res. Lett. 2023, 11, 383–390. [Google Scholar] [CrossRef]
- Wang, Z.K.; Fujii, I.; Saito, S.; Nam, H.; Shibiru, A.T.; Ueno, S.; Wada, S. Enhanced piezoelectric properties of ⟨110⟩ grain-oriented 0.50(BiNa)TiO-0.50BaTiO ceramics by domain engineering above Curie temperature. J. Ceram. Soc. Jpn. 2024, 132, 350–357. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Wang, X.; Xue, W.; Wen, X.; Luo, C. Optimizing High-Power Performance of [001]-Oriented Pb(Mg1/3Nb2/3)-PbTiO3 Through Combined DC and AC Polarization Above Curie Temperature. Actuators 2025, 14, 53. https://doi.org/10.3390/act14020053
Zhu Y, Wang X, Xue W, Wen X, Luo C. Optimizing High-Power Performance of [001]-Oriented Pb(Mg1/3Nb2/3)-PbTiO3 Through Combined DC and AC Polarization Above Curie Temperature. Actuators. 2025; 14(2):53. https://doi.org/10.3390/act14020053
Chicago/Turabian StyleZhu, Yuliang, Xiaobo Wang, Wenchao Xue, Xinran Wen, and Chengtao Luo. 2025. "Optimizing High-Power Performance of [001]-Oriented Pb(Mg1/3Nb2/3)-PbTiO3 Through Combined DC and AC Polarization Above Curie Temperature" Actuators 14, no. 2: 53. https://doi.org/10.3390/act14020053
APA StyleZhu, Y., Wang, X., Xue, W., Wen, X., & Luo, C. (2025). Optimizing High-Power Performance of [001]-Oriented Pb(Mg1/3Nb2/3)-PbTiO3 Through Combined DC and AC Polarization Above Curie Temperature. Actuators, 14(2), 53. https://doi.org/10.3390/act14020053