Genetic Parameters for Growth and Kid Survival of Indigenous Goat under Smallholding System of Burundi
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Data
2.3. Data Analysis
2.3.1. Body Weight and Linear Measurements
2.3.2. Survival Analysis
2.3.3. Bayesian Estimation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rashamol, V.P.; Sejian, V.; Bagath, M.; Krishnan, G.; Archana, P.R.; Bhatta, R. Physiological adaptability of livestock to heat stress: An updated review. J. Anim. Behav. Biometeorol. 2018, 6, 62–71. [Google Scholar] [CrossRef]
- Devendra, C. Investments on Pro-poor Development Projects on Goats: Ensuring Success for Improved Livelihoods. Asian-Australasian. J. Anim. Sci. 2013, 26, 1–18. [Google Scholar]
- Rege, J.E.O.; Marshall, K.; Notenbaert, A.; Ojango, J.M.K.; Okeyo, A.M. Pro-poor animal improvement and breeding-What can science do? Livest. Sci. 2011, 13, 15–28. [Google Scholar] [CrossRef]
- Gizaw, S.; Getachew, T.; Goshme, S.; Valle-Zarate, A.; Van Arendonk, J.A.M.; Temp, S.; Mwai, A.O.; Dessie, T. Efficiency of selection for body weight in a cooperative village breeding program of Menz sheep under smallholder farming system. Animal 2014, 8, 1249–1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klug, W.S.; Cummings, M.R.; Spencer, C.A. Genetics Concepts, 9th ed.; Artmed: Porto Alegre, Brazil, 2010; p. 896. [Google Scholar]
- Miah, G.; Uddin, M.J.; Akhter, S.; Kabir, F. Effect of Birth Weight and Milk Yield of Dam on Kid Mortality in Black Bengal Goat. Pakistan. J. Biol. Sci. 2003, 6, 112–114. [Google Scholar]
- Manirakiza, J.; Moula, N.; Detilleux, J.; Hatungumukama, G.; Antoine-Moussiaux, N. Socio-economic evaluation of the relevance of farmer field school project for goat genetic improvement in smallholding systems. Animal 2019. under review. [Google Scholar]
- FAO. Development of Integrated Multipurpose Animal Recording Systems; FAO Anim. Prod. Heal. Guidel.: Rome, Italy, 2016. [Google Scholar]
- Mrode, R.; Tarekegn, G.M.; Mwacharo, J.M.; Djikeng, A. Invited review: Genomic selection for small ruminants in developed countries: How applicable for the rest of the world? Animal 2018, 12, 1333–1340. [Google Scholar] [CrossRef] [Green Version]
- Ibeagha-awemu, E.M.; Peters, S.O.; Bemji, M.N. Leveraging Available Resources and Stakeholder Involvement for Improved Productivity of African Livestock in the Era of Genomic Breeding. Front. Genet. 2019, 10, 357. [Google Scholar] [CrossRef] [Green Version]
- Gizaw, S.; Goshme, S.; Getachew, T.; Haile, A.; Rischkowsky, B.; Van Arendonk, J.; Valle-Zarate, A.; Dessie, T.; Mwai, O.A. Feasibility of pedigree recording and genetic selection in village sheep flocks of smallholder farmers. Trop. Anim. Health Prod. 2014, 46, 809–814. [Google Scholar] [CrossRef]
- Mueller, J.P.; Rischkowsky, B.; Haile, A.; Philipsson, J.; Mwai, O.; Besbes, B.; Valle Zárate, A.; Tibbo, M.; Mirkena, T.; Duguma, G.; et al. Community-based livestock breeding programmes: Essentials and examples. J. Anim. Breed. Genet. 2015, 132, 155–168. [Google Scholar] [CrossRef]
- Mirkena, T.; Duguma, G.; William, A.; Wurzinger, M.; Haille, A.; Rischkowsky, B.; Okeyo, A.M.; Tibbo, M.; Solkner, J. Community-based alternative breeding plans for indigenous sheep breeds in four agro-ecological zones of Ethiopia. J. Anim. Breed. Genet. 2012, 129, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Jussiau, R.; Papet, A.; Rigal, J.; Zanchi, E. Amélioration Génétique des Animaux D’élevage; Educagri: Dijon, France, 2013; p. 367. [Google Scholar]
- Komarek, A.; Lesaffre, E. Bayesian Accelerated Failure Time Model with Multivariate Doubly-Interval-Censored Data and Flexible Distributional Assumptions; Technical Report, 0546; Biostatistical Centre: Rockville, MD, USA; Catholic University of Leuven: Leuven, Belgium, 2005; p. 30. [Google Scholar]
- Jiezhi, Q. Comparison of Proportional Hazards and Accelerated Failure Time Models. Master’s Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 2009; p. 79. [Google Scholar]
- Kleinbaun, D.G.; Klein, M. Survival Analysis-A Self-Learning Text, 3rd ed.; Springer: Berlin, Germany, 2015; p. 55. [Google Scholar]
- Wilson, A.J.; Réale, D.; Clements, M.N.; Morrissey, M.M.; Postma, E.; Walling, C.A.; Loeske, E.; Kruuk, B.; Nussey, D.H. Supplementary File 5: Tutorial for MCMCglmm version Tutorial1 (MCMCglmm)-Estimating the heritability of birth weight. J. Anim. Ecol. 2010, 79, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Kruuk, L.E.B.; Hadfield, J.D. How to separate genetic and environmental causes of similarity between relatives. J. Evol. Biol. 2007, 20, 1890–1903. [Google Scholar] [CrossRef] [PubMed]
- Hadfiel, J.D. MCMCglmm: Markov chain Monte Carlo methods for Generalised Linear Mixed Models. Tutorial for MCMCglmm Package in R. Tutorial. 2010, p. 125. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.5098&rep=rep1&type=pdf (accessed on 12 December 2019).
