Flow Separation Delay Mechanism and Aerodynamic Enhancement via Optimized Flow Deflector Configurations
Abstract
1. Introduction
2. Methodology
2.1. Parametrization of Flow Deflector
- (1)
- Chordwise position : The location of the flow deflector, , is the location along the airfoil upper surface, where is the airfoil geometry function of ; that is .
- (2)
- Vertical offset : The minimum distance between deflector base and airfoil contour.
- (3)
- Inter-vane spacing : The gap between adjacent vane centerlines.
- (4)
- Vane width : The streamwise chordwise length of individual vanes.
- (5)
- Vane thickness : Structural thickness perpendicular to the surface of vanes.
- (6)
- Deflector angle : Inclination relative to the local airfoil tangent.
- (7)
- Vane cant angle : Individual vane pitch relative to the deflector plane.
- (8)
- Vane count : The total number of vanes in the array.
2.2. Optimization Method
2.3. Numerical Setup and Validation
3. Numerical Simulations and Discussions
3.1. Optimization Problem Definition
3.2. Preliminary Optimization Results and Analysis
3.3. Sensitivity Analysis of Design Parameters
3.4. Optimization with New Design Parameter n
3.4.1. Description of the Problem
3.4.2. Results and Analysis
3.5. Pre-Stall AoA Optimization
3.5.1. Description of the Problem
3.5.2. Results and Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, D.P.; Xie, Y.F.; Zhang, Y.I.; Liang, Z.J.; Tian, Y. Experimental advances in airfoil dynamic stall and transition phenomena. Fluid Dyn. Mater. Process. 2025, 21, 697–739. [Google Scholar] [CrossRef]
- Hrynuk, J.T.; Bohl, D.G. The effects of leading-edge tubercles on dynamic stall. J. Fluid Mech. 2020, 893, A5. [Google Scholar] [CrossRef]
- Gong, J.Y.; Peng, W.Q.; Luo, Z.B.; Deng, X.; Zhou, Y.; Zhang, J.Y.; Zhao, Z.J. Comparison of aerodynamic characteristics of wing dynamic stall under three typical jets control. Chin. J. Aeronaut. 2025, 38, 103284. [Google Scholar] [CrossRef]
- Gardner, A.D.; Jones, A.R.; Mulleners, K.; Naughton, J.W.; Smith, M.J. Review of rotating wing dynamic stall: Experiments and flow control. Prog. Aerosp. Sci. 2023, 137, 100887. [Google Scholar] [CrossRef]
- Ren, J.H.; Wu, Z.L.; Tan, H.J.; Li, D.P.; Zhou, Y. Experimental investigation of the aerodynamics of a UAV inlet with double 90° bends. Aerosp. Sci. Technol. 2024, 154, 109502. [Google Scholar] [CrossRef]
- Zhou, L.; Ming, X.; Bai, Y.L. Wing stall control by flow deflector. Acta Aerodyn. Sin. 2011, 29, 16–21. (In Chinese) [Google Scholar]
- Donovan, J.; Kral, L.; Cary, A. Active flow control applied to an airfoil. In Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 12–15 January 1998; American Institute of Aeronautics and Astronautics: Reston, Virigina, 1998. [Google Scholar]
- Li, G.Q.; Yi, S.H.; Li, B.B.; Zhang, X. Numerical investigation on the evolution process of different vortex structures and distributed blowing control for dynamic stall suppression of rotor airfoils. Actuators 2024, 13, 30. [Google Scholar] [CrossRef]
- Yang, P.; Chen, S.; Chen, S.; Liu, G. Numerical investigation of boundary layer separation control on the low-pressure turbine blade by oscillatory blowing. Aerosp. Sci. Technol. 2024, 146, 108961. [Google Scholar] [CrossRef]
