Influence of Housing Conditions on Reliability of Immunocastration and Consequences for Growth Performance of Male Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Setup
2.2. GnRH Binding in Plasma
2.3. Testosterone Levels in Plasma
2.4. Cortisol Levels in Plasma
2.5. Boar Taint Compounds in Adipose Tissue
2.6. Genital Tract Measurements
2.7. Statistical Analysis
3. Results
3.1. Characterization of Testicular Functions in Male Pigs
3.2. GnRH Antibody Formation and Testicular Functions in Immunocastrates during the Investigation Period
3.3. Evaluation of Reproductive Organs in Male Pigs
3.4. Influence of Treatment and Housing Conditions on Boar Taint
3.5. Cortisol Levels in Male Pigs
3.6. Growth Performance of Male Pigs
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- EFSA. Opinion of the scientific panel on animal health and welfare on a request from the commission related to welfare aspects of the castration of piglets. Eur. Food Saf. Auth. J. 2004, 91, 1–18. [Google Scholar] [CrossRef]
- Prunier, A.; Bonneau, M.; Von Borell, E.H.; Cinotti, S.; Gunn, M.; Fredriksen, B.; Giersing, M.; Morton, D.B.; Tuyttens, F.A.M.; Velarde, A. A review of the welfare consequences of surgical castration in piglets and the evaluation of non-surgical methods. Anim. Welf. 2006, 15, 277–289. [Google Scholar]
- von Borell, E.; Baumgartner, J.; Giersing, M.; Jäggin, N.; Prunier, A.; Tuyttens, F.A.M.; Edwards, S.A. Animal welfare implications of surgical castration and its alternatives in pigs. Animal 2009, 3, 1488–1496. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Establishing Best Practices on the Production, the Processing and the Marketing of Meat from Uncastrated Pigs or Pigs Vaccinated Against Boar Taint (Immunocastrated). 2019. Available online: https://ec.europa.eu/food/sites/food/files/animals/docs/aw_prac_farm_pigs_cast-alt_establishing-best-practices.pdf (accessed on 5 August 2019).
- European Declaration on Alternatives to Surgical Castration of Pigs. Available online: https://ec.europa.eu/food/sites/food/files/animals/docs/aw_prac_farm_pigs_cast-alt_declaration_en.pdf (accessed on 31 March 2019).
- Backus, G.; Higuera, M.; Juul, N.; Nalon, E.; de Briyne, N. Second Progress Report 2015–2017 on the European Declaration on Alternatives to Surgical Castration of Pigs. Available online: https://www.boarsontheway.com/wp-content/uploads/2018/08/Second-progress-report-2015-2017-final-1.pdf (accessed on 26 April 2019).
- Bonneau, M.; Weiler, U. Pros and cons of alternatives to piglet castration: Welfare, boar taint, and other meat quality traits. Animals 2019, 9, 884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonneau, M.; Le Denmat, M.; Vaudelet, J.C.; Veloso Nunes, J.R.; Mortensen, A.B.; Mortensen, H.P. Contributions of fat androstenone and skatole to boar taint: I. Sensory attributes of fat and pork meat. Livest. Prod. Sci. 1992, 32, 63–80. [Google Scholar] [CrossRef]
- Čandek-Potokar, M.; Škrlep, M.; Zamaratskaia, G. Immunocastration as alternative to surgical castration in pigs. Theriogenology 2017, 6, 109–126. [Google Scholar] [CrossRef] [Green Version]
- Weiler, U.; Isernhagen, M.; Stefanski, V.; Ritzmann, M.; Kress, K.; Hein, C.; Zöls, S. Penile injuries in wild and domestic pigs. Animals 2016, 6, 25. [Google Scholar] [CrossRef] [PubMed]
- Rydhmer, L.; Zamaratskaia, G.; Andersson, H.K.; Algers, B.; Guillemet, R.; Lundström, K. Aggressive and sexual behaviour of growing and finishing pigs reared in groups, without castration. Acta Agric. Scand. Sect. A—Anim. Sci. 2006, 56, 109–119. [Google Scholar] [CrossRef]
- Thompson, D.L. Immunization against GnRH in male species (comparative aspects). Anim. Reprod. Sci. 2000, 60, 459–469. [Google Scholar] [CrossRef]
- Kress, K.; Millet, S.; Labussière, É.; Weiler, U.; Stefanski, V. Sustainability of pork production with immunocastration in Europe. Sustainability 2019, 11, 3335. [Google Scholar] [CrossRef] [Green Version]
- Reiter, S.; Zöls, S.; Ritzmann, M.; Stefanski, V.; Weiler, U. Penile Injuries in Immunocastrated and Entire Male Pigs of One Fattening Farm. Animals 2017, 7, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Medicines Agency EPAR. Scientific Discussion. Available online: https://www.ema.europa.eu/en/documents/scientific-discussion/improvac-epar-scientific-discussion_en.pdf (accessed on 22 April 2019).