- De Villemereuil, P. Estimation of a Biological Trait Heritability Using the Animal Model. How to Use the MCMCglmm R Package. Tutorial. 2012, pp. 1–36. Available online: http://devillemereuil.legtux.org/wp-content/uploads/2012/12/tuto_en.pdf (accessed on 12 December 2019).
- Hossein-Zadeh, N.G.; Ghahremani, D. Bayesian estimates of genetic parameters and genetic trends for morphometric traits and their relationship with yearling weight in Moghani sheep. Italian J. Anim. Sci. 2018, 17, 586–592. [Google Scholar] [CrossRef]
- Mohammed, K.M.; Kamal ELden, M.A.; Dahmoush, A.Y. Heritability and variance components estimates for growth traits in Saudi Ardi goat and Damascus goat and their crosses. Asian Pacific J. Reprod. 2018, 7, 39–46. [Google Scholar] [CrossRef]
- Gowane, G.R.; Chopra, A.; Ved Prakash, A.; Arora, L. Estimates of (co)variance components and genetic parameters for growth traits in Sirohi goat. Trop. Anim. Health Prod. 2011, 43, 189–198. [Google Scholar] [CrossRef]
- Roy, R.; Mandal, A.; Notter, D.R. Estimates of (co)variance components due to direct and maternal effects for body weights in Jamunapari goats. Animal 2008, 2, 354–359. [Google Scholar] [CrossRef] [Green Version]
- Alade, N.K.; Dilala, M.A.; Abdulyekeen, A.O. Phenotypic and genetic parameter estimates of litter size and body weights in goats. Int. J. Sci. Nat. 2010, 1, 262–266. [Google Scholar]
- Taskın, T.; Koșum, N.; Akbaș, Y.; Kaymakç, M. A study on some growth traits and their heritability estimates of Damascus kids. J. Agric. Fac. Ege Univ. 2000, 37, 137–144. [Google Scholar]
- Bosso, N.A.; Cissé, M.F.; van der Waaij, E.H.; Fall, A.; van Arendonkb, J.A.M. Genetic and phenotypic parameters of body weight in West African Dwarf goat and Djallonké sheep. Small Rumin. Res. 2007, 67, 271–278. [Google Scholar] [CrossRef]
- Gholizadeh, M.; Rahimi Mianji, G.; Hashemi, M.; Hafezian, H. Genetic parameter estimates for birth and weaning weights in Raeini goats. J. Anim. Sci. 2010, 55, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Rout, P.K.; Matikab, O.; Kaushika, R.; Digea, M.S.; Dassa, G.; Singha, M.K.; Bhusana, S. Genetic analysis of growth parameters and survival potential of Jamunapari goats in semiarid tropics. Small Rumin. Res. 2018, 165, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Getachew, T.; Gizaw, S.; Wurzinger, M.; Haile, A.; Rischkowsky, B.; Okeyo, A.M.; Sölkner, J.; Mészáros, G. Survival analysis of genetic and non-genetic factors influencing ewe longevity and lamb survival of Ethiopian sheep breeds. Livest. Sci. 2015, 176, 22–32. [Google Scholar] [CrossRef]
- Falconer, D.S.; Mackay, T.F.C. An Introduction to Quantitative Genetics, 4th ed.; Prentice Hall: London, UK, 1996; p. 480. [Google Scholar]
- Dohm, M.R. Repeatability estimates do not always set an upper limit to heritability. Technical Note. Funct. Ecol. 2002, 16, 273–280. [Google Scholar]
- Van Vleck, L.D.; Pollak, E.J.; Brranford Oltenacu, E.A. Genetics for the Animal Sciences; Freeman and Company: New York, NY, USA, 1987; p. 391. [Google Scholar]
- Pemberton, J.M. Wild pedigrees: The way forward. Proceed. R. Soc. Biol. Sci. 2008, 275, 613–621. [Google Scholar] [CrossRef] [Green Version]
