An Adaptive Bandpass Full-Order Observer with a Compensated PLL for Sensorless IPMSMs
Abstract
1. Introduction
- Development of an adaptive bandpass full-order observer for stationary-frame EEMF estimation;
- Quantitative analysis of PLL-induced position errors and their impact on torque output during acceleration and deceleration;
- Proposal of a Kalman filter (KF)-based PLL compensation strategy that eliminates steady-state errors without increasing system order or requiring mechanical parameters;
- Experimental validation on a 300 kW IPMSM platform, which demonstrates significant position error compensation and torque fluctuation reduction under dynamic conditions
2. Sensorless Control of IPMSM
2.1. Model of Full-Order Observer
2.2. Feedback Gain Matrix Design of Full-Order Observer
2.3. Stability Analysis
2.4. Parameter Sensitivity Analysis
3. Analysis and Compensation of PLL
3.1. Conventional PLL Performance with Ramp Input Speed
3.2. Impact of Position Error on Torque Control
3.3. Feedforward PLL
3.4. KF-Based PLL Compensation Strategy
4. Experimental Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qu, L.; Qiao, W.; Qu, L. An Enhanced Linear Active Disturbance Rejection Rotor Position Sensorless Control for Permanent Magnet Synchronous Motors. IEEE Trans. Power Electron. 2020, 35, 6175–6184. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, W.; Chen, Z.; Luo, G.; Liu, J.; Zhao, D. Asymmetric Space Vector Modulation for PMSM Sensorless Drives Based on Square-Wave Voltage-Injection Method. IEEE Trans. Ind. Appl. 2018, 54, 1425–1436. [Google Scholar] [CrossRef]
- Hu, M.; Yu, W.; Lei, J.; Wu, Z.; Hua, W.; Hu, Y. Sensorless Control of a High-Speed PMSM with Rapid Acceleration for Air Compressors Using a High-order Extended State Observer. In Proceedings of the 2021 IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada, 10–14 October 2021; pp. 4781–4787. [Google Scholar] [CrossRef]
- Jarzebowicz, L.; Karwowski, K.; Kulesza, W.J. Sensorless Algorithm for Sustaining Controllability of IPMSM Drive in Electric Vehicle after Resolver Fault. Control Eng. Pract. 2017, 58, 117–126. [Google Scholar] [CrossRef]
- Bu, H.; Cho, Y. A Practical Position Sensorless Control of Long-Cable-Fed PMSM Drives with a Sine-wave Filter for Electrical Submersible Pumps. In Proceedings of the 2023 IEEE International Symposium on Sensorless Control for Electrical Drives (SLED), Seoul, Republic of Korea, 16–18 August 2023; pp. 1–7. [Google Scholar] [CrossRef]
- Ding, L.; Li, Y.; Zargari, N.R. Discrete-Time SMO Sensorless Control of Current Source Converter-Fed PMSM Drives with Low Switching Frequency. IEEE Trans. Ind. Electron. 2021, 68, 2120–2129. [Google Scholar] [CrossRef]
- Foo, G.; Rahman, M.F. Sensorless Sliding-Mode MTPA Control of an IPM Synchronous Motor Drive Using a Sliding-Mode Observer and HF Signal Injection. IEEE Trans. Ind. Electron. 2010, 57, 1270–1278. [Google Scholar] [CrossRef]
- Wang, B.; Shao, Y.; Yu, Y.; Dong, Q.; Yun, Z.; Xu, D. High-Order Terminal Sliding-Mode Observer for Chattering Suppression and Finite-Time Convergence in Sensorless SPMSM Drives. IEEE Trans. Power Electron. 2021, 36, 11910–11920. [Google Scholar] [CrossRef]