- Zeng, X.Y.; Turkstra, J.A.; Meloen, R.H.; Liu, X.Y.; Chen, F.Q.; Schaaper, W.M.M.; (Ria) Oonk, H.B.; Guo, D.Z.; van de Wiel, D.F.M. Active immunization against gonadotrophin-releasing hormone in Chinese male pigs: Effects of dose on antibody titer, hormone levels and sexual development. Anim. Reprod. Sci. 2002, 70, 223–233. [Google Scholar] [CrossRef]
- Škrlep, M.; Batorek-Lukač, N.; Prevolnik-Povše, M.; Čandek-Potokar, M. Teoretical and practical aspects of immunocastration. Stoč. Čas. Unapr. Stoč. 2014, 68, 39–49. [Google Scholar]
- Škrlep, M.; Batorek, N.; Bonneau, M.; Fazarinc, G.; Šegula, B.; Čandek-Potokar, M. Elevated fat skatole levels in immunocastrated, surgically castrated and entire male pigs with acute dysentery. Vet. J. 2012, 194, 417–419. [Google Scholar] [CrossRef] [PubMed]
- Stefanski, V.; Engler, H. Effects of acute and chronic social stress on blood cellular immunity in rats. Physiol. Behav. 1998, 64, 733–741. [Google Scholar] [CrossRef]
- Dhabhar, F.S. Effects of stress on immune function: The good, the bad, and the beautiful. Immunol. Res. 2014, 58, 193–210. [Google Scholar] [CrossRef]
- Fleshner, M.; Laudenslager, M.L.; Simons, L.; Maier, S.F. Reduced serum antibodies associated with social defeat in rats. Physiol. Behav. 1989, 45, 1183–1187. [Google Scholar] [CrossRef]
- Kiecolt-Glaser, J.K.; Glaser, R.; Gravenstein, S.; Malarkey, W.B.; Sheridan, J. Chronic stress alters the immune response to influenza virus vaccine in older adults. Proc. Natl. Acad. Sci. USA 1996, 93, 3043–3047. [Google Scholar] [CrossRef] [Green Version]
- Gimsa, U.; Tuchscherer, M.; Kanitz, E. Psychosocial stress and immunity-what can we learn from pig studies? Front. Behav. Neurosci. 2018, 12, 64. [Google Scholar] [CrossRef] [Green Version]
- Tuchscherer, M.; Puppe, B.; Tuchscherer, A.; Kanitz, E. Effects of social status after mixing on immune, metabolic, and endocrine responses in pigs. Physiol. Behav. 1998, 64, 353–360. [Google Scholar] [CrossRef]
- Coutellier, L.; Arnould, C.; Boissy, A.; Orgeur, P.; Prunier, A.; Veissier, I.; Meunier-Salaün, M.-C. Pig’s responses to repeated social regrouping and relocation during the growing-finishing period. Appl. Anim. Behav. Sci. 2007, 105, 102–114. [Google Scholar] [CrossRef]
- Schalk, C.; Pfaffinger, B.; Schmucker, S.; Weiler, U.; Stefanski, V. Effects of repeated social mixing on behavior and blood immune cells of group-housed pregnant sows (Sus scrofa domestica). Livest. Sci. 2018, 217, 148–156. [Google Scholar] [CrossRef]
