Weaning Performance of Beef Cattle Calves Based on Concentrate Intake
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diets, and Experimental Design
2.2. Sampling, Measurement, and Analysis
2.3. Statistical Analysis
3. Results
3.1. Weaning Age, Feed Intake, and Growth Performance
3.2. Blood Metabolites
3.3. Health Status
4. Discussion
4.1. Weaning Age
4.2. Growth Performance
4.3. Blood Metabolites
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hulbert, L.E.; Cobb, C.J.; Carroll, J.A.; Ballou, M.A. Effects of changing milk replacer feedings from twice to once daily on Holstein calf innate immune responses before and after weaning. J. Dairy Sci. 2011, 94, 2557–2565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thu, C.T.T.; Trach, N.X. Effects of early weaning on postpartum resumption of reproduction in mother buffaloes and growth of their calves. Livest. Res. Rural. Dev. 2012, 24, 19. [Google Scholar]
- Arthington, J.D.; Minton, J.E. The effect of early calf weaning on feed intake, growth, and postpartum interval inthin, Brahman-crossbred primiparous cows. Prof. Anim. Sci. 2004, 20, 34–38. [Google Scholar] [CrossRef]
- Blanco, M.; Ripoll, G.; Albertí, P.; Sanz, A.; Revilla, R.; Villalba, D.; Casasús, I. Effect of early weaning on performance, carcass and meat quality of spring-born bull calves raised in dry mountain areas. Livest. Sci. 2008, 115, 226–234. [Google Scholar] [CrossRef]
- Vasseur, E.; Borderas, F.; Cue, R.I.; Lefebvre, D.; Pellerin, D.; Rushen, J.; Wade, K.M.; De Passillé, A.M. A survey of dairy calf management practices in Canada that affect animal welfare. J. Dairy Sci. 2010, 93, 1307–1315. [Google Scholar] [CrossRef] [Green Version]
- Diao, Q.Y.; Tu, Y. Study on nutritional physiology of calves and oriented cultivation of progress.China. Feed Indus. 2013, 34, 1–6. [Google Scholar]
- Guo, F.; Tu, Y.; Si, B.W.; Chai, J.M.; Diao, Q.Y. Off breast-feeding days of age affect nutrient digestion and serum biochemical indices of calves. China J. Anim. Nutr. 2015, 27, 426–435. [Google Scholar]
- Zhang, Y.; Ch, Q.; He, D.; Meng, Q.X. Effect of a mixture of steam-flaked corn and soybeans on health, growth, and selected blood metabolism of Holstein calves. J. Dairy Sci. 2010, 93, 2271–2279. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Weary, D.M.; Von Keyserlingk, M.A. Hay intake improves performance and rumen development of calves fed higher quantities of milk. J. Dairy Sci. 2011, 94, 3547–3553. [Google Scholar] [CrossRef] [Green Version]
- China Standard NY/T 815. Feeding standard of beef cattle. Issued by Ministry of Agriculture of People’s Republic of China. 2004.
