Detection, Genophenotypic Characterization, and Antimicrobial Resistance of Microbial Contaminants
1. Detection and Identification of Microbial Contaminants
1.1. Microbial Survey of Tattoo Inks with Low Biomass and Complex Nature
1.2. Tracking Pathogens from Pig Production to Pork Meat Distribution Phases
1.3. Transitioning from Traditional Culture-Based Methods to Molecular-Based Methods in Pharmaceutical Sectors
2. Genophenotypic Characterization
2.1. PFGE-Based Tracking of Pathogens from Farm to Distribution
2.2. Molecular Typing Using MALDI-TOF MS and RAPD Assay of S. aureus Strains
3. Antimicrobial Resistance
3.1. AMR of Pathogens from Farm to Distribution
3.2. AMR of S. aureus Strains Isolated from Human Fecal Samples
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Alegbeleye, O.O.; Singleton, I.; Sant’Ana, A.S. Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: A review. Food Microbiol. 2018, 73, 177–208. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Szonyi, B.; Gautam, R.; Nightingale, K.; Anciso, J.; Ivanek, R. Risk factors for microbial contamination in fruits and vegetables at the preharvest level: A systematic review. J. Food Prot. 2012, 75, 2055–2081. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.; Park, Y.K.; Jung, T.S.; Park, S.B. Molecular Typing, Antibiotic Resistance and Enterotoxin Gene Profiles of Staphylococcus aureus Isolated from Humans in South Korea. Microorganisms 2022, 10, 642. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.; Kondakala, S.; Nho, S.W.; Moon, M.S.; Huang, M.C.J.; Periz, G.; Kweon, O.; Kim, S. Microbiological Survey of 47 Permanent Makeup Inks Available in the United States. Microorganisms 2022, 10, 820. [Google Scholar] [CrossRef] [PubMed]
- Daddy Gaoh, S.; Williams, A.; Le, D.; Kweon, O.; Alusta, P.; Buzatu, D.A.; Ahn, Y. Specific Detection and Enumeration of Burkholderia cepacia Complex by Flow Cytometry Using a Fluorescence-Labeled Oligonucleotide Probe. Microorganisms 2022, 10, 1170. [Google Scholar] [CrossRef] [PubMed]
- Daddy Gaoh, S.; Kweon, O.; Lee, Y.J.; Hussong, D.; Marasa, B.; Ahn, Y. A Propidium Monoazide (PMAxx)-Droplet Digital PCR (ddPCR) for the Detection of Viable Burkholderia cepacia Complex in Nuclease-Free Water and Antiseptics. Microorganisms 2022, 10, 943. [Google Scholar] [CrossRef] [PubMed]
- Bae, D.; Song, K.Y.; Macoy, D.M.; Kim, M.G.; Lee, C.K.; Kim, Y.S. Inactivation of Airborne Avian Pathogenic E. coli (APEC) via Application of a Novel High-Pressure Spraying System. Microorganisms 2022, 10, 2201. [Google Scholar] [CrossRef] [PubMed]
- Bae, D.; Macoy, D.M.; Ahmad, W.; Peseth, S.; Kim, B.; Chon, J.W.; Ryu, G.R.; Ban, G.H.; Kim, S.A.; Kang, H.J.; et al. Distribution and Characterization of Antimicrobial Resistant Pathogens in a Pig Farm, Slaughterhouse, Meat Processing Plant, and in Retail Stores. Microorganisms 2022, 10, 2252. [Google Scholar] [CrossRef] [PubMed]
- Prada, P.; Prada, P.; Brunel, B.; Reffuveille, F.; Gangloff, S.C. Review_microbial detection in complex samples. Appl. Sci. 2022, 12, 5892. [Google Scholar] [CrossRef]
- Ou, A.; Wang, K.; Ye, Y.; Chen, L.; Gong, X.; Qian, L.; Liu, J. Direct Detection of Viable but Non-culturable (VBNC) Salmonella in Real Food System by a Rapid and Accurate PMA-CPA Technique. Front. Microbiol. 2021, 12, 634555. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, S.; Robben, C.; Alter, T.; Rossmanith, P.; Mester, P. How to Evaluate Non-Growing Cells-Current Strategies for Determining Antimicrobial Resistance of VBNC Bacteria. Antibiotics 2021, 10, 115. [Google Scholar] [CrossRef] [PubMed]
- Goneau, L.W.; Delport, J.; Langlois, L.; Poutanen, S.M.; Razvi, H.; Reid, G.; Burton, J.P. Issues beyond resistance: Inadequate antibiotic therapy and bacterial hypervirulen. FEMS 2020, 1, xtaa004. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, S.; Kondakala, S.; Kim, M.; Foley, S.L.; Kweon, O.; Kim, S. Detection, Genophenotypic Characterization, and Antimicrobial Resistance of Microbial Contaminants. Microorganisms 2023, 11, 1350. https://doi.org/10.3390/microorganisms11051350
Yoon S, Kondakala S, Kim M, Foley SL, Kweon O, Kim S. Detection, Genophenotypic Characterization, and Antimicrobial Resistance of Microbial Contaminants. Microorganisms. 2023; 11(5):1350. https://doi.org/10.3390/microorganisms11051350
Chicago/Turabian StyleYoon, Sunghyun, Sandeep Kondakala, Minjae Kim, Steven L. Foley, Ohgew Kweon, and Seongjae Kim. 2023. "Detection, Genophenotypic Characterization, and Antimicrobial Resistance of Microbial Contaminants" Microorganisms 11, no. 5: 1350. https://doi.org/10.3390/microorganisms11051350
APA StyleYoon, S., Kondakala, S., Kim, M., Foley, S. L., Kweon, O., & Kim, S. (2023). Detection, Genophenotypic Characterization, and Antimicrobial Resistance of Microbial Contaminants. Microorganisms, 11(5), 1350. https://doi.org/10.3390/microorganisms11051350