- Deguchi, E.; Akuzawa, M. Effects of fighting after grouping on plasma cortisol concentration and lymphocyte blastogenesis of peripheral blood mononuclear cells induced by mitogens in piglets. J. Vet. Med. Sci. 1998, 60, 149–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millet, S.; Moons, C.P.; Oeckel, M.J.V.; Janssens, G.P. Welfare, performance and meat quality of fattening pigs in alternative housing and management systems: A review. J. Sci. Food Agric. 2005, 85, 709–719. [Google Scholar] [CrossRef]
- de Groot, J.; de Jong, I.C.; Prelle, I.T.; Koolhaas, J.M. Immunity in barren and enriched housed pigs differing in baseline cortisol concentration. Physiol. Behav. 2000, 71, 217–223. [Google Scholar] [CrossRef]
- Sutherland, M.A.; Niekamp, S.R.; Rodriguez-Zas, S.L.; Salak-Johnson, J.L. Impacts of chronic stress and social status on various physiological and performance measures in pigs of different breeds. J. Anim. Sci. 2006, 84, 588–596. [Google Scholar] [CrossRef]
- Hyun, Y.; Ellis, M.; Riskowski, G.; Johnson, R.W. Growth performance of pigs subjected to multiple concurrent environmental stressors. J. Anim. Sci. 1998, 76, 721–727. [Google Scholar] [CrossRef]
- Leek, A.B.G.; Sweeney, B.T.; Duffy, P.; Beattie, V.E.; O’Doherty, J.V. The effect of stocking density and social regrouping stressors on growth performance, carcass characteristics, nutrient digestibility and physiological stress responses in pigs. Anim. Sci. 2004, 79, 109–119. [Google Scholar] [CrossRef]
- Kress, K.; Verhaagh, M. The economic impact of German pig carcass pricing systems and risk scenarios for boar taint on the profitability of pork production with immunocastrates and boars. Agriculture 2019, 9, 204. [Google Scholar] [CrossRef]
- Salacinski, P.R.P.; McLean, C.; Sykes, J.E.C.; Clement-Jones, V.V.; Lowry, P.J. Iodination of proteins, glycoproteins, and peptides using a solid-phase oxidizing agent, 1,3,4,6-tetrachloro-3α,6α-diphenyl glycoluril (Iodogen). Anal. Biochem. 1981, 117, 136–146. [Google Scholar] [CrossRef]
- Engert, L.C.; Weiler, U.; Stefanski, V.; Schmucker, S.S. Glucocorticoid receptor number and affinity differ between peripheral blood mononuclear cells and granulocytes in domestic pigs. Domest. Anim. Endocrinol. 2017, 61, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Pauly, C.; Spring, P.; O’Doherty, J.V.; Ampuero Kragten, S.; Bee, G. Performances, meat quality and boar taint of castrates and entire male pigs fed a standard and a raw potato starch-enriched diet. Animal 2008, 2, 1707–1715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fazarinc, G. Anatomy of Reproductive Tract—Measurements and Sampling. In: “Harmonisation of Methods in Entire Male and Immunocastrate Research”: Lectures of the Training School, Ljubljana. 20–22 November 2017. Available online: http://www.ca-ipema.eu/applications/lite/ipema/files/documents/training_educ/Slides_TS_Ljubljana.pdf (accessed on 28 November 2019).