- Nilforooshan, M.A.; Khazaeli, A.; Edriss, M.A. Effects of missing pedigree information on dairy cattle genetic evaluations (short communication). Arch. Anim. Breed. 2008, 51, 99–110. [Google Scholar] [CrossRef]
- Sanders, K.; Bennewitz, J.; Kalm, E. Wrong and missing sire information affects genetic gain in the Angeln dairy cattle population. J. Dairy Sci. 2006, 89, 315–321. [Google Scholar] [CrossRef] [Green Version]
- Dodenhoff, J.; Van Vleck, L.D.; Kachman, S.D.; Koch, R.M. Parameter estimates for direct, maternal, and grandmaternal genetic effects for birth weight and weaning weight in Hereford cattle. J. Anim. Sci. 1998, 76, 2521–2527. [Google Scholar] [CrossRef] [Green Version]
- Maniatis, N.; Pollott, G.E. Nuclear, cytoplasmic, and environmental effects on growth, fat, and muscle traits in Suffolk lambs from a sire referencing scheme. J. Anim. Sci. 2002, 80, 57–67. [Google Scholar] [CrossRef]
- Willmore, K.E.; Leamy, L.; Hallgrimsson, B. Effects of developmental and functional interactions on mouse cranial variability through late ontogeny. Evol. Dev. 2006, 8, 550–567. [Google Scholar] [CrossRef]
- Kirkpatrick, M.; Lande, R. The evolution of maternal characters. Evolution 1989, 43, 485–503. [Google Scholar] [CrossRef] [PubMed]
- Vitezica, Z.G.; Reverter, A.; Herring, W.; Legarra, A. Dominance and epistatic genetic variances for litter size in pigs using genomic models. Genet. Sel. Evol. 2018, 50, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jafari, S.; Hashemi, A. Estimation of genetic parameters for body measurements and their association with yearling live-weight in the Makuie sheep breed. S. Afr. J. Anim. Sci. 2014, 44, 141–147. [Google Scholar] [CrossRef] [Green Version]
- Salako, A.E. Application of morphological indices in the assessment of type and function in sheep. Int. J. Morphol. 2006, 24, 13–18. [Google Scholar] [CrossRef]
- Niyokwishimira, A.; Baziki, W.G.; Dundon Nwankpa, N.; Njoroge, C.; Boussini, H.; Wamwayi, H.; Giovanni, B.J.; Cattoli, G.; Nkundwanayo, C.; Ntakirutimana, D.; et al. Detection and molecular characterization of Peste des Petits Ruminants virus from outbreaks in Burundi, December 2017–January 2018. Transbound. Emerg. Dis. 2019, 66, 2067–2073. [Google Scholar] [CrossRef]
- Pradère, J.P. Improving animal health and livestock productivity to reduce poverty. Rev. Sci. Tech. Off. Int. Epiz. 2014, 33, 735–744. [Google Scholar]
- Ilukor, J. Improving the delivery of veterinary services in Africa: Insights from the empirical application of transaction costs theory in Uganda and Kenya. Rev. Sci. Tech. Off. Int. Epiz. 2017, 36, 279–289. [Google Scholar]
- Watson, D.J. Community Farmer Field School Animal Health Facilitators: Hybridizing Private Animal Healthcare and Capacity Building in Remote Pastoralist Areas; Research Report 14; International Livestock Research Institute (ILRI): Nairobi, Kenya, 2008; p. 70. [Google Scholar]
- FAO. Farmer Field Schools for Small-Scale Livestock Producers–A Guide for Decision Makers on Improving Livelihoods; FAO Anim. Prod. Heal. Guidel.: Rome, Italy, 2018; p. 56. [Google Scholar]