- Pan, J.X.; Wang, W.B.; Qin, C.; Wang, X.N.; Sun, Q.X.; Zhang, X. Experimental investigation on the combined blowing control of a hybrid wing body aircraft. Actuators 2023, 12, 237. [Google Scholar] [CrossRef]
- Zaccara, M.; Braganca, P.; Cuvier, C.; Paolillo, G.; Astarita, T.; Cardone, G.; Foucaut, J.; Greco, C.S. Far field behaviour of wingtip vortices under synthetic jet-based control. Aerosp. Sci. Technol. 2023, 143, 108755. [Google Scholar] [CrossRef]
- Karimi, M.S.; Oboodi, M.J. Investigation and recent developments in aerodynamic heating and drag reduction for hypersonic flows. Heat Mass Transf. 2019, 55, 547–569. [Google Scholar] [CrossRef]
- Li, G.Q.; Zhang, W.G.; Jiang, Y.B.; Yang, P.Y. Experimental investigation of dynamic stall flow control for wind turbine airfoils using a plasma actuator. Energy 2019, 185, 90–101. [Google Scholar] [CrossRef]
- Narayanaswamy, V.; Raja, L.L.; Clemens, N.T. Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator. Phys. Fluids 2012, 24, 76101. [Google Scholar] [CrossRef]
- Tang, M.X.; Wu, Y.; Zong, H.H.; Luo, Y.H.; Yang, H.S.; Guo, S.G. Experimental investigation of supersonic boundary-layer tripping with a spanwise pulsed spark discharge array. J. Fluid Mech. 2022, 931, A16. [Google Scholar] [CrossRef]
- Wang, H.Y.; Li, J.; Jin, D.; Tang, M.G.; Wu, Y.; Xiao, L.H. High-frequency counter-flow plasma synthetic jet actuator and its application in suppression of supersonic flow separation. Acta Astronaut. 2018, 142, 45–56. [Google Scholar] [CrossRef]
- Tian, S.S.; Jin, L.; Du, Z.B.; Zhong, X.Y.; Huang, W.; Liu, Y.Y. Research progress of shock wave/boundary layer interaction controls induced by bump. Acta Aeronaut. Et Astronaut. Sin. 2023, 44, 028411. (In Chinese) [Google Scholar]
- Schülein, E.; Schnepf, C.; Weiss, S. Concave bump for impinging-shock control in supersonic flows. AIAA J. 2022, 60, 2749–2766. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, H.J.; Sun, S.; Rao, C.Y. Control of cowl shock/boundary-Layer interaction in hypersonic inlets by bump. AIAA J. 2015, 53, 3492–3496. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, H.J.; Tian, F.C.; Zhuang, Y. Control of incident shock/boundary-layer interaction by a two-dimensional bump. AIAA J. 2014, 52, 767–776. [Google Scholar] [CrossRef]
- Lin, J.C. Review of research on low-profile vortex generators to control boundary-layer separation. Prog. Aerosp. Sci. 2002, 38, 389–420. [Google Scholar] [CrossRef]
- Li, W.P.; Liu, H. Large-eddy simulation of shock-wave/boundary-layer interaction control using a backward facing step. Aerosp. Sci. Technol. 2019, 84, 1011–1019. [Google Scholar] [CrossRef]
- Zhai, J.; Zhang, C.A.; Wang, F.M.; Zhang, W.W. Control of shock-wave/boundary-layer interaction using a backward-facing step. Aerosp. Sci. Technol. 2022, 126, 107665. [Google Scholar] [CrossRef]
- Montazer, E.; Yarmand, H.; Salami, E.; Muhamad, M.R.; Kazi, S.N.; Badarudin, A. A brief review study of flow phenomena over a backward-facing step and its optimization. Renew. Sustain. Energy Rev. 2018, 82, 994–1005. [Google Scholar] [CrossRef]
- Reza Maadi, S.; Sepahi-Younsi, J. Effects of bleed type on the performance of a supersonic intake. Exp. Therm. Fluid Sci. 2022, 132, 110568. [Google Scholar] [CrossRef]