- Kozak, M.; Piepho, H.-P. What’s normal anyway? Residual plots are more telling than significance tests when checking ANOVA assumptions. J. Agron. Crop. Sci. 2018, 204, 86–98. [Google Scholar] [CrossRef]
- Bonneau, M.; Čandek-Potokar, M.; Škrlep, M.; Font-i-Furnols, M.; Aluwé, M.; Network, T.C.; Fontanesi, L. Potential sensitivity of pork production situations aiming at high-quality products to the use of entire male pigs as an alternative to surgical castrates. Animal 2018, 12, 1287–1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamaratskaia, G.; Babol, J.; Madej, A.; Squires, E.J.; Lundström, K. Age-related variation of plasma concentrations of skatole, androstenone, testosterone, Oestradiol-17β, oestrone sulphate, dehydroepiandrosterone sulphate, triiodothyronine and IGF-1 in six entire male pigs. Reprod. Domest. Anim. 2004, 39, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Wesoly, R.; Jungbluth, I.; Stefanski, V.; Weiler, U. Pre-slaughter conditions influence skatole and androstenone in adipose tissue of boars. Meat Sci. 2015, 99, 60–67. [Google Scholar] [CrossRef]
- Doran, E.; Whittington, F.W.; Wood, J.D.; McGivan, J.D. Cytochrome P450IIE1 (CYP2E1) is induced by skatole and this induction is blocked by androstenone in isolated pig hepatocytes. Chem. Biol. Interact. 2002, 140, 81–92. [Google Scholar] [CrossRef]
- Zamaratskaia, G.; Gilmore, W.J.; Lundström, K.; Squires, E.J. Effect of testicular steroids on catalytic activities of cytochrome P450 enzymes in porcine liver microsomes. Food Chem. Toxicol. 2007, 45, 676–681. [Google Scholar] [CrossRef]
- Wiercinska, P.; Lou, Y.; Squires, E.J. The roles of different porcine cytochrome P450 enzymes and cytochrome b5A in skatole metabolism. Animal 2012, 6, 834–845. [Google Scholar] [CrossRef] [Green Version]
- Kojima, M.; Degawa, M. Serum androgen level is determined by autosomal dominant inheritance and regulates sex-related CYP genes in pigs. Biochem. Biophys. Res. Commun. 2013, 430, 833–838. [Google Scholar] [CrossRef]
- Batorek, N.; Čandek-Potokar, M.; Bonneau, M.; Van Milgen, J. Meta-analysis of the effect of immunocastration on production performance, reproductive organs and boar taint compounds in pigs. Animal 2012, 6, 1330–1338. [Google Scholar] [CrossRef] [PubMed]
- Nautrup, B.P.; Vlaenderen, I.V.; Aldaz, A.; Mah, C.K. The effect of immunization against gonadotropin-releasing factor on growth performance, carcass characteristics and boar taint relevant to pig producers and the pork packing industry: A meta-analysis—Science direct. Res. Vet. Sci. 2018, 119, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Škrlep, M.; Batorek-Lukač, N.; Tomažin, U.; Prevolnik Povše, M.; Škorjanc, D.; Čandek-Potokar, M. Inferior rearing conditions can lead to high skatole level in pre-pubertal entire male pigs. In Proceedings of the International Symposium on Animal Science, Belgrade, Serbia, 24–25 November 2016; pp. 334–338. [Google Scholar]