- Wurzinger, M.; Gutierrez, G. Analysis of a multi-stakeholder process during the start-up phase of two community-based llama breeding programs in Peru. Livest. Res. Rural Dev. 2017, 29, 10. [Google Scholar]
Province | Altitude (m) | Annual Temperature (°C) | Annual Rainfall (mm) | Dry Season (Months) | Goat Management |
---|---|---|---|---|---|
Gitega | 1350–2000 | 17–25 | 1200–1500 | From June to September or October | Stall-feeding with forage crops (Pennisetumm purpureum, Trypsacum laxum, and Setaria sphacelata) and crops by-products |
Rutana | 1125–1400 | 22–28 | 900–1200 | From May to November | Free grazing complemented with crop by-products |
Trait | Genetic Parameters | Mean | Median | Lowest | Highest |
---|---|---|---|---|---|
Body weight | σ2a (kg2) | 0.58 | 0.57 | 0.37 | 0.79 |
σ2m (kg2) | 0.22 | 0.23 | 0.09 | 0.38 | |
σ2p (kg2) | 0.55 | 0.54 | 0.37 | 0.70 | |
σ2c (kg2) | 0.41 | 0.42 | 0.33 | 0.53 | |
σ2e (kg2) | 1.57 | 1.57 | 1.5 | 1.61 | |
h2 | 0.17 | 0.17 | 0.11 | 0.23 | |
r | 0.33 | 0.33 | 0.29 | 0.38 | |
Chest girth | σ2a (cm2) | 2.56 | 2.53 | 1.44 | 3.65 |
σ2m (cm2) | 1.5 | 1.49 | 0.76 | 2.2 | |
σ2p (cm2) | 2.08 | 2.08 | 1.23 | 2.88 | |
σ2c (cm2) | 1.15 | 1.15 | 0.8 | 1.5 | |
σ2e (cm2) | 7.95 | 7.95 | 7.56 | 8.31 | |
h2 | 0.16 | 0.16 | 0.09 | 0.24 | |
r | 0.30 | 0.30 | 0.26 | 0.35 | |
Body length | σ2a (cm2) | 0.59 | 0.54 | 0.0004 | 1.49 |
σ2m (cm2) | 1.00 | 1.00 | 0.39 | 1.59 | |
σ2p (cm2) | 3.10 | 3.12 | 2.31 | 3.86 | |
σ2c (cm2) | 1.19 | 1.19 | 0.86 | 1.54 | |
σ2e (cm2) | 7.00 | 6.99 | 6.67 | 7.34 | |
h2 | 0.05 | 0.04 | 0.0003 | 0.11 | |
r | 0.29 | 0.28 | 0.23 | 0.33 | |
Height at wither | σ2a (cm2) | 1.65 | 1.61 | 0.86 | 2.5 |
σ2m (cm2) | 1.37 | 1.36 | 0.79 | 1.94 | |
σ2p (cm2) | 1.77 | 1.78 | 1.14 | 2.41 | |
σ2c (cm2) | 1.12 | 1.11 | 0.83 | 1.44 | |
σ2e (cm2) | 5.96 | 5.96 | 5.68 | 6.25 | |
h2 | 0.13 | 0.14 | 0.07 | 0.21 | |
r | 0.29 | 0.29 | 0.24 | 0.34 | |
Kid survival | σ2a (days2) | 0.05 | 0.06 | 0.03 | 0.10 |
σ2m (days2) | 0.05 | 0.06 | 0.03 | 0.10 | |
σ2c (days2) | 1.78 | 1.81 | 1.35 | 2.32 | |
σ2e (days2) | 0.05 | 0.05 | 0.03 | 0.09 | |
h2 | 0.02 | 0.02 | 0.01 | 0.04 | |
Correlation | BW_CG | 0.79 | 0.75 | 0.52 | 0.90 |
BW_BL | 0.65 | 0.61 | 0.24 | 0.85 | |
BW_HW | 0.74 | 0.72 | 0.47 | 0.87 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Josiane, M.; Gilbert, H.; Johann, D. Genetic Parameters for Growth and Kid Survival of Indigenous Goat under Smallholding System of Burundi. Animals 2020, 10, 135. https://doi.org/10.3390/ani10010135
Josiane M, Gilbert H, Johann D. Genetic Parameters for Growth and Kid Survival of Indigenous Goat under Smallholding System of Burundi. Animals. 2020; 10(1):135. https://doi.org/10.3390/ani10010135
Chicago/Turabian StyleJosiane, Manirakiza, Hatungumukama Gilbert, and Detilleux Johann. 2020. "Genetic Parameters for Growth and Kid Survival of Indigenous Goat under Smallholding System of Burundi" Animals 10, no. 1: 135. https://doi.org/10.3390/ani10010135
APA StyleJosiane, M., Gilbert, H., & Johann, D. (2020). Genetic Parameters for Growth and Kid Survival of Indigenous Goat under Smallholding System of Burundi. Animals, 10(1), 135. https://doi.org/10.3390/ani10010135