High Resolution Actuators
- The advantages of smart materials-based actuators (piezoelectric, magnetic, magnetostrictive, electroactive polymers, magnetoactive polymers, shape memory alloys, magnetic shape memory alloys, thermally active materials, etc.) are numerous including the high resolution of positioning and the ease of integration in miniaturized systems. Some of them can provide very high bandwidth, whilst others very high stiffness, or high range of deformation and thus of positioning.
- Optimal designs of mechatronic actuators together with appropriate control strategies have often lead to very interesting solutions in terms of force or position characteristics. Nonlinear phenomena often at the basis of the design rationale (friction, backlash, hysteresis, and so on) can be efficiently treated, either at a mechanical design level (using flexure-based mechanisms, backdrivable transmission, etc.) or at a control level (model-based identification, input-shaping techniques, vibrations damping), to provide the actuation with high-resolution performances in terms of position or force.
Acknowledgments
References
- Agnus, J.; Chaillet, N.; Clévy, C.; Dembélé, S.; Gauthier, M.; Haddab, Y.; Laurent, G.; Lutz, P.; Piat, N.; Rabenorosoa, K.; et al. Robotic microassembly and micromanipulation at FEMTO-ST. J. Micro-Bio Robot. 2013, 8, 91–106. [Google Scholar] [CrossRef] [Green Version]
- Rakotondrabe, M. Smart Materials-Based Actuators at the Micro/nano-Scale: Characterization, Control and Applications; Springer-Verlag: New York, NY, USA, 2013. [Google Scholar]
- Devasia, S.; Eleftheriou, E.E.; Moheimani, R. A survey of control issues in nanopositioning. IEEE Trans. Control Syst. Technol. 2007, 15, 802–823. [Google Scholar] [CrossRef]
- Rakotondrabe, M. Piezoelectric Systems for Precise and High Dynamic Positioning: Design, Modeling, Estimation and Control. HDR Halititation Thesis, University of Franche-Comté/FEMTO-ST, Besançon cedex, France, 10 November 2014. [Google Scholar]
- Asaka, K.; Okuzaki, H. Soft Actuators: Materials, Modeling, Applications, and Future Perspectives; Springer: Tokyo, Japan, 2014. [Google Scholar]
- Gauthier, M.; Andreff, N.; Dombre, E. Intracorporeal Robotics: From Milliscale to Nanoscale; Wiley-ISTE: London, UK, 2014. [Google Scholar]
- Grossard, M.; Régnier, S.; Chaillet, N. Flexible Robotics: Applications to Multiscale Manipulations; Wiley-ISTE: London, UK, 2013. [Google Scholar]
- Saadeh, M.; Trabia, M. Parameters Identification for a Composite Piezoelectric Actuator Dynamics. Actuators 2015, 4, 39–59. [Google Scholar] [CrossRef]
- Petit, L.; Dupont, E.; Doré, E.; Lamarque, F.; Prelle, C. Design and Characterization of a High-Precision Digital Electromagnetic Actuator with Four Discrete Positions. Actuators 2015, 4, 217–236. [Google Scholar] [CrossRef]
- Grossard, M.; Martin, J.; Huard, B. Force-Sensing Actuator with a Compliant Flexure-Type Joint for a Robotic Manipulator. Actuators 2015, 4, 281–300. [Google Scholar] [CrossRef]
- López-Walle, B.; López-Cuellar, E.; Reyes-Melo, E.; Lomas-González, O.; de Castro, W.B. A Smart Polymer Composite Based on a NiTi Ribbon and a Magnetic Hybrid Material for Actuators with Multiphysic Transduction. Actuators 2015, 4, 301–313. [Google Scholar] [CrossRef]
- Zanis, R.; Jansen, J.W.; Lomonova, E.A. Modeling and Design Optimization of a Shaft-Coupled Motor and Magnetic Gear. Actuators 2016, 5, 10. [Google Scholar] [CrossRef]
- Al Hamidi, Y.; Rakotondrabe, M. Multi-Mode Vibration Suppression in MIMO Systems by Extending the Zero Placement Input Shaping Technique: Applications to a 3-DOF Piezoelectric Tube Actuator. Actuators 2016, 5, 13. [Google Scholar] [CrossRef]
- Durán, J.C.; Escareno, J.A.; Etcheverry, G.; Rakotondrabe, M. Getting Started with PEAs-Based Flapping-Wing Mechanisms for Micro Aerial Systems. Actuators 2016, 5, 14. [Google Scholar]
- Gosselin, F.; Ferlay, F.; Janotn, A. Development of a New Backdrivable Actuator for Haptic Interfaces and Collaborative Robots. Actuators 2016, 5, 17. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grossard, M.; Rakotondrabe, M. High Resolution Actuators. Actuators 2016, 5, 18. https://doi.org/10.3390/act5020018
Grossard M, Rakotondrabe M. High Resolution Actuators. Actuators. 2016; 5(2):18. https://doi.org/10.3390/act5020018
Chicago/Turabian StyleGrossard, Mathieu, and Micky Rakotondrabe. 2016. "High Resolution Actuators" Actuators 5, no. 2: 18. https://doi.org/10.3390/act5020018
APA StyleGrossard, M., & Rakotondrabe, M. (2016). High Resolution Actuators. Actuators, 5(2), 18. https://doi.org/10.3390/act5020018