- Kubale, V.; Batorek-Lukač, N.; Škrlep, M.; Prunier, A.; Bonneau, M.; Fazarinc, G.; Čandek-Potokar, M. Steroid hormones, boar taint compounds, and reproductive organs in pigs according to the delay between immunocastration and slaughter. Theriogenology 2013, 79, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Bonneau, M. Accessory sex glands as a tool to measure the efficacy of immunocastration in male pigs. Animal 2010, 4, 930–932. [Google Scholar] [CrossRef]
- Gogić, M.; Radović, Č.; Čandek-Potokar, M.; Petrović, M.; Radojković, D.; Parunović, N.; Savić, R. Effect of immunocastration on sex glands of male Mangulica (Swallow-bellied Mangalitsa) pigs. Rev. Bras. Zootec. 2019, 48. [Google Scholar] [CrossRef] [Green Version]
- Claus, R.; Weiler, U.; Wagner, H.G. Photoperiodic influences on reproduction of domestic boars. II. Light influences on semen characteristics and libido. Zent. Vet. A 1985, 32, 99–109. [Google Scholar] [CrossRef]
- Čandek-Potokar, M.; Prevolnik, M.; Škrlep, M. Testes weight is not a reliable tool for discriminating immunocastrates from entire males. In Proceedings of the International Symposium on Animal Science, Belgrade, Serbia, 23–25 September 2014; pp. 43–49. [Google Scholar]
- de Jong, I.C.; Prelle, I.T.; van de Burgwal, J.A.; Lambooij, E.; Korte, S.M.; Blokhuis, H.J.; Koolhaas, J.M. Effects of environmental enrichment on behavioral responses to novelty, learning, and memory, and the circadian rhythm in cortisol in growing pigs. Physiol. Behav. 2000, 68, 571–578. [Google Scholar] [CrossRef]
- Stefanski, V. Social stress in laboratory rats: Hormonal responses and immune cell distribution. Psychoneuroendocrinology 2000, 25, 389–406. [Google Scholar] [CrossRef]
- Wiesner, L.; Kress, K.; Weiler, U.; Stefanski, V. Welfare of Entire Males, Immunocastrates and Surgical Castrated Pigs in Socially Unstable Groups. In Book of Abstracts of the 70th Annual Meeting of the European Federation of Animal Science, 26–30 August 2019, Ghent, Belgium; Wageningen Academic Publishers: Wageningen, The Netherland, 2019; p. 713. [Google Scholar]
- Ekkel, E.D.; van Doorn, C.E.; Hessing, M.J.; Tielen, M.J. The specific-stress-free housing system has positive effects on productivity, health, and welfare of pigs. J. Anim. Sci. 1995, 73, 1544–1551. [Google Scholar] [CrossRef]
- Pauly, C.; Spring, P.; O’Doherty, J.V.; Ampuero Kragten, S.; Bee, G. Growth performance, carcass characteristics and meat quality of group-penned surgically castrated, immunocastrated (Improvac®) and entire male pigs and individually penned entire male pigs. Animal 2009, 3, 1057–1066. [Google Scholar] [CrossRef] [Green Version]
Parameter | Boars (n = 48) | Immunocastrates (n = 48) | Barrows (n = 48) | p-Value | Enriched (n = 36) | Standard (n = 36) | Mixing (n = 72) | p-Value |
---|---|---|---|---|---|---|---|---|
Testes * | 722.57 ± 21.43 b | 288.41 ± 20.77 a | - | <.0001 | 490.97 ± 26.65 | 521.02 ± 24.23 | 504.48 ± 23.91 | 0.7001 |
Vesicular gl. | 274.15 ± 16.26 b | 38.94 ± 15.59 a | - | <.0001 | 140.04 ± 19.89 | 175.95 ± 19.15 | 153.63 ± 15.79 | 0.3026 |
Bulbourethral gl. | 158.36 ± 10.87 b | 58.95 ± 10.87 a | - | <.0001 | 105.42 ± 11.51 | 115.65 ± 11.37 | 104.90 ± 10.67 | 0.3930 |
Prostate | 9.24 ± 0.47 b | 3.38 ± 0.46 a | - | <.0001 | 6.18 ± 0.53 | 6.85 ± 0.53 | 5.89 ± 0.50 | 0.4648 |