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990; Volume 1. [Google Scholar]
- Combs, D.K.; Satter, L.D. Determination of markers in digesta and feces by direct current plasma emission spectroscopy. J. Dairy Sci. 1992, 75, 2176–2183. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Bobertson, J.B.; Lewis, B.A. Methods of dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- McCutcheon, S.N.; Bauman, D.E. Effect of chronic growth hormone treatment on responses to epinephrine and thyrotropin-releasing hormone in lactating cows. J. Dairy Sci. 1986, 69, 44–51. [Google Scholar] [CrossRef]
- Wang, C.; Liu, H.Y.; Wang, Y.M.; Yang, Z.Q.; Liu, J.X.; Wu, Y.M.; Yan, T.; Ye, H.W. Effects of dietary supplementation of methionine and lysine on milk production and nitrogen utilization in dairy cows. J. Dairy. Sci. 2010, 93, 3661–3670. [Google Scholar] [CrossRef]
- Ye, J.A.; Wang, C.; Wang, H.F.; Liu, H.Y.; Wang, Y.M.; Chen, B.; Liu, J.X. Effects of pelletizing and supplementary methionine, lysine and choline on the performance of periparturient dairy cows. Acta Agric. Scand Sect. A 2010, 60, 230–238. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Tan, Y.L.; Cao, L.Y.; Wu, G.Y.; Xu, Q.; Shen, Y.; Zhou, D.F. Antioxidant enzymes and lipid peroxidation in different forms of schizophrenia treated with typical and atypical antipsychotics. Schizophr. Res. 2006, 81, 291–300. [Google Scholar] [CrossRef]
- Xu, C.Z.; Wang, H.F.; Yang, J.Y.; Wang, J.H.; Duan, Z.Y.; Wang, C.; Liu, J.; Lao, X.Y. Effects of feeding lutein on production performance, antioxidative status, and milk quality of high-yielding dairy cows. J Dairy Sci. 2014, 97, 7144–7150. [Google Scholar] [CrossRef]
- Alugongo, G.M.; Xiao, J.X.; Chung, Y.H.; Dong, S.Z.; Li, S.L.; Yoon, I.; Wu, Z.H.; Cao, Z.J. Effects of Saccharomyces cerevisiae fermentation products on dairy calves: Performance and health. J. Dairy Sci. 2017, 100, 1189–1199. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.X.; Shi, X.K.; Wu, H.T.; Mao, Y.J.; Ji, D.J. Genetic resources and utilization of Chinese cattle in south China. China Cattle Sci. 2010, 36, 1–4. [Google Scholar]
- Quigley, J.D. Influence of weaning method on growth, intake, and selected blood metabolites in Jersey calves. J. Dairy Sci. 1996, 79, 2255–2260. [Google Scholar] [CrossRef]
- Ghorbani, G.R.; Kowsar, R.; Alikhani, M.; Nikkhah, A. Soymilk as a Novel Milk Replacer to Stimulate Early Calf Starter Intake and Reduce Weaning Age and Costs. J. Dairy Sci. 2007, 90, 5692–5697. [Google Scholar] [CrossRef] [Green Version]
- Roth, B.A.; Keil, N.M.; Gygax, L.; Hillmann, E. Influence of weaning method on health status and rumen development in dairy calves. J. Dairy Sci. 2009, 92, 645–656. [Google Scholar] [CrossRef] [PubMed]
- NAHMS (National Animal Health Monitoring and Surveillance). NAHMS Dairy Survey; USDA-APHIS: Washington, DC, USA, 2007.
- Schoonmaker, J.P.; Fluharty, F.L.; Loerch, S.C.; Turner, T.B.; Moeller, S.J.; Wulf, D.M. Effect of weaning status and implant regimen on growth, performance, and carcass characteristics of steers. J. Anim. Sci. 2001, 79, 1074–1084. [Google Scholar] [CrossRef] [PubMed]