- Zhang, B.H.; Zhao, Y.X.; Liu, J. Effects of bleed hole size on supersonic boundary layer bleed mass flow rate. J. Zhejiang Univ. Sci. A (Appl. Phys. Eng.) 2020, 21, 652–662. [Google Scholar] [CrossRef]
- Du, Z.B.; Shen, C.B.; Shen, Y.; Huang, W.; Yan, L. Design exploration on the shock wave/turbulence boundary layer control induced by the secondary recirculation jet. Acta Astronaut. 2021, 181, 468–481. [Google Scholar] [CrossRef]
- Kane, A.A.; Peetala, R.K.; Kulkarni, V. Investigation of pressure feedback technique to control ramp based SWBLI. Acta Astronaut. 2022, 201, 482–495. [Google Scholar] [CrossRef]
- Yan, L.; Wu, H.; Huang, W.; Li, S.B.; Liu, J. Shock wave/turbulence boundary layer interaction control with the secondary recirculation jet in a supersonic flow. Acta Astronaut. 2020, 173, 131–138. [Google Scholar] [CrossRef]
- Yan, W.; Wang, Q.; Li, J.Y.; Xu, H.W.; Zhao, K.L.; Bai, F.; Zhang, M.H.; Jiao, R.S.; Wang, F.; Zeng, W. Wind tunnel test research for influence of passive flow control technology onlow speed characteristics of civil transport aircraft. Adv. Aeronaut. Sci. Eng. 2025, 16, 93–100. (In Chinese) [Google Scholar]
- Wu, W.C.; Han, X.S.; Mao, J.K. Large eddy simulation of flow around a D-shaped bluff body for drag reduction based on passive control. J. Propuls. Technol. 2020, 41, 1692–1700. (In Chinese) [Google Scholar]
- Zhang, Z.H.; Li, D.; Yang, Y. Passive flow control of multi element airfoils using slat mini-trailing edge device. Acta Aeronaut. Et Astronaut. Sin. 2017, 38, 120650. (In Chinese) [Google Scholar]
- Naeini, H.K.; Nili-Ahmadabadi, M.; Park, Y.S.; Kim, K.C. Effect of nature-inspired needle-shaped vortex generators on the aerodynamic features of a double-delta wing. Int. J. Mech. Sci. 2021, 202–203, 106502. [Google Scholar] [CrossRef]
- Bai, Y.L.; Li, P. Researches of a finite-span wing stall control. Acta Aerodyn. Sin. 2013, 31, 10–14. (In Chinese) [Google Scholar]
- Bai, Y.L.; Ma, X.; Ming, X. Lift enhancement of the airfoil and trip flow control for wind turbine. Appl. Math. Mech. 2011, 32, 825–836. (In Chinese) [Google Scholar] [CrossRef]
- Xu, S.G.; Chen, H.Q. Nash game based efficient global optimization for large-scale design problems. J. Glob. Optim. 2018, 71, 361–381. [Google Scholar] [CrossRef]
- Xu, S.G.; Chen, H.Q.; Zhang, J.L. A study of Nash-EGO algorithm for aerodynamic shape design optimizations. Struct. Multidiscip. Optim. 2019, 59, 1241–1254. [Google Scholar] [CrossRef]
- Xu, S.G.; Tan, J.F.; Zhang, J.L.; Chen, H.Q.; Gao, Y.S. Adaptive nested Monte Carlo approach for multi-objective efficient global optimization. J. Glob. Optim. 2025, 91, 647–676. [Google Scholar] [CrossRef]
- Oyama, A.; Liou, M.; Obayashi, S. Transonic axial-flow blade optimization: Evolutionary algorithms/three-dimensional navier-stokes solver. J. Propuls. Power 2004, 20, 612–619. [Google Scholar] [CrossRef]
- Chen, S.K.; Xiong, Y.; Chen, W. Multi response and multi-stage meta modeling approach for design optimization. AIAA J. 2009, 47, 206–218. [Google Scholar] [CrossRef]
- Yao, W.X. A survey of surrogate models used in MDO. Chin. J. Comput. Mech. 2005, 22, 608–612. [Google Scholar]