Urogenital tract | 540.61 ± 20.46 c | 214.01 ± 18.16 b | 115.41 ± 17.85 a | <.0001 | 281.00 ± 18.63 | 310.67 ± 18.68 | 278.36 ± 15.98 | 0.2729 |
Parameter | Boars (n = 48) | Immunocastrates (n = 48) | Barrows (n = 48) | p-Value | Enriched (n = 36) | Standard (n = 36) | Mixing (n = 72) | p-Value |
---|---|---|---|---|---|---|---|---|
Androstenone | 2.53 ± 0.50 b | <0.24 a | - | <.0001 | 0.64 ± 0.15 | 0.67 ± 0.15 | 0.74 ± 0.14 | 0.7184 |
Skatole | 0.037 ± 0.005 b | 0.020 ± 0.003 a | 0.021 ± 0.003a | <.001 | 0.021 ± 0.003 | 0.029 ± 0.005 | 0.025 ± 0.003 | 0.1179 |
Parameter | Boars (n = 48) | Immunocastrates (n = 48) | Barrows (n = 48) | p-Value | Enriched (n = 36) | Standard (n = 36) | Mixing (n = 72) | p-Value |
---|---|---|---|---|---|---|---|---|
Cortisol - B1 | 27.96 ± 2.77 | 26.37 ± 2.75 | 28.93 ± 2.74 | 0.7025 | 31.76 ± 2.94 | 26.34 ± 2.87 | 25.16 ± 2.49 | 0.1353 |
Cortisol - B2 | 23.82 ± 3.04 | 21.37 ± 3.03 | 27.31 ± 3.03 | 0.0584 | 23.44 ± 3.19 | 23.82 ± 3.13 | 25.23 ± 2.81 | 0.7137 |
Cortisol - B3 | 19.49 ± 1.47 | 18.56 ± 1.40 | 17.77 ± 1.34 | 0.6867 | 17.63 ± 1.46 | 21.49 ± 1.78 | 16.97 ± 0.99 | 0.0629 |
Cortisol - B4 | 59.15 ± 4.41 b | 45.29 ± 4.36 a | 49.74 ± 4.34 ab | 0.0049 | 53.57 ± 4.66 | 48.26 ± 4.61 | 52.36 ± 3.86 | 0.4735 |
Parameter | Boars (n = 48) | Immunocastrates (n = 48) | Barrows (n = 48) | p-Value | Enriched (n = 36) | Standard (n = 36) | Mixing (n = 72) | p-Value |
---|---|---|---|---|---|---|---|---|
ADG - Phase 1 | 854 ± 23 | 864 ± 22 | 911 ± 22 | 0.0417 | 862 ± 23 | 887 ± 23 | 880 ± 21 | 0.4747 |
ADG - Phase 2 | 923 ± 46 | 905 ± 46 | 963 ± 46 | 0.0625 | 969 ± 47b | 926 ± 47 ab | 894 ± 44 a | 0.0099 |
ADG - Phase 3 | 869 ± 20 b | 967 ± 20 c | 816 ± 20 a | <.0001 | 911 ± 21 b | 882 ± 21ab | 859 ± 18a | 0.0438 |
ADG - Total Fattening | 855 ± 20 | 906 ± 20 | 879 ± 20 | 0.0694 | 898 ± 21 | 885 ± 21 | 886 ± 19 | 0.1220 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kress, K.; Weiler, U.; Schmucker, S.; Čandek-Potokar, M.; Vrecl, M.; Fazarinc, G.; Škrlep, M.; Batorek-Lukač, N.; Stefanski, V. Influence of Housing Conditions on Reliability of Immunocastration and Consequences for Growth Performance of Male Pigs. Animals 2020, 10, 27. https://doi.org/10.3390/ani10010027
Kress K, Weiler U, Schmucker S, Čandek-Potokar M, Vrecl M, Fazarinc G, Škrlep M, Batorek-Lukač N, Stefanski V. Influence of Housing Conditions on Reliability of Immunocastration and Consequences for Growth Performance of Male Pigs. Animals. 2020; 10(1):27. https://doi.org/10.3390/ani10010027
Chicago/Turabian StyleKress, Kevin, Ulrike Weiler, Sonja Schmucker, Marjeta Čandek-Potokar, Milka Vrecl, Gregor Fazarinc, Martin Škrlep, Nina Batorek-Lukač, and Volker Stefanski. 2020. "Influence of Housing Conditions on Reliability of Immunocastration and Consequences for Growth Performance of Male Pigs" Animals 10, no. 1: 27. https://doi.org/10.3390/ani10010027
APA StyleKress, K., Weiler, U., Schmucker, S., Čandek-Potokar, M., Vrecl, M., Fazarinc, G., Škrlep, M., Batorek-Lukač, N., & Stefanski, V. (2020). Influence of Housing Conditions on Reliability of Immunocastration and Consequences for Growth Performance of Male Pigs. Animals, 10(1), 27. https://doi.org/10.3390/ani10010027