- Arthington, J.D.; Spears, J.W.; Miller, D.C. The effect of early weaning on feedlot performance and measures of stress in beef calves. J. Anim. Sci. 2005, 83, 933–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, J.A.; Arthington, J.D.; Chase, C.C., Jr. Early weaning alters the acute-phase reaction to an endotoxin challenge in beef calves. J. Anim. Sci. 2009, 87, 4167–4172. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Diao, Q.Y. Effect of weaning age on the growth performance of early weaned calves. China Anim. Husb. Vet. Med. 2006, 33, 14–17. [Google Scholar]
- Grings, E.E.; Short, R.E.; Klement, K.D.; Geary, T.W.; MacNeil, M.D.; Haferkamp, M.R.; Heitschmidt, R.K. Calving system and weaning age effects on cow and preweaning calf performance in the Northern Great Plains. J. Anim. Sci. 2005, 83, 2671–2683. [Google Scholar] [CrossRef]
- Khan, M.A.; Lee, H.J.; Lee, W.S.; Kim, H.S.; Kim, S.B.; Ki, K.S.; Ha, J.K.; Lee, H.G.; Choi, Y.J. Pre-and Postweaning Performance of Holstein Female Calves Fed Milk Through Step-Down and Conventional Methods. J. Dairy Sci. 2007, 90, 876–885. [Google Scholar] [CrossRef]
- Al-Gubory, K.H.; Garrel, C.; Delatouche, L.; Heyman, Y.; Chavatte-Palmer, P. Antioxidant adaptive responses of extraembryonic tissues from cloned and non-cloned bovine conceptuses to oxidative stress during early pregnancy. Reproduction 2010, 140, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Mruk, D.D.; Silvestrini, B.; Mo, M.Y.; Cheng, C.Y. Antioxidant superoxide dismutase—A review: Its function, regulation in the testis, and role in male fertility. Contraception 2002, 65, 305–311. [Google Scholar] [CrossRef]
- Karapehlivan, M.; Uzlu, E.; Kaya, N.; Kankavi, O.; Ural, K.; Citil, M. Investigation of Some Biochemical Parameters and the Antioxidant System in Calves with Dermatophytosis. Turk. J. Vet. Anim. Sci. 2007, 31, 85–89. [Google Scholar]
- Ranade, R.; Talukder, S.; Muscatello, G.; Celi, P. Assessment of oxidative stress biomarkers in exhaled breath condensate and blood of dairy heifer calves from birth to weaning. Vet. J. 2014, 202, 583–587. [Google Scholar] [CrossRef] [PubMed]
Item | Concentrate-Dependent Weaning 1 | SEM | p2 | ||||
---|---|---|---|---|---|---|---|
W1000 | W750 | W500 | T | D | T*D | ||
Average weaning age, d | 65 a | 58 b | 48 c | 1.8 | <0.01 | - | - |
Initial BW, kg | 14.9 | 14.6 | 14.7 | 0.377 | 0.84 | - | - |
Average daily gain, kg/d | |||||||
wk 1 to wk 21 | 0.495 | 0.552 | 0.533 | 0.047 | 0.13 | <0.01 | 0.07 |
wk 1 to wk 5 | 0.524 | 0.522 | 0.495 | 0.062 | 0.72 | - | - |
wk 5 to wk 9 | 0.401 | 0.301 | 0.300 | 0.053 | 0.23 | - | - |
wk 9 to wk 13 | 0.309 b | 0.577 a | 0.581 a | 0.042 | 0.02 | - | - |
wk 13 to wk 17 | 0.678 | 0.702 | 0.658 | 0.060 | 0.73 | - | - |
wk 17 to wk 21 | 0.630 | 0.738 | 0.719 | 0.045 | 0.26 | - | - |
wk 5 to 9 of age | |||||||
Milk intake, g/d | 341.1 a | 252.6 b | 152.6 c | 20.3 | <0.01 | <0.01 | 0.41 |
Concentrate intake, g/d | 550.0 | 618.4 | 580.0 | 28.1 | 0.19 | <0.01 | 0.34 |
Hay intake, g/d | 205.5 | 219.2 | 214.2 | 30.8 | 0.34 | <0.01 | 0.69 |