- Donald, R. Jones. A Taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 2001, 21, 345–383. [Google Scholar]
Parameters | Bounds | Parameters | Bounds |
---|---|---|---|
(mm) | (mm) | ||
(mm) | () | ||
(mm) | () | ||
(mm) |
Parameters | Values | Parameters | Values |
---|---|---|---|
(mm) | 3.00 | (mm) | 5.00 |
(mm) | 40.82 | () | 99.31 |
(mm) | 3.10 | () | 118.95 |
(mm) | 7.31 |
Aerodynamic Coefficient | Clean Airfoil | Airfoil with Deflector | Improvement |
---|---|---|---|
0.7848 | 1.2429 | +58.37% | |
0.2884 | 0.2492 | −13.59% | |
2.7212 | 4.9876 | +83.29% |
Parameter | Starting Point | Step Size | Number of Points |
---|---|---|---|
(mm) | 1.0 | 2.45 | 20 |
(mm) | 0.01 | 0.0345 | 20 |
(mm) | 2.0 | 0.65 | 20 |
(mm) | 2.0 | 0.65 | 20 |
(mm) | 10.0 | 3.5 | 20 |
() | 70.0 | 2.0 | 20 |
() | 90.0 | 2.0 | 20 |
Position Number | ||
---|---|---|
1 | 6.2774 | 1.0117 |
2 | 6.2983 | 1.014 |
3 | 6.3193 | 1.0083 |
4 | 6.3403 | 1.0115 |
5 | 6.3612 | 1.0377 |
6 | 6.3665 | 1.1909 |
7 | 6.3822 | 1.2275 |
8 | 6.4032 | 1.2629 |
9 | 6.4241 | 1.3785 |
10 | 6.4451 | 1.3806 |
11 | 6.4661 | 1.3728 |
12 | 6.4870 | 1.3797 |
Parameter | Bounds | Parameter | Bounds |
---|---|---|---|
(mm) | (mm) | ||
(mm) | () | ||
(mm) | () | ||
(pieces) |
Parameter | n Unfixed | n Fixed | Parameter | n Unfixed | n Fixed |
---|---|---|---|---|---|
(mm) | 1.0000 | 8.3296 | (mm) | 4.2194 | 7.8793 |
(mm) | 51.1246 | 48.9150 | () | 94.7788 | 98.7486 |
(mm) | 7.5868 | 6.3700 | () | 114.4911 | 121.6461 |
(pieces) | 8 | 6 |
Aerodynamic Coefficient | Clean Airfoil | n Unfixed (Improvement) | n Fixed (Improvement) |
---|---|---|---|
0.9872 | 1.3355 (+35.28%) | 1.3295 (+34.67%) | |
0.3539 | 0.2985 (−15.65%) | 0.3019 (−14.69%) | |
2.7895 | 4.4740 (+60.39%) | 4.4038 (57.87%) |
Parameter | Bounds | Parameter | Bounds |
---|---|---|---|
(mm) | (mm) | ||
(mm) | () | ||
(mm) | () |
Parameters | Values | Parameters | Values |
---|---|---|---|
(mm) | 30.0000 | (mm) | 10.0000 |
(mm) | 55.0000 | () | 110.0000 |
(mm) | 5.7984 | () | 90.2538 |
Aerodynamic Coefficients | Clean Airfoil | Optimal Deflector (Improvement) | Reference Deflector (Improvement) |
---|---|---|---|
1.1360 | 1.1405 (+0.40%) | 1.0325 (−9.11%) | |
0.0653 | 0.0643 (−1.53%) | 0.0909 (+39.20%) | |
17.3966 | 17.7371 (+1.96%) | 11.3586 (−34.71%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Wang, S.; Chen, H.; Tan, J.; Li, W.; Yin, S. Flow Separation Delay Mechanism and Aerodynamic Enhancement via Optimized Flow Deflector Configurations. Actuators 2025, 14, 428. https://doi.org/10.3390/act14090428
Xu S, Wang S, Chen H, Tan J, Li W, Yin S. Flow Separation Delay Mechanism and Aerodynamic Enhancement via Optimized Flow Deflector Configurations. Actuators. 2025; 14(9):428. https://doi.org/10.3390/act14090428
Chicago/Turabian StyleXu, Shengguan, Siyi Wang, Hongquan Chen, Jianfeng Tan, Wei Li, and Shuai Yin. 2025. "Flow Separation Delay Mechanism and Aerodynamic Enhancement via Optimized Flow Deflector Configurations" Actuators 14, no. 9: 428. https://doi.org/10.3390/act14090428
APA StyleXu, S., Wang, S., Chen, H., Tan, J., Li, W., & Yin, S. (2025). Flow Separation Delay Mechanism and Aerodynamic Enhancement via Optimized Flow Deflector Configurations. Actuators, 14(9), 428. https://doi.org/10.3390/act14090428