- Skoulaxinos, S.; Wheeler, P.; Vakil, G. Hybrid Sensorless Motor Control in Aerospace Applications, a Survey in Sensorless Control, Optimizing for Availability and Acoustic Noise. In Proceedings of the 2021 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Modena, Italy, 8–9 April 2021; pp. 175–180. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, H.; Song, X. Position-Estimation Deviation-Suppression Technology of PMSM Combining Phase Self-Compensation SMO and Feed-Forward PLL. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 335–344. [Google Scholar] [CrossRef]
- Zhang, L.; Xie, X.; Wu, D.; Wang, Z.; Wang, J.; Jing, J.; Deng, H.; Li, J.; Huang, J.; Huang, J. Cascade Nonlinear Observer-based speed-sensorless Adaptive Twisting Sliding Mode Control of Linear Induction Motor. Actuators 2025, 14, 318. [Google Scholar] [CrossRef]
- Hu, H.; Yu, S.; Ren, L.; Zhai, M.; Chen, Y. Improved Interconnected MRAS Parameter Identification for Speed Sensorless Control of Linear Induction Motor. Actuators 2025, 14, 2. [Google Scholar] [CrossRef]
- Kim, H.; Son, J.; Lee, J. A High-Speed Sliding-Mode Observer for the Sensorless Speed Control of a PMSM. IEEE Trans. Ind. Electron. 2011, 58, 4069–4077. [Google Scholar] [CrossRef]
- Yang, Q.; Mao, K.; Zheng, S.; Le, Y. Rotor Position Estimation Based on Fast Terminal Sliding Mode for Magnetic Suspension Centrifugal Compressor Drives. IEEE Trans. Instrum. Meas. 2024, 73, 1–11. [Google Scholar] [CrossRef]
- Zhu, X.; Huang, J.; Wang, P.; Li, Y.; Qi, G.; Wu, Y. An Improved Sliding Model Observer Sensorless Control for PMSM Based on Fuzzy Logic Controller and DSOGI-FLL. IEEE Trans. Transp. Electrification. 2025, 11, 823–834. [Google Scholar] [CrossRef]
- Filho, C.J.V.; Xiao, D.; Vieira, R.P.; Emadi, A. Observers for High-Speed Sensorless PMSM Drives: Design Methods, Tuning Challenges and Future Trends. IEEE Access. 2021, 9, 56397–56415. [Google Scholar] [CrossRef]
- Filho, C.J.V.; Vieira, R.P. Adaptive Full-Order Observer Analysis and Design for Sensorless Interior Permanent Magnet Synchronous Motors Drives. IEEE Trans. Ind. Electron. 2021, 68, 6527–6536. [Google Scholar] [CrossRef]
- Tian, Y.; Du, K.; Qu, J.; Li, F.; Chai, Y. A Learning Observer-based Control Strategy for PMSM with Position Sensor Fault in Railway. Control Eng. Pract. 2024, 142, 105705. [Google Scholar] [CrossRef]
- Zhang, W.; Guo, F. Research on Sensorless Technology of a Magnetic Suspension Flywheel Battery Based on a Genetic BP Neural Network. Actuators 2025, 14, 174. [Google Scholar] [CrossRef]
- Putra, D.S.; Chen, S.-C.; Khong, H.-H.; Cheng, F. Design and Implementation of a Machine-learning Observer for Sensorless PMSM Drive Control. Appl. Sci. 2022, 12, 2963. [Google Scholar] [CrossRef]
- Farah, N.; Lei, G.; Zhu, J.; Guo, Y. Robust Model-free Reinforcement Learning Based Current Control of PMSM Drives. IEEE Trans. Transp. Electrification. 2025, 11, 1061–1076. [Google Scholar] [CrossRef]
- Choi, J.; Lim, G.C.; Hwang, C.; Park, B.R.; Ha, J.-I. Feedback Gain Design of Induction Machine Full-order Flux Observer. IEEE Trans. Ind. Electron. 2023, 70, 9870–9881. [Google Scholar] [CrossRef]