Feed: gain, kg of DM/kg of BW | 2.67 | 2.66 | 3.03 | 0.20 | 0.22 | - | - |
wk 9 to 21 of age | |||||||
Concentrate intake, g/d | 1730.0 b | 1866.5 a | 1841.6 ab | 45.0 | 0.05 | 0.04 | 0.42 |
Hay intake, g/d | 868.5 | 885.2 | 889.1 | 39.0 | 0.43 | <0.01 | 0.46 |
Feed: gain, kg of DM/kg of BW | 4.83 a | 4.08 b | 4.18 ab | 0.31 | 0.03 | - | - |
Item | Concentrate-Dependent Weaning 1 | SEM | p2 | ||||
---|---|---|---|---|---|---|---|
W1000 | W750 | W500 | T | D | T*D | ||
Body height, cm | 68.8 | 70.0 | 69.2 | 0.50 | 0.17 | <0.01 | 0.34 |
Body length, cm | 64.3 | 66.7 | 65.0 | 0.70 | 0.08 | <0.01 | 0.62 |
Circumference of cannon bone, cm | 9.89 | 10.1 | 9.83 | 0.200 | 0.53 | <0.01 | 0.37 |
Circumference of the chest, cm | 86.8 | 90.2 | 89.0 | 0.83 | 0.34 | <0.01 | 0.47 |
Item 2 | Concentrate-Dependent Weaning 1 | SEM | p | ||
---|---|---|---|---|---|
W1000 | W750 | W500 | |||
BUN, mmol/L | |||||
Wk 7 | 6.76 | 7.02 | 7.17 | 0.66 | 0.67 |
Wk 9 | 6.32 | 7.46 | 7.60 | 0.76 | 0.33 |
Wk 21 | 6.80 | 7.84 | 7.08 | 0.70 | 0.22 |
TP, g/L | |||||
Wk 7 | 67.8 | 73.7 | 70.1 | 2.70 | 0.22 |
Wk 9 | 66.3 | 69.6 | 67.3 | 2.33 | 0.29 |
Wk 21 | 69.2 | 74.1 | 70.1 | 3.43 | 0.46 |
GLU, mmol/L | |||||
Wk 7 | 4.18 | 4.13 | 3.66 | 0.32 | 0.39 |
Wk 9 | 4.58 | 4.23 | 4.44 | 0.34 | 0.43 |
Wk 21 | 4.30 | 3.89 | 3.80 | 0.40 | 0.54 |
BHBA, µmol/L | |||||
Wk 7 | 273.9 | 232.5 | 213.9 | 25.8 | 0.48 |
Wk 9 | 460.9 b | 596.8 a | 533.3 ab | 33.7 | 0.03 |
Wk 21 | 584.2 | 746.5 | 658.7 | 58.9 | 0.15 |
Item 2 | Concentrate-Dependent Weaning 1 | SEM | p | ||
---|---|---|---|---|---|
W1000 | W750 | W500 | |||
SOD, U/mL | |||||
Wk 7 | 144.5 a | 139.3 ab | 117.6 b | 4.19 | 0.02 |
Wk 9 | 136.5 | 121.9 | 118.0 | 6.30 | 0.29 |
Wk 21 | 124.8 | 139.3 | 130.0 | 10.7 | 0.47 |
MDA, nmol/mL | |||||
Wk 7 | 2.33 | 2.36 | 2.76 | 0.23 | 0.26 |
Wk 9 | 2.99 | 2.43 | 2.28 | 0.27 | 0.18 |
Wk 21 | 2.67 | 2.51 | 2.55 | 0.25 | 0.46 |
T-AOC, U/mL | |||||
Wk 7 | 2.96 | 3.21 | 2.34 | 0.31 | 0.39 |
Wk 9 | 2.12 b | 3.27 a | 2.77 ab | 0.30 | 0.04 |
Wk 21 | 3.76 | 4.07 | 3.86 | 0.18 | 0.61 |
GSH-Px, U/mL | |||||
Wk 7 | 100.0 | 104.7 | 118.5 | 6.10 | 0.54 |
Wk 9 | 47.9 | 56.1 | 51.2 | 2.91 | 0.28 |
Wk 21 | 69.9 | 77.7 | 75.1 | 4.10 | 0.82 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Li, D.; Yang, J.; Xia, Y.; Tu, Y.; White, R.; Gao, H.; Diao, Q.; Mao, H. Weaning Performance of Beef Cattle Calves Based on Concentrate Intake. Animals 2020, 10, 18. https://doi.org/10.3390/ani10010018
Wang C, Li D, Yang J, Xia Y, Tu Y, White R, Gao H, Diao Q, Mao H. Weaning Performance of Beef Cattle Calves Based on Concentrate Intake. Animals. 2020; 10(1):18. https://doi.org/10.3390/ani10010018
Chicago/Turabian StyleWang, Chong, Dongping Li, Jinyong Yang, Yuefeng Xia, Yan Tu, Robin White, Hui Gao, Qiyu Diao, and Huiling Mao. 2020. "Weaning Performance of Beef Cattle Calves Based on Concentrate Intake" Animals 10, no. 1: 18. https://doi.org/10.3390/ani10010018
APA StyleWang, C., Li, D., Yang, J., Xia, Y., Tu, Y., White, R., Gao, H., Diao, Q., & Mao, H. (2020). Weaning Performance of Beef Cattle Calves Based on Concentrate Intake. Animals, 10(1), 18. https://doi.org/10.3390/ani10010018