- Liu, B.; Wu, T.; Wu, X.; Yang, M.; Luo, L.; Lu, K. Adaptive Full-Order Observer for Sensorless Variable Flux Reluctance Motor Drives Considering Field-Current Adjustability and Stator Resistance Mismatch. IEEE Trans. Transp. Electrification. 2025, 11, 6326–6334. [Google Scholar] [CrossRef]
- Shao, Y.; Yu, Y.; Chai, F.; Chen, T. A Two-degree-of-freedom Structure-based Backstepping Observer for DC Error Suppression in Sensorless PMSM Drives. IEEE Trans. Ind. Electron. 2022, 69, 10846–10858. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Z.; Lu, J.; Li, Y.; Chen, T. Discrete-Time Position Sensorless Current Control for Permanent Magnet Synchronous Motors with an Accuracy-Improved Phase-Locked Loop. IEEE Trans. Ind. Electron. 2023, 71, 6677–6688. [Google Scholar] [CrossRef]
- Novak, Z.; Novak, M. Adaptive PLL-Based Sensorless Control for Improved Dynamics of High-Speed PMSM. IEEE Trans. Power Electron. 2022, 37, 10154–10165. [Google Scholar] [CrossRef]
- Jiang, F.; Sun, S.; Liu, A.; Xu, Y.; Li, Z.; Liu, X. Robustness Improvement of Model-based Sensorless SPMSM Drivers Based on an Adaptive Extended State Observer and an Enhanced Quadrature PLL. IEEE Trans. Power Electron. 2020, 36, 4802–4814. [Google Scholar] [CrossRef]
- Wu, T.; Wu, X.; Huang, S.; Lu, K.; Cui, H. An Optimized PLL with Time Delay and Harmonic Suppression for Improved Position Estimation Accuracy of PMSM Based on Levenberg–Marquardt. IEEE Trans. Ind. Electron. 2023, 70, 9847–9858. [Google Scholar] [CrossRef]
- Cai, J.; Gu, Y.; David Cheok, A.; Yan, Y. A Survey of Phase-Locked Loop Technologies in Sensorless Position Estimation of Permanent Magnet Synchronous Motor Drives. IEEE Trans. Instrum. Meas. 2024, 73, 1–16. [Google Scholar] [CrossRef]
- Assa, A.; Janabi-Sharifi, F. A Kalman Filter-based Framework for Enhanced Sensor Fusion. IEEE Sens. J. 2015, 15, 3281–3292. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
Rated Power | 300 kW | Resistance | 0.004375 Ω |
Rated Speed | 2000 r/min | d-axis inductance | 0.4570 mH |
Rated Voltage | 800 V | q-axis inductance | 0.5256 mH |
Pole Pairs | 6 | Flux linkage | 0.18247 Wb |
Working Condition | Compensation Position Error | Compensated Torque |
---|---|---|
Condition (1) | 2.78% | 7% |
Condition (2) | 8.33% | 3.4% |
Condition (3) | 4.2% | 8% |
Condition (4) | 3.89% | 7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Zhang, J.; Meng, D.; Liu, Y.; Diao, L. An Adaptive Bandpass Full-Order Observer with a Compensated PLL for Sensorless IPMSMs. Actuators 2025, 14, 387. https://doi.org/10.3390/act14080387
Wu Q, Zhang J, Meng D, Liu Y, Diao L. An Adaptive Bandpass Full-Order Observer with a Compensated PLL for Sensorless IPMSMs. Actuators. 2025; 14(8):387. https://doi.org/10.3390/act14080387
Chicago/Turabian StyleWu, Qiya, Jia Zhang, Dongyi Meng, Ye Liu, and Lijun Diao. 2025. "An Adaptive Bandpass Full-Order Observer with a Compensated PLL for Sensorless IPMSMs" Actuators 14, no. 8: 387. https://doi.org/10.3390/act14080387
APA StyleWu, Q., Zhang, J., Meng, D., Liu, Y., & Diao, L. (2025). An Adaptive Bandpass Full-Order Observer with a Compensated PLL for Sensorless IPMSMs. Actuators, 14(8), 387. https://doi.org/10.3390/act14080387